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de Vaucouleurs law

General form of the de Vaucouleurs law:

lg
I(α)

Ie
= −β(α1/4 − 1),

where α = r/re and β – coefficient (β > 0).

Let isophotes are homocentric ellipses with ellipticity

ǫ = 1− b/a. Then the total luminosity is

LT = 2πIer2
e (1−ǫ)

∫ +∞

0

exp[−ν(α1/4−1)]dα = 8!π
eν

ν8
(1−ǫ)Ier2

e ,

where ν = β ln 10.
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de Vaucouleurs law

Growth curve of the galaxy is

k(α) =
L(≤ α)

LT
= 1− exp(−να1/4) · Σn=7

n=0

νnαn/4

n!
.

r = re (α = 1) → k(1) = 1/2. Thus, ν = 7.66925 and

β = ν/ln 10 = 3.33071.

Therefore, a final form of the de Vaucouleurs law is

lg
I(r)

Ie
= −3.33071

[

(

r

re

)1/4

− 1

]

,

or, in units of m/�
′′,

µ(r) = µe + 8.32678[(r/re)
1/4 − 1].
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de Vaucouleurs law

Total (asymptotic) luminosity:

LT = 7.21457πIer2
e (1− ǫ) = 22.66523Ier2

e b/a.

Absolute magnitude:

MVauc = µe − 5 lgre − 2.5 lg(1− ǫ)− 39.961,

where the effective radius re is in kpc.

Mean surface brightness within re is

〈I〉e = 3.61Ie or 〈µ〉e = µe − 1.39.

Total luminosity, expressed through 〈I〉e, is LT = 2π〈I〉er2
e b/a.

Central surface brightness of the de Vaucouleurs model is

Ib
0 = 103.33Ie = 2140Ie.
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Major axis profile of NGC 3379 (solid line)

Dashed line – approximation with µe(B) = 22.24 and re = 56.′′8
(2.7 kpc).

De Vaucouleurs law fits the s.b. profile within ∆µ ∼10m with

error ±0.m08.
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Growth curve for NGC 3379. Open circles – aperture measure-

ments, solid line – approximation by standard curve k(α) for the

de Vaucouleurs law with BT = 10.20.
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Deprojection of the de Vaucouleurs law

So far we have discussed observed surface brightness profile

I(R), that is 3D distribution of light (stars) projected onto the

plane of the sky. The question is whether we can, from this

measured quantity, infer the real 3D distribution of light, j(r) in a

galaxy. If I(R) is circularly symmetric, we can assume that j(r)
will be spherically symmetric, and from the following figure it is

apparent that:

I(R) =
∫∞
−∞ dz j(r) =

2
∫∞

R
j(r)rdr√
r2−R2

.
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This is an Abel integral equation for j as a function of I, and its

solution is:

j(r) = −1

π

∫ ∞

r

dI

dR

dR√
R2 − r2

.

3D density distribution: assuming M/L = const → ρ(r).

Example of analytical approximation (Mellier & Mathez 1987):

ρ(r) = ρ0 r−0.855exp(−r1/4).

Therefore,

M(≤ r) = M0 γ(8.58, r1/4),

where M0 = 16πρ0(re/ν4)3 and Mtot = 1.65 · 104 M0.
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Sersic law

Sersic profile is a generalization of the de Vaucouleurs profile:

I(r) = I0 e−νnα1/n

,

where I0 – central surface brightness, α = r/re, n > 0 and a

constant νn is chosen so that half the total luminosity predic-

ted by the law comes from r ≤ re.

Also, this profile can be written as

I(r)

Ie
= exp

[

−νn

(

[

r

re

]1/n

− 1

)]

,

where Ie = I0 e−νn .

When n = 4 ν4=7.66925 the Sersic law transforms to the de

Vaucouleurs law.
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Sersic law

In units of m/�
′′:

µ(r) = µ0 +
2.5νn

ln 10

(

r

re

)1/n

(∗)

If n = 4 (*) → µ(r) = µe + 8.32678[(r/re)
1/4 − 1].

Effective surface brightness for the Sersic law (µe = µ(re)) is

µe = µ0 + 2.5νn/ln 10.

Luminosity within r :

L(≤ r) =
2πn

ν2n
n

γ(2n, νnα
1/n) I0r2

e ,

where γ(η, x) =
∫ x

0
e−t tη−1dt – incomplete gamma function.

Total (asymptotic) luminosity:

LT =
2πn

ν2n
n

Γ(2n) I0r2
e ,

where Γ(η) = γ(η,∞) – gamma function.
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Sersic law

Growth curve: k(α) = L(≤α)
LT

= γ(2n,νnα1/n)
Γ(2n) .

Table: The values of νn (Ciotti & Bertin 1999)

n νn n νn

1 1.67834699 6 11.6683632

2 3.67206075 7 13.6681146

3 5.67016119 8 15.6679295

4 7.66924944 9 17.6677864

5 9.66871461 10 19.6676724

Analytical approximation (Ciotti & Bertin 1999):

νn = 2n − 1
3 + 4

405n + 46
25515n2 + O(n−3).
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Sersic law

Sersic profiles for n = 1− 10

Luminous ellipticals, cD galaxies – n ∼ 4 or even ≥ 4,

dwarf E – n ∼ 1.
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Other laws

Hubble-Reynolds formula

The first model used to describe the surface brightness profiles

of elliptical galaxies (Reynolds 1913):

I(r) =
4I(r0)

(1 + r/r0)2
, (I(r) ∝ r−2 at r >> r0)

where r0 – characteristic radius of the distribution, I(r0) – sur-

face brightness at r0 from the nucleus.

Total luminosity of circular galaxy within ≤ r is

L(≤ r) = 8πI(r0)r
2
0

∫ α

0

xdx

(1 + x)2
= 8πI(r0)r

2
0

[

ln(1 + α)− α

1 + α

]

,

where α = r/r0. As one can see, r →∞ L(≤ r)→∞.
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Other laws

Modified Hubble law

(or modified Hubble-Reinolds law)

I(r) =
I0

1 + (r/r0)2
, (I(r) ∝ r−2 at r >> r0)

and

L(≤ r) = πr2
0 ln[1 + (r/r0)

2].

Again, r →∞ L(≤ r)→∞.

Modified Hubble law corresponds to a simple analytical form for

3D distribution:

j(r) =
j0

[1 + (r/r0)2]3/2
,

where j0 = I0/2r0.
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Other laws

Hubble-Oemler law

I(r) =
I0

(1 + r/r0)2
e−r2/r2

t

For r < rt the surface brightness changes as I(r) ∝ r−2.

For r > rt the surface brightness profile decays very quickly and

predicts a finite total luminosity.

In the limit rt →∞ this one reduces to the Hubble-Reynolds

law.
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Other laws

King formula

I(r) = K [(1 + [r/rc]
2)−1/2 − (1 + [rt/r ]2)−1/2]2,

where rc is the “core” radius (
I(r=0)
I(r=rc)

= 2), rt is the “tidal” radius

and K – the scale factor.

This formula gives a very good representation of star counts in

tidally-limited globular clusters and low-density spheroidal

galaxies.

Jaffe law, Hernquist law etc.
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Centers of early-type galaxies

The HST observations of early-type galaxies reveal that the

central parts have surface brightness distibutions that are

different from the extrapolation of traditional fitting formulae

derived from ground-based observations.

NGC 3115 (HST, F555W filter)

∆µ = 0.m44/�
′′

Photometric models of early-type galaxies

Central regions of elliptical galaxies

The surface brightness profiles generally consist of two distinct

regions:

a steep power-law regime – I(r) ∝ r−β – at large radius, and

a shallower power law – I(r) ∝ r−γ – at small radius.

Classification:

γ < 0.3 – “core” galaxies (shallow inner slope),

γ > 0.5 – power-law galaxies.

γ ≈ 0 – core

Photometric models of early-type galaxies

Central regions of elliptical galaxies

Major-axis brightness profiles of Virgo ellipticals (V passband)

– Kormendy (2009).

Photometric models of early-type galaxies

Central regions of elliptical galaxies

Surface brightness profiles for NGC 596 (open circles) –

power-law nucleus, and NGC 1399 (solid circles) – galaxy with

a core. Solid lines represent Nuker law fits (see further).
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Central regions of elliptical galaxies

Nuker law

To parametrize the HST brightness profiles, Lauer et al. (1995)

introduced general empirical double power law (the “Nuker”

law):

I(r) = 2
β−γ

α Ib

( rb

r

)γ
[

1 +

(

r

rb

)α] γ−β
α

,

where α, β, γ, Ib, rb – parameters.

The break radius, rb, is the radius at which the steep outer pro-

file, I(r) ∝ r−β, “breaks” to become the inner shallow profile,

I(r) ∝ r−γ , and Ib = I(rb).

The Nuker law contains many simpler fitting formulae as special

cases:

The Hubble-Reynolds law corresponds to α = 1, β = 2, γ = 0;

The modified Hubble law – α = 2, β = 2, γ = 0.

Standard models of disk galaxies

Disk galaxies

Standard models of disk galaxies

Radial surface brightness distribution

Radial distribution

Disks of spiral galaxies are known to show profiles described

well by the “exponential law” (Patterson 1940, de Vaucouleurs

1959, Freeman 1970):

I(r) = I0 e−r/h

or

µ(r) = µ0 + 1.0857 r/h,

where h – exponential scale length, I0 or µ0 – central surface

brightness of the disk.

µ – r plane: exponential disk looks like straight line.

Standard models of disk galaxies

Radial surface brightness distribution

Examples

Shirley Patterson, Harvard College Observatory Bulletin

No. 914, pp.9-10, 1940
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Radial surface brightness distribution

Examples

NGC 300: exponential disk is traced up to 10h!

Standard models of disk galaxies

Radial surface brightness distribution

Examples

Kassin (2006)

Standard models of disk galaxies

Radial surface brightness distribution

Luminosity within r from the center

L(≤ r) = 2πI0h2[1− (1 + r/h)e−r/h],

total luminosity

LT = 2πI0h2.

Absolute luminosity of exponential disk

Mexp = µ0 − 5 lgh − 38.57,

where exponential scale length is in kpc.

Growth curve

k(α) =
L(≤ α)

LT
= 1− (1 + α)e−α,

α = r/h.

Standard models of disk galaxies

Radial surface brightness distribution

Aperture photometry of M 33 (circles). Solid line is the growth

curve for exponential disk with h = 9′ and VT = 5.72.
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Radial surface brightness distribution

Effective radius of exponential disk: re = 1.67835 h,

effective surface brightness: Ie = I0e−1.678 = 0.187 I0 or

µe = µ0 + 1.822.

In terms of effective parameters we can write total luminosity as

LT = 3.80332πIer2
e .

Mean surface brightness within effective radius is

〈I〉e = 0.355 I0 or

〈µ〉e = µ0 + 1.124.

Standard models of disk galaxies

Radial surface brightness distribution

Edge-on (i = 90o) transparent disk:

I(r) = I0
r

h
K1

( r

h

)

,

where K1 is the modified Bessel function.

r/h << 1: I(r) ≈ I0[1 + (r2/2h2) ln(r/2h)]

r/h >> 1: I(r) ≈ I0
√

πr/2h e−r/h
[

1 + 3
8r/h

]

Real stellar disks are not infinite. Exponential distribution

typically extends out to about 5 radial scale lengths, beyond

which disks are often truncated.

Standard models of disk galaxies

Radial surface brightness distribution

Examples of truncated disks

de Grijs et al. (2001)

Standard models of disk galaxies

Vertical structure of disks

Vertical structure

UGC 11859 (B-band)

Standard model to describe vertical surface brightness

distribution in edge-on galaxies is isothermal self-gravitating

sheet (e.g. van der Kruit & Searle 1981):

I(z) = I0 sech2(z/z0),

where z0 – vertical scale (scale height).
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Vertical structure of disks

van der Kruit & Searle (1981)

In the framework of the model, vertical scale z0 is connected

with σz (the dispersion in the velocities in the z-direction) and

with ρ(r , z) (the space density of stars), Σ(r) (the projected

density of stars):

σ2
z (r) = 2πGρ(r , 0)z2

0 = πGΣ(r)z0.

Standard models of disk galaxies

Vertical structure of disks

Some galaxies demonstrate vertical density profiles more

sharply peaked near z = 0 than the sech2(z/z0) model. Such

data can be modelled better by exponential law:

I(z) = I0 e−|z|/hz ,

where hz – exponential scale height.

At z/z0 << 1 sech2(z/z0) = exp(−z2/z2
0),

at z/z0 >> 1 sech2(z/z0) = 4 exp(−2 z/z0)
and, therefore, sech2(z/z0) and exponential model give

approximately the same distribution with z0 = 2 hz .

Vertical velocity dispersion of an exponential disk is

σ2
z (r) = 4πGhzΣ(r)

(

1− 1
2e−|z|/hz

)

.

Standard models of disk galaxies

Vertical structure of disks

van der Kruit (1988) proposed more general law

ρ(z) = 2−2/n ρ0 sech2/n(nz/2z0) (n > 0).

The case n = 1 corresponds to the isothermal distribution

ρ(z) = (ρ0/4) sech2(z/z0),

while the limiting case of n =∞ is the exponential

ρ(z) = ρ0 e−z/z0 .

Standard models of disk galaxies

Vertical structure of disks

3D disks

3D structure of disks:

I(r , z) = I(0, 0)e−r/h sech2(z/z0) (r ≤ rmax)
I(r , z) = 0 (r > rmax)

If i = 0o (face-on disk)

I face−on
0 = I(0, 0)

∫ +∞

−∞
sech2(z/z0)dz = 2z0I(0, 0).

For edge-on disk (i = 90o)

I
edge−on
0 = 2hI(0, 0).

Therefore,

I
edge−on
0 = I face−on

0 h/z0 or µ
edge−on
0 = µface−on

0 − 2.5 lg h
z0

.
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Vertical structure of disks

For double exponential disk we have

I(r , z) = I(0, 0)e−r/h−|z|/hz

and µ
edge−on
0 = µface−on

0 − 2.5 lg h
hz

.

Therefore, for transparent disks the observed values of

µ
edge−on
0 must be brighter than µface−on

0 .

h/z0 ≈ 5 for real galaxies → ∆µ ≈ 1.m5− 2m.

Diameters of transparent edge-on disks must be larger than

for face-on disks (measured within the same isophote). For

instance, for typical disk with µface−on
0 = 21.7 (B filter) and

h/z0 = 5
D26(i = 90o)

D26(i = 0o)
≈ 1.7.

Multi-component galaxies

NGC 5055 (g-band, mag.)

Real galaxies are multi-component systems:

– bulge (de Vaucouleurs or Sersic law),

– disk (exponential disk),

– bar (e.g., Freeman’s bar:

Ibar (x , y) = I0,bar

√

1− (x/abar )2 − (y/bbar )2 – flattened

elliptical disk)

Multi-component galaxies

Also:

– lenses,

– inner and outer rings,

– spiral arms etc.

Simplest case: two-component galaxy, consisting of de

Vaucouleurs bulge and exponential disk.

Total luminosity: LT = Lbul + Ldisk = 2π(3.6073Ier2
e + I0h2).

Bulge-to-disk ratio:

B/D = 3.6073
Ie

I0

( re

h

)2

.

Growth curve:

k(r) =
B/D

1 + B/D
kbul(r) +

1

1 + B/D
kdisk (r).

Multi-component galaxies

Photometric decomposition of galaxies

Direct methods: analysis of

1D cuts or 2D images

Software:

GIM2D (Simard 1998),

GALFIT (Peng et al. 2002),

BUDDA (de Souza et al.

2004).



Multi-component galaxies

Other methods:

– Iterative decomposition method proposed by Kormendy

(1977), in which one solves for the disk parameters in a region

where disk light dominates, and likewise for the bulge

parameters. At each iteration, the light from the component

being kept fixed is subtracted from the total surface brightness

profile before the other component is solved for. The process is

iterated until convergence is achived.

– Kent (1986) presented a completely different approach: he

made no assumption on the fitting laws for either component.

He assumed that each one is characterized by elliptical

isophotes of constant, and essentially different, flattenings.

Then, an iterative process calculated the bulge and disk

profiles. (Does not work for face-on galaxies – bulge and disk

have roughly the same flattening.)

Multi-component galaxies

– Colorimetric decomposition (statistical). Let the color index of

the disk is KD, of the bulge – KB, and of the whole galaxy is KT .

Then,

B/D = −1− 100.4(KD−KT )

1− 100.4(KB−KT )

Example: normal Sa spiral galaxy with

B − V = KT = +0.74,

B − V = KD = +0.5 (disk),

B − V = KB = +1.0 (bulge).

Therefore, B/D = 0.73 (standard value for Sa galaxies is 0.68).


