
Influence of dust on the galactic structure

Dust distribution models

Dust in galaxies

The effects of absorbing material in galaxies were recognized

before the physical nature of galaxies became clear. A study by

H.D. Curtis published in 1918 compared photographs of spirals

in an obvious inclination sequence, showing that a band of

obscuring material lies in the disk plane.
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• Screen model

Take a foreground screen of optical depth τ . Then the observed

surface brightness is I = I0 e−τ , where I0 – true surface

brightness (i = 90o).

The face-on extinction in the apparent mag. scale is

A = −2.5 lg I
I0 = 1.086 τ .

• Slab model

Uniform density well-mixed slab of stars, gas and dust of

physical depth H, volume emissivity ǫ∗ (total luminosity of stars

per unit of volume) and with a mean free path to its own stellar

radiation of l .

We can calculate the face-on optical surface brightness by

integrating the contributions from elements at diferent depths x

as
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I(i = 0o) =

∫ H

0

ǫ∗e
−x/ldx = ǫ∗l

[

1− e−τ
]

,

where τ = H/l is the total optical depth of the slab to optical

radiation.

In the optically thin limit (τ << 1) we therefore have

I(i = 0o) = ǫ∗H,

while in the optically thick limit (τ >> 1)

I(i = 0o) = ǫ∗l .

When inclined (i 6= 0o)

H → H seci

τ → τ seci

Thus

I(i) = ǫ∗l
[

1− e−τ seci
]

.
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For the optically thick case, I(i) = I(i = 0o) = ǫ∗l ,
which is independent of i .

But, for the optically thin slab, I(i) = ǫ∗H seci = I(i = 0o) seci ,

which increases as seci .

Last formula can be rewritten as µobs
0 = µface−on

0 − 2.5 lg seci .

seci=1/cosi , thin disk: cosi=b/a, therefore, we obtain standard

correction to “face-on” orientation – µobs
0 = µface−on

0 − 2.5 lg a
b .

Face-on extinction in the mag. scale:

A = −2.5 lg
ǫ∗l [1− e−τ ]

ǫ∗H
= −2.5 lg

1− e−τ

τ
.

Compared with a screen, a given slab extinction corresponds to

a significantly greater optical depth, because not all of the dust

in a slab obscures all of the stars.
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For instance, τ = 5 =⇒ A = 5.m4 (screen),

A = 1.m75 (slab).

• Sandwich model

Total optical depth τ = δ H/l , δ = 1 → slab model.
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As a preliminary, consider an optically thick (τ >> 1) sandwich

seen from the pole. The lowest layer will be totally hidden; the

upper crust will be quite unobscured and we will also see a

distance l into the dusty layer. So, the surface brightness is

I(i = 0o) ≈ ǫ∗H(1− δ)/2 + ǫ∗l .
In the absence of extinction (τ = 0) I(i = 0o) = ǫ∗H.

Therefore,

A = −2.5 lg[(1− δ)/2 + δ/τ ]

(τ >> 1).

The observed surface brightness of an inclined sandwich:

I(i) = ǫ∗H seci

[

1− δ

2
(1 + e−τ seci) +

δ

τ seci
(1− e−τ seci)

]

.

Influence of dust on the galactic structure

Dust distribution models

Thus, for an opaque sandwich (τ >> 1 or e−τ << 1) with

δ = 0.5:

I(i) ≈ ǫ∗H seci/4 = I(i = 0o) seci/4.

The surface brightness behaves just as it would in an optically

thin slab as deep as the unobscured upper crust (H/4).

The face-on extinction:

A = −2.5 lg

[

1− δ

2
(1 + e−τ ) +

δ

τ
(1− e−τ )

]

.
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Face-on extinction (i = 0o) vs. optical depth.
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• Triple exponential model

More realistic model:

radial distributions of stars and dust are exponential with the

same scale length value h, vertical exponential scale height of

stars – z∗, dust – zd = δ z∗.

The problem is not simple (we must solve the radiative transfer

equation). There is a good analytical approximation to the

observed surface brightness, valid for thin (z∗ << h) and not

exactly edge-on (i ≤ 80o) disk (Disney et al. 1989):

I(r) = 2I(0, 0)z∗
θ

cosi
e−r/h,

where

θ = e−τ

[

1 +
τ2

(δ + 1)(δ + 2)
+

τ4

(δ + 1)(δ + 2)(δ + 3)(δ + 4)
...

]

,
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δ = zd/z∗ =

(

sini

h
+

cosi

z∗

)

/

(

sini

h
+

cosi

zd

)

and

τ =
τ0

cosi
e−r/h

(τ0 – central optical depth of the disk at i = 0o).
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Sumulations results according to analytical formula for triple exponen-

tial model: (1) transparent, dust-free exponential disk; (2) disk with

τ0 = 1 and i = 0o; (3) τ0 = 1 and i = 40o; (4) τ0 = 1 and i = 75o.
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• Numerical modelling

Byun et al. (1994):

the radiative transfer including both scattering and absorption

has been computed for a range of model spiral galaxies with

immersed dust layers.
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Byun et al. (1994)
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Some conclusions:

• The minor-axis profiles in spiral galaxies with inclinations

0o < i < 90o show a characteristic asymmetry due to dust.

• The apparent galactic center of inclined galaxies is displaced

from its true position when there is dust present.

• A color gradient is predicted in dusty spiral galaxies.

• The inferred scale lenght of a dusty spiral galaxy is different in

different bands.

• The internal extinction of a galaxy in one band cannot be

converted to that in another band by simply using an extinction

law.

• An optical depth of order 1 through the center of a face-on

spiral galaxy implies that the galaxy is effectively transparent.

However, if the same galaxy is seen edge-on it will exhibit a

prominent dust lane.
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Distribution of dust and value of τ

Two observational methods have produced relible measure-

ments of disk opacity:

occulting galaxy pairs and the calibrated number of more

distant galaxies.

• Distant galaxy counts
The number of distant galaxies seen through the face-on fore-

ground spiral is a direct indication of its opacity, after proper

calibration using artificial galaxy counts.

Holwerda et al. (2005): galaxy counts for a sample of 32 deep

HST/WFPC2 fields. The main results are:

(1) most of the disks are semi-transparent;

(2) spiral arms are more opaque;

(3) as are brighter sections of the disk.
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Radial opacity profile from Holwerda et al. (2005)
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• Occulting galaxies

Ideal case: relatively face-on spiral (A) backlit by a partly

occulted, preferably early type, galaxy (B).

Basic assumption: light from both the occulted galaxy and the

foreground galaxy is sufficiently symmetric to characterize the

contributions in the overlapping region from the unprojected

parts of the galaxies.
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Examples:
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Main conclusions from various approaches:

• Disks are more opaque in the blue and are practically

transparent in the near-infrared.

• Disks are practically transparent in the outer parts but show

significant absorption in the inner regions (τ0(V ) ∼ 1− 3).

• The extinction correlates with galaxy luminosity (τ ∝ L0.5).

• Spiral arms are more opaque than the disk.

• 〈hdust/hstars〉 ≈ 1− 1.5, 〈zstars/zdust〉 ≈ 2 (V passband).
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Standard corrections

• Total luminosity

Ai = CL(T ) lg (a/b)25, (RC3 catalog)

where CL depends on the wavelength and on the morphological

type. In the B filter

CL = 1.5− 0.03 · (T − 5)2 (T ≥ 0),
CL = 0 (T < 0).

Example: Sc galaxy (T = 5) with b/a = 0.10 at edge-on

orientation looks fainter by 1.m5 than face-on.

Tully et al. (1998) found dimming that was dependent on mass

(luminosity) as well as on wavelength:

CL(B) = 1.57 + 2.75(lgW i − 2.5), where W i ≈ 2Vmax .
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Therefore, for Milky Way type galaxy with Vmax=220 km/s

CL = 2.m0.

Unterborn & Ryden (2008): analy-

sis of 78 230 galaxies in the SDSS

survey (r -band, λeff = 6250Å).

The dimming is well described by

the relation ∆Mr ∝ (lg b/a)2, rather

than standard ∆Mr ∝ lg b/a.
The dashed red curve shows

∆Mr = −0.64 lg b/a, and

the solid blue curve shows

∆Mr = 1.27 (lg b/a)2
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• Disk central surface brightness

Standard correction:

µface−on
0 = µobs

0 + 2.5 Cµ lg
a

b
,

where Cµ = 1 for transparent disk,

Cµ = 0 for optically thick, opaque disk.

Real galaxies – Cµ ∼ 0.5.

• Color indices

∆(B − V ) = Cc(T ) lg (a/b)25, (RC3 catalog)

where Cc = 0.35− 0.022 · (T − 3)2 (−1 ≤ T ≤ 7),

Cc = 0 (T ≤ −1, T ≥ 7).
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Therefore, Sc galaxy (T = 5) with b/a = 0.10 looks redder by

∆(B − V ) = +0.26 at i = 90o than at i = 0o.

• Inclination dependence of the isophotal radius

Standard corrections:

hi/h0 = 1 + η lg (a/b),
hi and h0 are exponential scale length values at arbitrary and

zero inclinations and η ≈ 0.3− 0.4.

R23.5
i /R23.5

0 = (a/b)CD ,

R23.5 is the isophotal radius at µ(I) = 23.5 and CD ≈ 0.2.

Example: R23.5
90 /R23.5

0 ≈ 1.6 for b/a = 0.10.


