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Rough subdivision

• Normal ellipticals. Giant ellipticals (gE’s), intermediate

luminosity (E’s), and compact ellipticals (cE’s), covering a range

of luminosities from MB ∼ −23m to MB ∼ −15m.

• Dwarf ellipticals (dE’s). These differ from the cE’s in that they

have a significantly smaller surface brightness and a lower

metallicity.

• cD galaxies. Extremely luminous (up to MB ∼ −25m) and

large (up to ∼1 Mpc) galaxies near centers of rich clusters of

galaxies.

• Blue compact dwarf galaxies (BCD’s). BCD’s are clearly bluer

(B − V ≈ 0.0− 0.3) and contain an appreciable amount of gas

in comparison with other E’s.

• Dwarf spheroidals (dSph’s). Low luminosity and surface

brightness (they have been observed down to MB ∼ −8m).
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Characteristic values for E’s (Schneider 2006).

Type MB M(M⊙) D25 (kpc) M/LB

cD –22m to –25m 1013 − 1014 300-1000 >100

E –15 to –23 108 − 1013 1-200 10–100

dE –13 to –19 107 − 109 1-10 1–10

BCD –14 to –17 ∼ 109 < 3 0.1–10

dSph –8 to –15 107 − 108 0.1–0.5 5–100
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Some results:
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Isophote twisting
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Fine structures
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Fine structures: Virgo E/S0 galaxy NGC 4382
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Photometric profiles

Kormendy et al. (2008):
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Kormendy relation

Kormendy (1977) demonstrated that a correlation exists

berween re and µe in the sense that larger galaxieshave fainter

effective surface brightnesses.

Thick solid line –

µe = A lg re + const, A ≈ 3

(Kormendy relation).

Thin solid line – a line of con-

stant luminosity:

MVauc = µe − 5 lg re − 39.96,

so

µe ∝ 5 lg re.
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Capaccioli et al. (1992) Kormendy et al. (2008)

Applications of the KR: surface brightness evolution,

Tolmen’s test for expansion.
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Faber-Jackson relation

A relation for elliptical galax-

ies, analogous to the TFR, was

found by Sandra Faber and

Roger Jackson (1976). They

discovered that the velocity dis-

persion in the center of ellipti-

cals, σ0, scales with luminosity,

L ∝ σB
0 , where B ≈ 4.

The dispersion of ellipticals about this relation is larger than

that of spirals about the TFR.

The FJR can be used to estimate a galaxy’s distance from its

measured velocity dispersion.

Elliptical galaxies
Fundamental plane

The fundamental plane (FP) is a relation that combines surface

photometry with spectroscopy. The FP was discovered

independently and simultaneously by Djorgovski & Davis

(1987) and Dressler et al. (1987).
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The FP is a relation between

re, σ, and µe and is linear

in logarithmic space. Since

L ∝ Ier2
e , the FP can also be

expressed as a relation be-

tween L, σ, and µe or be-

tween re, σ, and L.

Pahre et al. (1998) – 301 galaxy, K band.
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Standard presentation of the FP is

lg re = α lg σ0 + β lg 〈I〉e + const

or

re ∝ σα
0 〈I〉

β
e .

α ≈ 1.3 in the B, α ≈ 1.7 in the K passband;

β ≈ −0.8.

The Kormendy (µe − re) and the Faber–Jackson (L− σ)

relations are diferent projections of the FP.

Applications: galaxy distances, evolution of E.
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Observational data on the FP coefficients
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Fundamental plane

Bender et al. (1992) introduced a new orthogonal coordinate

system for the FP known as the κ-space, defined by the

following independent variables:

which relate to galaxian total mass, M, average effective

surface brightness, 〈I〉e, and mass-to-light ratio, M/L,

respectively.
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Such parametrization is useful for

a number of reasons:

(1) κ-variables are expressed

only in terms of observables,

(2) the κ1 − κ3 plane represents

an edge-on view of the FP and

provides a direct view of the tilt,

(3) the κ1 − κ2 plane almost rep-

resents a face-on view of the FP.

∼ 9000 galaxies from the SDSS, g∗ band.
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Simple interpretation of the FP

For a bound system

GM

〈R〉
= kE

〈V2〉

2
,

where kE = 2 for a virialized system.

We relate the observable quantities re, σ0 and 〈I〉e to the

physical quantities through

re = kR〈R〉, σ2
0 = kV 〈V

2〉, L = kL〈I〉er2
e .

The parameters kR, kV , and kL reflect the density structure,

kinematical structure, and luminosity structure of the given

galaxy. If these parameters are constant, the galaxies

constitute a homologous family.
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Therefore, assuming kE = 2 we obtain

re = kS (M/L)−1 σ2
0 〈I〉

−1
e ,

where M/L – global mass-to-luminosity ratio and

kS = (GkRkV kL)
−1.

For homology kS will be constant. (Homology means that struc-

ture of small and big galaxies is the same.)

When this relation is compared to the observed FP,

re ∝ σ1.4
0 〈I〉−0.8

e ,

it is seen that the coefficients of the FP are not 2 and -1 as ex-

pected from homology and constant mass-to-light ratios. The

product kS (M/L)−1 cannot be constant, but has to be a func-

tion of σ0 and 〈I〉e.
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A non-constant kS (M/L)−1 product can be explained by

a systematic deviation from homology (kS varies), or

a systematic variations of the M/L ratios,

or both.

The interpretation of the FP is still a matter of debate.

There are some evidences in favour of M/L variations

(M/L ∝ L0.2−0.3) and of non-homology (e.g. n ∝ L).
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Dn − σ0 correlation

Dressler et al. (1987) have defined a readily measured photo-

metric parameter that has a tight correlation with σ0 by virtue of

the FP. This parameter, Dn, is the diameter within which the

mean surface brightness is In = 20.75 in the B band.

If we assume that all ellipticals half a self-similar brightness

profile, I(r) = Ie f (r/re), with f (1) = 1, then the mean surface

brightness In can be written as

In =
2πIe

∫ Dn/2
0

dr r f (r/re)
1
4πD2

n

=

8 Ie (
re

Dn
)2

∫ Dn/2re

0

dx x f (x).
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Dn − σ0 correlation

For a de Vaucouleurs profile we have approximately f (x) ∝ x−α

with α ≈ 1.2 in the relevant range of radius. Using this

approximation to evaluate the integral, we obtain

Dn ∝ re I
1/α
e ∼ re I0.8

e .

Replacing re by the FP and taking into account that 〈I〉e ∝ Ie,

we finally find

Dn ∝ σ1.4
0 I0.05

e .

This implies that Dn is nearly independent of Ie and only

depends on σ0. The Dn − σ relation describes the properties of

ellipticals considerably better than the FJR and, in contrast to

the FP, it is relation between only two observables.
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Dn − σ0 correlation

Empirically, ellipticals follow the

normalized Dn − σ relation

Dn

kpc
= 2.05 (

σ0

100 km/s
)1.33,

and they scatter around this rela-

tion with a relative width of about

15% (Dressler et al. 1987).
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Elliptical galaxies
Mass-metallicity relation

Zaritsky et al. (1994):

ellipticals – open circles

Dressler et al. (1987)


