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Abstract

An original approach to solution of the light scattering problems for axisymmetric particles was developed in
our earlier papers. The approach is based on separation of the ;elds in two speci;c parts and a proper choice
of scalar potentials for each of them. Applications to homogeneous scatterers made ;rst in the framework of
the separation of variables method (SVM) and later the extended boundary condition method (EBCM) led to
more e>cient solutions (at least in the case of the SVM) than the standard ones. The approach was recently
applied to formulate new theoretical methods for multilayered axisymmetric particles.
In this paper we further develop and systematically discuss the methods. One of them is a modi;cation of

the EBCM and another looking as (and wrongly called) a modi;cation of the SVM is shown to be rather
that of the EBCM formulated in spheroidal coordinates. The solutions are now presented in recursive forms.
The ranges of applicability of the new methods are considered analytically for the ;rst time in the literature
on layered scatterers. The theoretical methods and their program implementations are compared with others
available. We note that usage of scalar potentials (a feature of our approach) allowed us consistently to realize
the EBCM in spheroidal coordinates. Advantages of this approach in the case of layered spheroidal particles
with the confocal layer boundaries are noted.
Earlier we have extended the quasistatic approximation (QSA), being a generalization of the Rayleigh (RA)

and Rayleigh-Gans approximations, to layered ellipsoids in the general case of nonconfocal layer boundaries.
Here the connection between the QSA and the asymptotic of the scattered ;eld found in the framework of
our SVM-like method in the limit of very large aspect ratios of spheroids is discussed. Keeping this fact in
mind, the applicability regions of the QSA and RA are comparatively considered for multilayered ellipsoids.
We also note that the formulations of the RA and QSA contains a quantity that can be interpreted as the
average refractive index of a layered particle and thus gives a new rule of the eEective medium theory more
appropriate for such scatterers.
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1. Introduction

Various natural scatterers are known to have internal structure, and hence the problem of light
scattering by inhomogeneous particles is of large interest in diEerent scienti;c ;elds—astrophysics,
atmosphere and ocean optics, biophysics, etc. In many cases inhomogeneous dust grains can be
well represented by multilayered particles. For instance, quasilayers of diEerent composition should
form during dust grain evolution in interstellar medium. Particles with many relatively thin layers
can be used to model grains with a radially changing refractive index, appearing, for instance, in
the case of fractal-like, KuEy aggregates typical of interplanetary media. The model with a large
number of very thin layers of several cyclically changing materials opens an e>cient way to study
eEects of composition inhomogeneity expected in cosmic dust grains. We mention only astrophysical
applications, but similar examples can be found in other ;elds as well.

To simulate light scattering by layered particles, when shape eEects are of small importance, one
usually utilizes the model of multilayered spheres that is based on relatively simple and eEective
algorithm [1]. This algorithm appears to be applicable practically in the whole range of parameter
values after a small improvement. Situation with layered nonspherical particles is much more com-
plex, despite many methods allow one to get solution to the corresponding light scattering problem.
In principle, nonspherical scatterers of any structure can be treated by the methods using the repre-
sentation of the scattering problem in the form of volume integral equation (e.g., the widely used
discrete dipole approximation, DDA), the ;nite diEerence time domain methods, etc. [2]. The back
sides of this universality are strong demands for computer memory and speed which often make
computations required by applications impossible.

Layered scatterers could be also treated by the separation of variables method (SVM) and the
extended boundary condition method (EBCM) which can better involve the scattering geometry and
hence are much faster for some kinds of particle shapes. As a result the methods could allow really
extensive calculations, but are not yet well developed—till now detailed consideration was mainly
restricted by core-mantle spheroids for the SVM [3–5] and core-mantle axisymmetric particles for
the EBCM [6]. Nonspherical particles with three and more layers were studied mainly theoretically,
i.e. without computations (see [7,8] for the SVM and [6,9–11] for the EBCM, with an exception
being [6] where some illustrative calculations for a three-layered spheroid were done). A universal
EBCM-like computer code for layered particles was recently presented in [12], but the paper does not
contain results for multilayered particles, estimates of e>ciency of the code, and its comparison with
others (like the DDA one). It is important here also to distinguish the standard EBCM approach (see,
e.g. [13]) from the approach used in [11,12] and other works cited there. In the former expansions of
the ;elds in terms of the spherical wave functions considered in one coordinate system are utilized,
in the latter the ;elds are expanded in terms of ;nite linear combinations of the spherical wave
functions, with combinations being related to diEerent coordinate systems having origins distributed
on a closed surface. There is a principal distinction between such single and multipole expansions
(diEerent basis) and hence the approaches diEer in many important aspects—applicability range,
e>ciency, etc. In this paper we modify and investigate the standard EBCM approach used in a great
number of works (see [2] for a review), and hereafter EBCM means this approach whereas the
approach used in [11,12] is called the discrete source method (see [14] for more details).

Besides [11,12] there were many other modi;cations of the EBCM aimed at overcoming its
probably main defect—inability to treat scattering by particles of large eccentricity (see [2] for a
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review). A perspective way to solve this problem in the case of spheroids could be formulation of
the EBCM in spheroidal coordinates (i.e. with expansion of the ;elds in terms of the spheroidal
wave functions), which would better correspond to the scattering geometry than spherical coordinates
and functions. For acoustic wave scattering, that was actually done in [15], but for electromagnetic
wave scattering, it is impossible in the standard formulation of the EBCM (e.g. [13]) because of
nonorthogonality of the spheroidal vector wave functions [16].

The fact that the standard EBCM is not appropriate (expansions of the ;elds are divergent) for
scatterers of large eccentricity is well known, but based mainly on the results of calculations [2,17].
Earlier analytic investigations of the EBCM were summarized in [19] (see also [18,20]). Besides
other important results the paper [19] formulates the condition of validity of the Rayleigh hypothesis
on convergence of the ;eld expansions everywhere up to the scatterer boundary. Obviously, this
condition is the necessary one for applicability of the EBCM in the near zone. A general condition
of convergence of the series in the EBCM for the far zone was recently obtained in [21]. This
condition is however too abstract to be easily applied to concrete cases. In cite [21] after rather
large eEorts it was only demonstrated that the condition was satis;ed for any ellipsoid. Less abstract
analytic investigations of the applicability ranges of EBCM-like methods were made for perfectly
conducting and dielectric homogeneous scatterers in [22,23], respectively. These papers give ap-
plicability (convergence) conditions for the far zone in the form which allows simple application
to Chebyshev particles, spheroids and so on. Note that in contrast to the EBCM another popular
approach—the SVM for spheroidal particles was analytically studied in detail long ago [24]. For
layered particles, the methods were, however, never analyzed.

Even for such fast methods as the SVM and EBCM, calculations of light scattering by mul-
tilayered nonspherical particles are very time consuming. Therefore, various approximate methods
(see, e.g. [25] for a review) can be useful in applications. However, one of the most widely used
approximations—the Rayleigh approximation (RA) has the same problem as the EBCM—it does
not work well for particles whose shape strongly diEers from the spherical one. A generalization
of the RA—the quasistatic approximation (QSA) apparently avoids this problem for homogeneous
spheroidal particles [26]. The QSA was recently extended to multilayered ellipsoids [27], but its
applicability range was not discussed, which is rather typical of approximations available for inho-
mogeneous nonspherical particles.

In this paper we consider a set of exact and approximate methods to calculate the light scattering
by multilayered nonspherical (mainly axisymmetric) particles. The corresponding light scattering
problem and a general approach used to ;nd exact solutions to the problem are presented in Sections
2 and 3, respectively. Section 4 describes the suggested modi;cation of the EBCM for such particles
and gives recursive forms of the solution. Another exact method—a modi;cation of the EBCM
in spheroidal coordinates is introduced in Section 5. The next section shows the connection of
this method with the QSA and discuss other tightly connected approximations. Section 7 contains
analytic estimates of the applicability ranges of the exact and approximate methods and comparison
with results of numerical calculations. Conclusions are drawn in the last section.

Let us introduce the notations of the versions of exact methods we mention hereafter and give
several general remarks on their relationship. The standard EBCM approach (see, e.g. [13]) is denoted
by sEBCM; our modi;cation of the sEBCM [28] by mEBCM and our generalization of the mEBCM
for multilayered axisymmetric particles by gmEBCM; the standard SVM approach for spheroids [29]
by sSVM; our modi;cation of the sSVM [30] by mSVM and our generalization of the mSVM for
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multilayered particles by gmSVM. It should be added that the SVM approach with expansions of the
;elds in terms of the spherical wave functions is equivalent to the sEBCM as was shown in [16].
By analogy, the sSVM, i.e. the standard SVM for spheroids using the spheroidal wave functions for
expansions, is equivalent to the sECBM formulated in spheroidal coordinates (sEBCMsc hereafter),
i.e. with expansions of the ;elds in terms of the spheroidal wave functions. Accordingly, the mSVM
and mEBCMsc as well as the gmSVM and gmEBCMsc are generally equivalent too (see Section 5
for more details). Note that the SVM approach can be applied not only to spheroids (spheres and
in;nitely long cylinders) but generally to particles of arbitrary shapes [31]. It should be also noted
that in the literature the EBCM was very often called the T -matrix method (TMM). The transition
(T ) matrix relates the expansion coe>cients for the scattered ;eld with those for the incident one and
depends only on particle parameters—size, shape, etc. Therefore, the T matrix is a very convenient
characteristic in some cases (e.g., when one considers an ensemble of particles) and in several recent
papers (e.g. [32–34]) this matrix is derived by methods diEerent from the EBCM. As a result, the
usage of the term TMM looks now a bit confusing and in this paper we call the approach EBCM.

2. Formulation of the problem

We consider scattering of a plane wave incident at a n-layered axisymmetric particle. The particle
geometry is de;ned by the layer surface equations

r( j)(�) = 0; j = 1; 2; : : : ; n; (1)

where � is one of the angles of the spherical coordinate system (r; �; ’) connected with the particle.
The surfaces further called Sj are assumed to have no common points.
The ;elds in the jth layer con;ned by the surfaces r( j)(�) = 0 and r( j+1)(�) = 0 are denoted by

Ẽ( j+1); H̃ ( j+1). Thus, j = 1 corresponds to the outermost layer (a mantle of the particle) and j = n
to the innermost layer (a core). As in the case of a homogeneous particle (n = 1), Ẽ(0); H̃ (0) and
Ẽ(1); H̃ (1) are the incident and scattered ;elds, respectively.

An arbitrary polarized plane electromagnetic wave, incident at the angle 
 to the symmetry axis
of the particle, can be represented by a superposition of the waves of two kinds:

(a) TE mode

Ẽ(0)(̃r) =−ĩy exp [ik1(x sin 
+ z cos 
)];

H̃ (0)(̃r) =
√

�1
�1

(ĩx cos 
− ĩz sin 
) exp [ik1(x sin 
+ z cos 
)]; (2)

(b) TM mode

Ẽ(0)(̃r) = (ĩx cos 
− ĩz sin 
) exp [ik1(x sin 
+ z cos 
)];

H̃ (0)(̃r) =
√

�1
�1

ĩy exp [ik1(x sin 
+ z cos 
)]; (3)
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where (ĩx; ĩy; ĩz) are the unit vectors of the Cartesian coordinate system, whose z-axis coincides with
the symmetry axis of the particle, r̃=(x; y; z), �1 and �1 are the dielectric permittivity and magnetic
permeability outside the particle, k1 is the wavenumber.

The problem is to solve Maxwell’s equations for each layer (j = 1; 2; : : : ; n)

Ẽ( j)(̃r) =− 1
i�jk0

∇̃ × H̃ ( j)(̃r); H̃ ( j)(̃r) =
1

i�jk0
∇̃ × Ẽ( j)(̃r) (4)

with the boundary conditions at each layer surface

Ẽ( j)(̃r)× ñj = Ẽ( j+1)(̃r)× ñj

H̃ ( j)(̃r)× ñj = H̃ ( j+1)(̃r)× ñj

}
r̃∈Sj

(5)

and the radiation condition at in;nity (r → ∞)

lim r

(
9E (̃1)(̃r)
9r − ik1Ẽ(1)(̃r)

)
= 0; lim r

(
9H̃ (1)(̃r)
9r − ik1H̃ (1)(̃r)

)
= 0: (6)

Here �j and �j are the dielectric permittivity and magnetic permeability, respectively, k0 = !=c is
the wavenumber in vacuum, ! the radiation frequency, c the velocity of light in vacuum, ñj the
outward normal to the jth layer surface Sj, r̃ the radius-vector, r = |̃r|. We assume that the time
dependence of the electromagnetic ;elds is given by the factor exp(−i!t).

3. Description of the approach

To ;nd solution to the described problem, we apply the approach earlier suggested for homoge-
neous axisymmetric scatterers [24]. The main features of the approach are as follows:

1. All the ;elds are divided in two parts—an axisymmetric one that does not depend on the
azimuthal angle ’ and an nonaxisymmetric one whose averaging over ’ gives zero

Ẽ( j)(̃r) = Ẽ( j)
A (̃r) + Ẽ( j)

N (̃r); H̃ ( j)(̃r) = H̃ ( j)
A (̃r) + H̃ ( j)

N (̃r); (7)

where j = 0; 1; : : : ; n + 1. The possibility of such a representation of the ;elds was considered in
[35]. The light scattering problems for the parts can be solved independently. Such a separation
is possible because of commutation of the operator corresponding to the diEraction problem and
the operator Lz = 9=9’ (see [35] for more details). Thus, the problem under consideration can be
uncoupled relative to the azimuthal angle ’, i.e. each component of the Fourier expansion can be
found separately.

2. Proper scalar potentials are chosen for each of the ;eld parts. For the axisymmetric parts,
we apply the potentials analogous to the Abraham potentials for spheroids which are known to
simplify solutions for such particles [36]. For the nonaxisymmetric parts, we utilize combinations of
the Debye potentials used in solutions for spheres and z-components of the Hertz vectors used for
in;nitely long cylinders.

The approach was found highly e>cient for solution of the light scattering problem for spheroids
by the separation of variables method [30]. Note that only the nonaxisymmetric parts and their
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potentials were used in the modi;cation of the approach in [8]. Such a variant has more simple
formulation, but computationally may be less favorite.

4. Modi�cation of the EBCM

The described approach was applied to ;nd solution to the light scattering problem for homoge-
neous particles in the framework of the EBCM in [28,37,38]. We have also generalized that solution
(mEBCM) for the case of multilayered axisymmetric scatterers [10]. Here we brieKy describe the
main steps of the generalized solution to be able to reveal and discuss diEerences of the suggested
modi;cation of the EBCM and other methods. For the sake of simplicity, solutions for the ax-
isymmetric and nonaxisymmetric parts are considered separately, though they are similar in many
details.

4.1. Axisymmetric parts of the <elds

To construct the scalar potentials to these parts inside each layer we use the azimuthal components
of the ;elds

p( j)(̃r) = E( j)
A;’(̃r) cos’; q( j)(̃r) = H ( j)

A;’(̃r) cos’; (8)

where j = 0; 1; : : : ; n+ 1 and the potentials p; q satisfy the scalar Helmholtz equation

Qq( j)(̃r) + k2j q
( j)(̃r) = 0 (9)

with kj=
√
�j�jk0. Other components of the ;elds can be expressed via the potentials using Maxwell’s

equations:

E( j)
A (̃r) =

( −1
i�jk0r sin � cos’

9(sin � q( j))
9� ;

1
i�jk0r cos’

9(rq( j))
9r ;

p( j)

cos’

)
;

H ( j)
A (̃r) =

(
1

i�jk0r sin � cos’
9(sin �p( j))

9� ;
−1

i�jk0r cos’
9(rp( j))
9r ;

q( j)

cos’

)
: (10)

Easy to see that the potentials p and q are connected with the TE and TM modes, respectively. The
equations for p are generally similar to those for q, and below we mention the TE mode and the
potentials p only if an essential diEerence appears.

For each layer, we represent the scalar potentials as sums

q( j)(̃r) = q( j)1 (̃r) + q( j)2 (̃r); (11)

where q( j)1 has no peculiarity at the origin of the coordinate system, q( j)2 satis;es the radiation
condition at in;nity. Note that q(n+1)

1 = q(n+1), q(n+1)
2 = 0 and Eq. (11) can be considered for

j = 1; 2; : : : ; n+ 1, if one uses the following notations: q(1)1 = q(0), q(1)2 = q(1).
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The introduced quantities allow one to write the surface integral equation equivalent to the scalar
wave equation (see, e.g. [39]) in a more convenient way:

∫
Sj

{
q( j)(̃r′)

9G(kj; r̃; r̃′)
9n − 9q( j)(̃r′)

9n G(kj; r̃; r̃′)
}

dS ′ =

{−q( j)1 (̃r); r̃ ∈Dj;

q( j)2 (̃r); r̃ ∈R3 \ RDj;
(12)

where G(k; r̃; r̃′) is the free-space Green function, Dj the domain con;ned by the surface Sj (j =
1; 2; : : : ; n). Then the potential for a layer can be expressed via the potential for the previous one. As
a result we shall get the solution in the form, where quantities for each layer are totally separated.

The boundary conditions (5) for the potentials can be rewritten as follows:

p( j) = p( j+1);

9p( j)

9nj
=

�j
�j+1

9p( j+1)

9nj
+
(

�j
�j+1

− 1
)

1√
r2 + r2�′

(
1− r′�

r
ctg�

)
p( j+1);

q( j) = q( j+1);

9q( j)
9nj

=
�j
�j+1

9q( j+1)

9nj
+
(

�j
�j+1

− 1
)

1√
r2 + r2�′

(
1− r′�

r
ctg�

)
q( j+1);




r̃∈Sj

; (13)

where r′� is the derivative of rj(�) with respect to the spherical angle �, and j = 1; 2; : : : ; n.
After the substitution of the conditions (13) in Eq. (12) one gets

∫
Sj


q( j+1)(̃r′)

9G(kj; r̃; r̃′)
9n −


 �j
�j+1

9q( j+1)(̃r′)
9n +

(
�j
�j+1

− 1
)

1√
(r′)2 + [(r′)′�′]

2

×
(
1− (r′)′�′

r′
ctg�′

)
q( j+1)(̃r′)


G(kj; r̃; r̃′)


 dS ′ =

{−q( j)1 (̃r); r̃ ∈Dj;

q( j)2 (̃r); r̃ ∈R3 \ RDj:
(14)

The scalar potentials p; q are expanded in terms of the spherical wave functions

p( j)
1 (̃r)

q( j)1 (̃r)
=

∞∑
l=1

a( j)1; l

b( j)1; l

jl(kjr) P1
l (cos �) cos’; (15)

where jl(kjr) are the spherical Bessel functions, P1
l (cos �) the associated Legendre functions,

j=1; 2; : : : ; n+1. The potentials p( j)
2 ; q( j)2 are expanded in the same way, but jl(kjr) are replaced by

the Hankel functions of the ;rst kind h(1)l (kjr). The spherical harmonic expansion of the free-space
Green function is well known (see, e.g. [40]).

All the expansions are substituted into the surface integral equations (14). Due to orthogonality
of the spherical wave functions, one gets two in;nite systems of algebraic equations relative to the
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expansion coe>cients of the scattered and internal ;eld potentials. Solution of the systems gives the
coe>cients for the scattered ;eld, ã(1) = {a(1)2; l}∞l=1, in the form typical of the EBCM

ã(1) = A2A−1
1 ã(0); (16)

where ã(0) = {a(0)1; l}∞l=1 are known coe>cients for the incident ;eld (a plane wave). The matrices A1

and A2 are determined as follows:

(
A1

A2

)
=


−A(1)

hj − A(1)
hh

A(1)
jj A(1)

jh


 · · ·


−A(n−1)

hj − A(n−1)
hh

A(n−1)
jj A(n−1)

jh


(−A(n)

hj

A(n)
jj

)
: (17)

Here A( j) are the matrices whose elements are surface integrals of products of the spherical wave
functions and their derivatives calculated for the jth layer, for instance

(A( j)
hj )ln =

i(2l+ 1)
2l(l+ 1)

∫ %

0

{
k2j r

2
j

[
h(1)

′

l (kjrj)jn(kj+1rj)− �j
�j+1

kj+1

kj
h(1)l (kjrj)j′n(kj+1rj)

]

×P1
l (cos �)P

1
n(cos �) sin �+ kj(rj)′� sin

2 �
[
P1′
l (cos �)P

1
n(cos �)

− �j
�j+1

P1
l (cos �)P

1′
n (cos �)

]
h(1)l (kjrj)jn(kj+1rj)−

(
�j
�j+1

− 1
)

×(kjrj sin �− kj(rj)′� cos �)h
(1)
l (kjrj)jn(kj+1rj)P1

l (cos �)P
1
n(cos �)

}
d�: (18)

The subscripts j; h of A( j) matrices show what radial functions are used in the corresponding places
in the integrals (18)—the spherical Bessel (j) or Hankel (h) one.

4.2. Nonaxisymmetric parts of the <elds

The scalar potentials selected for these parts are superpositions of the vertical components of the
Hertz vector U ( j) and the Debye potentials V ( j) (j = 0; 1; : : : ; n). For instance, for TM mode we
have

Ẽ( j)
N =− 1

i�jk0
∇̃ × ∇̃ × (U ( j) ĩz + V ( j)r̃); (19)

H̃ ( j)
N = ∇̃ × (U ( j)̃iz + V ( j)r̃):

In the same way as in Section 4.1 we represent the scalar potentials for each layer as sums

U ( j)(̃r) = U ( j)
1 (̃r) + U ( j)

2 (̃r); V ( j)(̃r) = V ( j)
1 (̃r) + V ( j)

2 (̃r): (20)
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The boundary conditions for the TM mode can be written as follows:

U ( j) = U ( j+1);

V ( j) = V ( j+1);

9U ( j)

9n =
9U ( j+1)

9n +
(

�j
�j+1

− 1
)

r′�
r sin �

√
r2 + r2�′

[
r cos �

9U ( j+1)

9r

−sin �
9U ( j+1)

9� + r2
9V ( j+1)

9r + rV ( j+1)

]
;

9V ( j)

9n =
9V ( j+1)

9n +
(

�j
�j+1

− 1
) (

r′� cos �− r sin �
)

r2 sin �
√
r2 + r2�′

[
r cos �

9U ( j+1)

9r

−sin �
9U ( j+1)

9� + r2
9V ( j+1)

9r + rV ( j+1)

]
;




r̃∈Sj

: (21)

Substitution of the corresponding boundary conditions in the surface integral equations (12) leads to
the integral equations well resembling those for the axisymmetric parts (see Eq. (14)).

The potentials are expanded in terms of the spherical wave functions

U ( j)
1 (̃r)

V ( j)
1 (̃r)

=
∞∑
m=1

∞∑
l=m

a( j)1;ml

b( j)1;ml

jl(kjr)Pm
l (cos �) cosm’: (22)

The expressions for the potentials with the subscript 2 are the same after the replacement of jl(kjr)
with h(1)l (kjr).

Substitution of the expansions into the surface integral equations gives for each m two in;nite
systems of algebraic equations relative to the coe>cients of the potential expansions. Solution of the
systems provides the coe>cients for the scattered ;eld ã(1)m = {a(1)2;ml}∞l=1, b̃

(1)
m = {b(1)2;ml}∞l=1 (m¿ 1) in

the form (16)–(17) with the only diEerence—the matrices A( j) are now twice as large and have the
block structure

A( j)
hj =


 
( j)hj;1 )( j)

hj;1


( j)hj;2 )( j)
hj;2;


 ; (23)

where 
( j)hj; i, )
( j)
hj; i are the matrices whose elements are surface integrals of products of the spherical

wave functions and their derivatives calculated for the jth layer (see [10] for more details).
The systems arising for axisymmetric and nonaxisymmetric parts were investigated analytically and

numerically in the case of homogeneous particles [23]. It was found that they had similar properties
and aEected the range of applicability of the method nearly in the same way.
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4.3. Recursive forms of the solution

It is important to note that the most essential part of the solution— Eq. (17) can be rewritten in
the recursive form(

A(n+1)
1

A(n+1)
2

)
=


−A(1)

hj − A(1)
hh

A(1)
jj A(1)

jh


(

A(n)
1

A(n)
2 ;

)
; (24)

where the right-hand side vector contains the values of A1; A2 for a given n-layered particle, the
matrix corresponds to a new outer layer, and the left-hand side vector gives the values of A1; A2 for
the (n+ 1)-layered particle formed in such a way.
Eq. (24) can be rewritten in another way

Tn+1 = (A(n+1)
jj + A(1)

jh Tn)(A
(n+1)
hj + A(1)

hh Tn)−1; (25)

where Tn=A(n)
2 (A(n)

1 )−1: Eq. (25) is equivalent to that obtained earlier for multilayered axisymmetric
particles in [6]. Although Eq. (24) looks less exiting, it should be preferable to Eq. (25) as the former
needs only one matrix inversion (after multiplication of A-matrices in Tn+1 = A(n+1)

2 (A(n+1)
1 )−1) in

contrast with the latter that requires inversions for each layer (to ;nd each Tn starting with n = 1)
and one more at the last step.

5. Modi�cation of the EBCM in spheroidal coordinates and the SVM

The approach described in Sections 3 and 4 has been used in [7] to ;nd the theoretical solution
of the light scattering problem de;ned in Section 2 in the framework of the EBCM formulated in
spheroidal coordinates (i.e. with the potentials expanded in terms of the spheroidal wave functions,
etc.). Note that such a version of the EBCM for spheroids only weakly diEers from the SVM (see
also [16]) as the separation of variables in the boundary conditions for spheroids is impossible and
the light scattering problem in the SVM is reduced to solution of in;nite algebraic systems similar
to those arising in the EBCM with spheroidal coordinates (a diEerence may appear in the boundary
conditions as it will be seen below). Therefore, this variant of the EBCM can also be considered as
a SVM-like method. For homogeneous and core-mantle spheroidal particles, our approach has been
applied to the SVM in [24,30,5], respectively (mSVM solutions). It should be added that as far as
we know ;rst the problem of electromagnetic scattering was consistently solved within the EBCM
formulated in spheroidal coordinates in [7] (mEBCMsc solution).

To use in the full manner the advantages of expansions in terms of the spheroidal wave function,
we assume that all layer boundaries are confocal, i.e. for all j, r( j)(�) are coordinate surfaces of the
same spheroidal coordinate system (*; +; ’). It means that the major aj and minor bj semiaxes of
the spheroidal surfaces con;ning the layers satisfy the condition

a21 − b21 = a22 − b22 = · · ·= a2n − b2n =
(
d
2

)2
; (26)

where d is the focal distance of the spheroids.
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As in Sections 3 and 4 we divide the ;elds in the two parts and introduce the scalar potentials
p; q; U; V . The scalar Helmholtz equation (9) and the equivalent surface integral equation (12) are
written in the spheroidal coordinates as well as the boundary conditions (see also Eq. (39) below).
The spheroidal wave functions are used in expansions of the potentials and the free-space Green
function. For instance, for prolate spheroidal boundaries of layers we have (cf. Eq. (15))

p( j)
1 (̃r)

q( j)1 (̃r)
=

∞∑
l=1

a( j)1; l

b( j)1; l

R(1)
1l (cj; *)S1l(cj; +) cos’; (27)

p( j)
2 (̃r)

q( j)2 (̃r)
=

∞∑
l=1

a( j)2; l

b( j)2; l

R(3)
1l (cj; *) S1l(cj; +) cos’; (28)

where R(1); (3)
1l (cj; *) are the prolate radial spheroidal functions of the ;rst or third kinds, S1l(cj; +) the

prolate angular spheroidal functions with the normalization factor N1l(cj) [41], and
cj = k(dj=2).

After substitution of the expansions in the equation analogous to Eq. (14), due to orthogonality
of the spheroidal functions one gets an in;nite system of linear algebraic equations like Eq. (16).
The integrals in the matrix elements in the analogs of the A1; A2 matrices will not contain the radial
spheroidal functions, since

9
9n dS =

d
2
(*2 − 1)

9
9* d+ d’ (29)

and for example, for the axisymmetric parts, one has (cf. Eqs. (16)–(18))

ã (1)
r = A2A−1

1 ã(0)r ; (30)

where the vectors ã( j)r =
{
a( j)r1; l + a( j)r2; l

}∞
l=1

and

a( j)r1; l = a( j)1; lR
(1)
1l (cj; *j)N1l(cj); a( j)r2; l = a( j)2; lR

(3)
1l (cj; *j)N1l(cj): (31)

The matrix elements in the analog of Eq. (17) are

A( j)
hj =Wj

{
R(3)
j Sj; j+1 − �j

�j+1
Sj; j+1 R̃

(1)
j+1 −

(
�j
�j+1

− 1
)

*j
*2j − f

Sj;j+1

}
P(1)
j ; (32)

A( j)
hh =Wj

{
R(3)
j Sj; j+1 − �j

�j+1
Sj; j+1 R̃(3)

j+1 −
(

�j
�j+1

− 1
)

*j
*2j − f

Sj;j+1

}
P(3)
j ; (33)

A( j)
jj =Wj

{
R(1)
j Sj; j+1 − �j

�j+1
Sj; j+1 R̃(1)

j+1 −
(

�j
�j+1

− 1
)

*j
*2j − f

Sj;j+1

}
P(1)
j ; (34)

A( j)
jh =Wj

{
R(1)
j Sj; j+1 − �j

�j+1
Sj; j+1 R̃(3)

j+1 −
(

�j
�j+1

− 1
)

*j
*2j − f

Sj;j+1

}
P(3)
j ; (35)
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where f=−1 for oblate spheroids and 1 for prolate ones, and the subscripts j; h could be replaced
by 1,3 to show better the kind of the radial functions used. The diagonal matrices used are

P(i)
j =

{
R(i)
1l (cj+1; *j)=R

(i)
1l (cj+1; *j+1)0nl

}∞
n; l=1

;

R(i)
j =

{
R(i)
1l

′(cj; *j)=R
(i)
1l (cj; *j)0nl

}∞
n; l=1

;

R̃(i)
j+1 =

{
R(i)
1l

′(cj+1; *j)=R
(i)
1l (cj+1; *j)0nl

}∞
n; l=1

;

Wj =−(R(3)
j − R(1)

j )−1 =
{
icj(*2j − f) R(1)

1l (cj; *j)R
(3)
1l (cj; *j) 0nl

}∞
n; l=1

; (36)

where 0nl is the Kronecker symbol. The elements of the matrix Si; j = {snl(ci; cj)}∞n; l=1 are integrals
of products of the angular spheroidal functions and can be written as series including the coe>cients
of their expansions in terms of the Legendre polynomials dmn

k (see [30] for more details)

snl(ci; cj) =
∫ 1

−1

RS1n(ci; +) RS1l(cj; +) d+

=N−1
1n (ci)N−1

1l (cj)
∞∑

k=0;1

2(k + 1)(k + 2)
2k + 3

d1n
k (ci)d1l

k (cj); (37)

where RS1n(c; +) are normalized angular spheroidal functions. As a result numerical calculations of
the matrix elements with high accuracy is not a problem.

For nonaxisymmetric parts, we get equations similar to those described above. Solution for both
parts can be formulated in the recursive forms (24), (25) as well.
It should be noted that our modi;cation of the SVM (mSVM) for homogeneous [30] and core-

mantle [5] spheroids diEers from the above-described modi;cation of the EBCM in spheroidal coor-
dinates generalized for layered particles (gmEBCMsc) mainly by another formulation of the boundary
conditions. For the axisymmetric parts, this diEerence is small, and the algebraic systems are the
same if one excludes the Wronskian for the radial spheroidal functions. However, for the nonax-
isymmetric parts, the diEerence (introduced by us to get a more convenient form of solution) is
essential. For instance, for the TM mode, we have:

for the mSVM (see [5])

U ( j) = U ( j+1);

V ( j) = V ( j+1);

9
9*

(
*U ( j) + f

d
2
+V ( j)

)
=
9
9*

(
*U ( j+1) + f

d
2
+V ( j+1)

)
;

1
�j

9
9*

(
+U ( j) +

d
2
*V ( j)

)
=

1
�j+1

[
9
9*

(
+U ( j+1) +

d
2
*V ( j+1)

)

+

(
1− c2j+1

c2j

)
1− +2

*2 − f
9
9+

(
*U ( j+1) + f

d
2
+V ( j+1)

)]
;




*=*j

(38)
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and for the gmEBCMsc

U ( j) = U ( j+1);

V ( j) = V ( j+1);

9
9* U ( j) =

�j
�j+1

9
9*U

( j+1) −
(

�j
�j+1

− 1
)[

*2

*2 − f+2
9
9*U

( j+1) +
f*+

*2 − f+2
9
9*

d
2
V ( j+1)

]

+
(
1− �j

�j+1

)
f+

*2 − f+2

[
1− +2

*2 − f
9
9+

(
*U ( j+1) + f+

d
2
V ( j+1)

)
+

d
2
V ( j+1)

]
;

d
2
9
9* V ( j) =

d
2
9
9* V ( j+1) +

(
�j
�j+1

− 1
)[

*+
*2 − f+2

9
9*U

( j+1) +
*2

*2 − f+2
9
9*

d
2
V ( j+1)

]

−
(
1− �j+1

�j

)
*

*2 − f+2

[
1− +2

*2 − f
9
9+

(
*U ( j+1) + f+

d
2
V ( j+1)

)
+

d
2
V ( j+1)

]
:




*=*j

(39)

In the mSVM the ;rst two equations in Eq. (38) were used to exclude two series of unknown
coe>cients in the last two equations. As a result for homogeneous particles one gets more simple
algebraic systems (see [30]). However, for multilayered particles the order of truncated systems grows
then proportionally to the number of layers (see [5]), because the potentials cannot be presented in
the form (11) and the integral identities analogous to Eq. (12) cannot be used.
In the gmEBCMsc the boundary conditions are formulated in such a way that the potentials

and their normal derivatives for a layer could be expressed via those for the previous layer (see
Eq. (39) which is generally equivalent to Eq. (38)). Then the integral identities (12) allow one
partly to resolve the appearing in;nite algebraic systems (using Eq. (11)) and to present the ;nal
system in the form (16)–(17). Note that in contrast with a recent paper developing a version of the
mSVM for layered spheroids [8], we present the solution in the form of systems of linear algebraic
equations.

6. Quasistatic and other approximations

For very elongated and Kattened homogeneous spheroids (the aspect ratio a=b →∞ and the param-
eter c1=O(1)), the in;nite systems arising in the mSVM (and mEBCMsc) were resolved analytically
in [30]. It was possible as in this limit the matrices R(1)

j , R(3)
j and others (see Section 5) essentially

simpli;ed. For example, taking into account the asymptotic behavior of the radial spheroidal functions
one gets for prolate spheroids with b=a�1

R(1)
j =

(a
b

)2 [
1 + O

(
b
a

)2]
I; R(3)

j =−
(a
b

)2 [
1 + O

(
b
a

)2]
I; (40)

where I is the unit matrix.
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In the far zone (r → ∞) the following asymptotics of the scattered ;eld in the case of the small
parameter b=a were obtained for a prolate spheroid:

Ẽ(1)
TE(’; �) =

exp ik1r
k1r

(
b
a

)2 �− 1
�+ 1

(T1 cos’ ĩ’ + T2 sin’ ĩ�);

Ẽ(1)
TM(’; �) =

exp ik1r
k1r

(
b
a

)2 [�− 1
�+ 1

T3 sin’ ĩ’ +
(
�− 1
2

T4 +
�− 1
�+ 1

T5 cos’
)
ĩ�

]
(41)

and for an oblate one

Ẽ(1)
TE(’; �) =

exp ik1r
k1r

(
b
a

)
�− 1
2

(
T1 cos’ ĩ’ + T2 sin’ ĩ�

)
;

Ẽ(1)
TM(’; �) =

exp ik1r
k1r

(
b
a

)[
�− 1
2

T3 sin’ ĩ’ +
(
�− 1
2�

T4 +
�− 1
2

T5 cos’
)
ĩ�

]
; (42)

where ĩ’, ĩ� are the unit vectors of the spherical coordinate system, and Ti are complex expressions
including the angular spheroidal functions.

It is important that all the functions Ti do not depend on the dielectric permittivity of the particle �.
Therefore, comparing expressions (41)–(42) with those of the Rayleigh-Gans approximation (RGA;
|�− 1|�1; c1|�− 1|�1) we can ;nd that

T1 ≡ 2c31
3

G(u); T2 ≡ 2c31
3

cos �G(u); T3 ≡ −2c31
3

cos 
G(u);

T4 ≡ 2c31
3

sin 
G(u); T5 ≡ 2c31
3

cos 
 cos �G(u): (43)

Here the function

G(u) =
3
u3

(sin u− u cos u); (44)

where for a prolate spheroid

u= c1|cos �− cos 
| (45)

and for an oblate one

u= c1
√

sin2 
+ sin2 �− 2 sin 
 sin � cos’: (46)

Note that expressions (41)–(42) coincide with those of the Rayleigh approximation (RA; c1�1,
c1|�|�1) if one excludes the factor G(u). Since G(0) = 1, the RA is a particular case of the
approximation provided by Eqs. (41)–(46). We call this generalization of the RA and RGA the
quasistatic approximation [42].

The physical sense of the approximation is seen from the fact that actually we represented the
;eld inside a particle by the incident ;eld Ẽ(0) (like in the RGA), taking into account the particle
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polarizability (like in the RA)

Ẽ(2) =

̂ Ẽ(0)

(�− 1)V
= KxE(0)

x ĩx + KyE(0)
y ĩy + KzE(0)

z ĩz ; (47)

where 
̂ is the polarizability tensor, V the volume of a homogeneous particle, (̃ix; ĩy; ĩz) are the unit
vectors of the Cartesian system (x; y; z) connected with the particle axes, Kx;y; z=((�−1)Lx;y; z+1)−1,
and Lx;y; z are the geometrical factors changing from 1/3 for a sphere to about 1 (0) for a particle
very elongated (Kattened) in the given direction, e.g.

Lx = abc
∫ ∞

0

dq
(a2 + q)f(q)

; (48)

where a; b; c are the semiaxes of the ellipsoid and f(q) =
√

(a2 + q)(b2 + q)(c2 + q) (see [43] for
more details).

The RA is known for ellipsoids with confocal (coaxial) boundary layers (see, e.g. [43]). We extend
it and the QSA for multilayered ellipsoids with nonconfocal boundaries of layers [27]. Use of the
asymptotic of the mEBCMsc is possible here only for confocal boundaries, as for the nonconfocal
ones the analytic expressions of the RGA and RA do not exist. Therefore, another way of solution
based on Eq. (47) is utilized. Generally, the problem is to solve the Laplace equation with the
corresponding boundary conditions. Because of the nonconfocality of boundaries, each layer of the
particle is divided into a number of sublayers with its own ellipsoidal coordinate system de;ned
inside. For any sublayer, approximate boundary conditions are formulated (see [44] for more details).
As a result we obtain the following expression for the polarizability along the axis of the coordinate
system connected with the particle:


x;y; z = V
R�x;y; z − 1

(R�x;y; z − 1)Lx;y; z + 1
; (49)

where

R�x;y; z = B2=B1 (50)

and for example, for the x-axis direction(
B1

B2

)
=

(
1 Lx;n

�n �n(Lx;n − 1)

)
6

(
(�1 − 1)Lx;1 + 1

−(�1 − 1)01

)
: (51)

Here �j = �j=�j+1, and �j; Lx; j; 0j are the permittivity in the jth layer, the geometrical factor and the
fraction of volume related to its external boundary, respectively, and

6 =
n−1∏
j=2

(7j8j)71; 7j = Cj

nsub∏
l=1

:jl; (52)

where Cj are some constants, the 2 × 2 matrices 7j and Vj depend only on the parameters of the
jth layer (�j; Lj; 0j), and the 2×2 matrices :jl depend only on these parameters for the lth sublayer
of the jth layer [44]. In the case of the confocal boundaries of layers one has :jl =7j = I and for
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j = 2; 3; : : : ; n− 1

8j =


 (�j − 1)Lx;j + 1

(�j − 1)
�j

Lx; j(Lx;j − 1)

−(�j − 1)0j −(�j − 1)(Lx;j − 1) + 1


 : (53)

In principle Eq. (51) can be rewritten in the recursive form (see [42] for more details).
Note that the quantity R� appearing in the formulation of the QSA and RA for layered scatterers (see

Eq. (50)) can be interpreted as an averaged dielectric permittivity. For small particles (|m−1|xV ¡ 1,
where the size parameter xV = 2%rV=<, rV is the radius of sphere whose volume is equal to that of
the spheroid, < the wavelength of incident radiation), it was used to produce a new mixing rule of
the eEective medium theory (EMT). This rule takes into account the internal structure of particles
and as our calculations demonstrate, gives for layered ellipsoids signi;cantly more accurate results
than other mixing rules (see Section 7.3).

7. Applicability of the methods

Here we analyze the applicability ranges of the exact methods suggested and compare the theo-
retical conclusions with the results of numerical experiments. Comparison of our computer programs
with those realizing other methods is made when possible. The codes are also used to discuss
applicability of the approximate methods considered in Section 6.

7.1. Exact methods: analytic investigation

Both exact methods (mEBCM and mEBCMsc) extended by us to layered particles are modi;ca-
tions of the EBCM. Therefore, analytic consideration of their applicability ranges can be based on
the analysis of EBCM-like methods made for homogeneous particles in [23]. Below we ;rst brieKy
describe the main results of that analysis and then consider the diEerences appearing for layered
scatterers.

It is well known that singularity of the systems of algebraic equations for the coe>cients of
expansions of the ;elds or potentials is the main reason of limited applicability of the EBCM
for high eccentricity scatterers (see, e.g. [2]). To large extent this singularity is a consequence of
divergence of these expansions. For homogeneous particles, the in;nite systems for the expansion
coe>cients of the internal (̃a(2)) and scattered (̃a(1)) ;eld potentials look as follows (cf. Eqs. (16),
(30)):

A1ã(2) = ã(0); Ã1ã(1) = Ã2ã(0): (54)

Here Ã1; Ã2 are some matrices, Ã2Ã−1
1 =A2A−1

1 , where A1; A2 are from Eqs. (16), (30). The standard
EBCM is mathematically correct (the expansions of the internal and scattered ;elds converge up
to the scatterer boundary, i.e. the Rayleigh hypothesis is satis;ed) under two conditions (see, e.g.
[19,23]):

1. All peculiarities of the analytic continuation of the scattered ;eld lie inside the maximum sphere
inscribing the particle (we denote its radius by rin).
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2. All peculiarities of the analytic continuation of the internal ;eld lie outside the minimum sphere
circumscribing the particle (the radius rout ¿rin).

These conditions can be written as follows:

dsca ¡rin; rout ¡dint ; (55)

where dsca and dint are the distances from the coordinate origin to the closest and farthest peculiarities
of analytic continuations of the scattered and internal ;elds, respectively. Note that these conditions
are not applicable to the discrete source method (as a modi;cation of the EBCM) and nonstan-
dard (i.e. diEerent from used by P.Waterman, P.Barber et al.—see [2]) EBCM versions, where a
non-free-space Green’s function is used (e.g. [34]) or the expansion coe>cients of the scattered ;eld
are determined in a least-squares sense (see [19] for more details). In the last case the expansion
converges uniformly everywhere outside the scatterer, but ;nding the expansion coe>cients presents
a special problem [19].

The situation is diEerent when one considers the optical properties of scatterers only in the far
zone, i.e. cross-section, phase function, etc. In this case an integro-operator equation connecting the
;eld at the surface of a scatterer with the far-;eld pattern can be written (see [22,23]). In this equa-
tion for the pattern one can substitute its expansion in terms of the angular spherical wave functions
and use the Sommerfeld integrals [45] to represent the spherical Hankel functions of the ;rst kind.
Taking into account the orthogonality of the angular spherical wave functions on any sphere with the
center at the coordinate origin, an algebraic system for the coe>cients of the pattern expansion can
be obtained (see [22] for more details). It is important that as a result one gets the same system as
for the basically used version of the EBCM [23]. In other words, two ways to ;nd the scattered ;eld
in the far zone (by solution of the equation for the pattern and usual EBCM equations) are equiva-
lent, and hence their applicability ranges must be the same. As the equation for the pattern does not
require convergence of the expansions up to the scatterer boundary we can conclude that validity of
the Rayleigh hypothesis is not necessary for consideration of the optical characteristics in the far zone
in the EBCM, and only the condition of solvability of the systems should be satis;ed. This condition
was found by analyzing the behavior of the matrix elements of the systems in the large index value re-
gions in [22,23]. We used the asymptotics of the spherical Bessel and Hankel and associated Legendre
functions for large indices, the saddle point approximation to evaluate the integrals in the matrix ele-
ments (the parameter � was made complex) [18], and the renormalization of unknowns and free terms

x(1)n =
2nn!
(k1R)n

a(1)n ; x(0)l =
(k2R)l

2ll!
ã(0)l ; (56)

where R is a free parameter, and ˜̃a(0) = Ã2ã(0). For the axisymmetric part, we arrived to the system
(see [23] for more details)

∞∑
n=1


̃(1)ln x(1)n = x(0)l ; l= 1; 2; : : : (57)

with the following constraints:

|
̃(1)ln |6Const
(
1
l

)(
dsca

R

)l [
1 + O

(
1
l

)]
; l�1; n=O(1); (58)
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|
̃(1)ln |6Const
(

R
dint

)n [
1 + O

(
1
n

)]
; n�l; (59)


̃(1)ll =
1
2

(
1 +

k1
k2

)[
1 + O

(
1
l

)]
; 
̃(1)ln =O

(
1
ln

)
; l; n�1; |n− l|=O(1); (60)

|x(0)l |6Const
1
l

(
din

R

)l [
1 + O

(
1
l

)]
; l�1; (61)

where

dsca = max|r(�0)eis�0 |; (62)

dint = min
∣∣r(�0)eis�0∣∣ (63)

and values of �0 are found from the equations

r′�(�)
r(�)

∣∣∣∣
�=�0

=−is; (64)

exp (is �0) = 0 (65)

with s = 1 or −1. It should be mentioned that besides the roots of these equations one should
also consider all nonanalytic points of the scatterer surface. The system (57) with the constraints
(58)–(61) is quasiregular [24,36,46] and the Fredholm alternative is valid for it under the condition

max(din; dsca)6R6dint : (66)

Note that there are no peculiarities for a plane incident wave, i.e. din = 0. Taking into account the
uniqueness of the solution of the scattering problem, we conclude that when (66) is valid, there must
be the only solution of the systems (57) which can be found by the reduction method [24,36,46].
The last point is of particular importance since in numerical calculations one always solves truncated
systems.

For the nonaxisymmetric parts, we get the system with the constraints analogous to (58)–(61).
In [23] it was also shown that a similar analysis could be applied to any version of the EBCM,
involving (nonmultipole) expansions of the ;elds or potentials in terms of the (spherical) wave
functions and formulation of the problem as surface integral equations. Thus, the necessary condition
of applicability of the EBCM in the far zone can be formulated in such a way [23]:

3. All peculiarities of the analytic continuation of the divergent ;elds (i.e. those corresponding
to the potentials with the subscript 2 in our EBCM modi;cation –p2, U2, etc.) lie farther from the
coordinate origin than all peculiarities of analytic continuation of the convergent ;elds (i.e. those
corresponding to the potentials with the subscript 1 –p1, U1, etc.).

In the used notations (for a plane incident wave) it just means

dsca ¡dint (67)
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and one can easily see that Eq. (67) puts less tight constraints on the particle geometry than Eq.
(55) as always rin ¡rout. Positions of the peculiarities in the cases of spheroidal and Chebyshev
particles, i.e. expressions for dsca and dint, and comparison with results of numerical calculations can
be found in [23].

It should be added that the results obtained for homogeneous particles in [23] are consistent with
those of other authors. The paper [23] extends the works of Kyurkchan (see [22] and references
therein) and hence agrees with all his results including the condition (67) suggested ;rst in [22] for
perfectly conducting scatterers. The condition of convergence of the series in the EBCM for the far
zone found in [21] is too complicated to be applied to Chebyshev particles, but for spheroids it is
valid (see the proof in [21]) as well as the condition (67) [22,23].
Let us now expand the analysis to layered particles and start with the Rayleigh hypothesis. Ob-

viously for cores of layered particles we have the standard conditions

d(n)
sca ¡r(n)in ; r(n)out ¡d(n)

int : (68)

However, for other layers, the situation is a bit diEerent and the conditions can be formulated as
follows:

1′. All peculiarities of the analytic continuations of the divergent ;elds lie inside a maximum sphere
inscribing the inner surface of the layer.

2′. All peculiarities of the analytic continuations of the converging ;elds lie outside a minimum
sphere circumscribing the outer surface of the layer.

As a result we have

d( j)
sca ¡ r( j+1)

in ; r( j)out ¡ d( j)
int ; j = 1; 2; : : : ; n− 1; (69)

where the superscript j denotes the quantities related to the surface Sj. As r
( j+1)
in ¡r( j)in , the conditions

(69) are always more strong than the conditions (55) for the same surface Sj. Obviously, conditions
(55) and (69) coincide for an extremely thin layer (rj+1 → rj).
For layered particles, the solvability conditions (66) must be satis;ed for all layer boundaries and
the parameter R must be kept the same as Eqs. (16) and (17) for the boundaries are coupled. In
other words, the expansions of the potentials for all layers should converge in a common spherical
ring. It takes place provided:

3′. All peculiarities of the analytic continuation of the divergent ;elds in all layers lie farther from
the particle center than all peculiarities of the analytic continuation of the convergent ;elds in
all layers.

It means that

max{d( j)
sca}nj=1 ¡ min{d( j)

int }nj=1: (70)

For confocal spheroids, d( j)
sca = d=2 for all j and Eq. (69) automatically lead to the inequality (70)

as d( j)
sca ¡r(n)in ¡r(n)out ¡r( j)out ¡d( j)

int for any j.
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Our analysis shows that the condition 3′ is the only one required for calculations in the far zone.
For homogeneous particles, condition (70) is equivalent to Eq. (67), and condition 3′ was not added
to conditions 1 and 2 as it automatically followed from them.

Thus, our modi;cation of the EBCM is mathematically correct for particles with the layer bound-
aries satisfying the conditions formulated for the homogeneous scatterers (55) and supplemented
with additional constraints. One of them connects the position of peculiarities de;ned by the exter-
nal boundary of the layer with the parameters of its internal boundary (see the ;rst inequality in
Eq. (69)). Another additional condition, which is also the only one necessary for the far zone, is
an intersection of conditions (67) for homogeneous particles applied to each layer boundary. Note
that these conditions are valid for any modi;cation of the EBCM where ;elds (or potentials) are
expanded in terms of the spherical wave functions and the expansions are substituted in surface
integral equations with the free-space Green’s function.

Easy to see that all the conditions formulated above for the EBCM are in principle applicable
to the EBCM in spheroidal coordinates for both homogeneous and layered spheroidal particles. The
only diEerence of the methods, which is important here, is that the ;elds (potentials) are expanded
in terms of the spheroidal wave functions instead of the spherical ones, and hence in the conditions
one should replace spheres by spheroids and radius by the spheroidal coordinate *, to measure the
distances in the curvilinear coordinate system, etc. It should be also noted that the peculiarities of
the scattered ;eld for prolate homogeneous spheroids are known to be in the foci and for oblate
ones on the focal circle perpendicular to the particle symmetry axis, i.e. in both cases lie inside
a spheroid, whereas the peculiarities of the internal ;eld are located outside the scattering particle
[23]. Therefore, for homogeneous spheroids conditions (55) and (67) are always satis;ed. For a
spheroid with the confocal boundaries of layers, conditions (68)–(70) are always valid as well. In
other words the EBCM in spheroidal coordinates is mathematically correct for any homogeneous and
layered spheroids with the confocal boundaries. Note that the analytic study of our SVM modi;ca-
tion made in [24] has demonstrated that it is applicable to homogeneous spheroids of any shape and
calculations have shown that even its e>ciency does not depend on the aspect ratio a=b in contrast
with the standard SVM (see [30] for more details).

7.2. Exact methods: numerical consideration

We have created computer programs realizing both theoretical methods suggested for layered
particles (gmEBCM and gmEBCMsc). The codes were tested in the ways described, e.g., in [47].
Comparison with the codes available for multilayered spheres [48] and confocal core-mantle spheroids
[5] as well as the DDA code [49] slightly modi;ed to treat multilayered particles has demonstrated
correctness of our programs in all considered cases. Improvement of the code based on the EBCM
in spheroidal coordinates (gmEBCMsc) is in progress and below we shall discuss in more detail the
program realizing the gmEBCM.

Convergence of the solutions is illustrated by Figs. 1–3, which also show accuracy that can be ex-
pected for three-layered spheroids treated by the gmEBCM (about 6 digits) and gmEBCMsc (about
13 digits).

The convergence behavior for the gmEBCM seen in the ;gures is typical of EBCM-like methods
(see [23])—convergence occurs for the number of terms, being kept in solution, N ¡ 15–25 (for
double precision calculations), until the systems become ill-conditioned, and then (after some plato)
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Fig. 1. Relative errors of energy conservation for dielectric spheroids. The refractive index and the volume fraction of
core/layer/mantle of the three-layered spheroids are (m; 0V)=(1:7; 0:34)=(1:0; 0:33)=(1:3; 0:33); the inclination angle 
=90◦,
the size parameter xV = 2; the aspect ratio of core/layer/mantle for the gmEBCM and that of core for the gmEBCMsc
a=b=1:4 (other ratios were derived from confocality condition (26)). For homogeneous spheroids, the refractive index of
all layers is m=

√
R� with R� from Eq. (50); for core-mantle spheroids, ml = mc = 1:7.

accuracy of results decreases with N . For the mEBCMsc (and earlier mSVM), we generally do not
have singular systems and therefore the accuracy remains at the level of computational errors (about
10−14–10−15). This diEerence of the methods appears due to the absence of the radial functions
getting very large/small values in the matrix elements (cf. Eqs. (30), (31) and (16)).
Figs. 2 and 3 illustrate convergence of the gmEBCM for three-layered spheroids of diEerent aspect

ratio a=b, refractive index m, and size parameter xV. One can see that like for homogeneous particles
(see [23]) convergence (here we mean the slope of curves for small N , where the convergence really
occurs) practically does not depend on m and xV and is aEected only by a=b. This corresponds to
general results of our theoretical analysis in previous subsection which predicted that the convergence
should depend only on the shape of a scatterer. Note that the analysis was made for in;nite systems,
while in calculations we always deal with ;nite (truncated) systems whose properties for small N
may be partly diEerent. We should also add that accuracy of the gmEBCM results (the plato for
spheroids with two and three diEerent layers in Fig. 1) may be aEected by inappropriate formulation
of the boundary conditions as took place, e.g., for homogeneous perfectly conducting particles in
[50].

Our calculations show that the gmEBCM code (and the method) allows one to treat axisym-
metric particles with up to about 10 layers and the size parameter xV - 5–7 in a wide region of
the refractive index values. Certain problems are met for essentially elongated/Kattened particles
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Fig. 2. Relative errors of energy conservation for three-layered dielectric spheroids of diEerent aspect ratios a=b treated
by the gmEBCM. The refractive indices and the volume fractions of core/layer/mantle and other parameters are as in Fig.
1. (a) mm = 1:3; (b) mm = 3.

(e.g., for spheroids for the aspect ratio a=b¿ 2). In this case, another method—the gmEBCMsc
provides a solution applicable to multilayered spheroids with the confocal boundaries. The range of
applicability of this solution is very large in a=b and xV and needs a special study.
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Fig. 3. Relative errors of energy conservation for three-layered dielectric spheroids of diEerent refractive indices (a) and
sizes (b) treated by the gmEBCM. The refractive indices (if not speci;ed) and the volume fractions of core/layer/mantle
and other parameters are as in Fig. 1.

Besides consideration of the applicability ranges, it is useful to compare the e>ciency of the
methods (codes) with the DDA [49], being a good representative of the universal volume integral
equation methods. We ;nd that our gmEBCM code having higher accuracy needs an order of



622 V.G. Farafonov et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 79–80 (2003) 599–626

magnitude less memory and computational time. For instance, for a three-layered particle with xV=4,
the gmEBCM code requires 5 Mb and 0:5 min for a 500 MHz PC, while the DDA one does 100 Mb
and 30 min. Computational time for the gmEBCM, t, grows with an increase of the scatterer size
much slower than for the DDA. Although t ˙ n, where n is the number of layers, for large n the
number of dipoles in the DDA should be increased to reproduce correctly the scatterer structure and
this enlarges computational time as well. The gmEBCMsc code, being many orders of magnitude
more accurate, needs memory nearly as much as the gmEBCM one. Computational time for the
gmEBCMsc is of the order of t and its dependence on parameters is generally similar to that of
the gmEBCM. Thus, the codes created by us well supplement each other and among other wide
applications provide a good possibility to study applicability of the approximate methods for layered
particles.

7.3. Approximate methods

The well known general conditions of applicability of the RA (x�1; |m|x�1) and RGA (|m −
1|�1; |m − 1|x�1) are formulated for spheres with the size parameter x = 2%r=<, where r is the
radius. For nonspherical particles, the conditions should be rewritten, for example, for the RA as
follows:

xd�1; |m|xd�1; (71)

where xd is the size parameter related to the maximum dimension of the particle.
The procedure that we utilized to construct the QSA for homogeneous spheroids in Section 6 (via

the asymptotic of the scattered ;eld in the gmEBCMsc) shows that for nonspherical particles the
condition of applicability of the QSA can be formulated as

|m− 1|xV�1; (72)

where xV is the size parameter related to the radius of a sphere whose volume is equal to that of the
nonspherical particle. The diEerence of the conditions (71) and (72) becomes essential for scatterers
of large eccentricity. For spheroids, the ratio xV=xd ˙ (a=b)
, where 
 = 1

3 or 2
3 , and, for instance,

for prolate particles with the aspect ratio a=b = 30 and xV = 0:1, the QSA may give good results,
whereas the RA should not be applied as xd ¿ 1. Calculations in [26] well con;rm this general
conclusion.

Such a shape dependence of the applicability ranges of the QSA and RA takes place for lay-
ered particles as well, although the situation for them becomes a bit more complicated. Not all
layers of such particles give comparable contributions to the process of scattering, and nearly always
there is a main layer. Our experience indicates that, to a ;rst approximation, it can be identi;ed
as a layer with the maximum product |m − 1|V , where m and V are the refractive index and
the volume of the layer. It is the shape of the outer boundary of the main layer which is im-
portant for the QSA e>ciency. If the eccentricity of this boundary is intermediate or large (the
ratio of the maximum to minimum dimensions exceeds 2–3), the QSA is always preferable to
the RA. The inner boundary of the main layer also plays a role. It is less important simply be-
cause typically its surface area is essentially smaller than that of the outer boundary. An empiri-
cal factor characterizing the relative importance of the QSA over the RA could look as follows:
lomax=l

o
min + V i=V olimax=l

i
min, where lmax and lmin are the maximum and minimum dimensions of a
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Fig. 5. Relative errors of the scattering cross-sections cal-
culated with a SVM code for homogeneous particles with
the permittivity according to the new EMT rule (SVM+N;
dash-dot-dot curve) in the case of two-layered confo-
cal spheroids (mantle: a=b = 4 : 1; m = 1:33 + 0:01i; core:
a=b = 6:7 : 1; m = 1:7 + 0:03i; the volume fraction of the
core is 0.5). Results obtained with the standard Brugge-
man rule of the EMT are denoted by SVM+B (dashed
curve).

surface, and the superscripts o and i are related to the outer and inner boundaries of a layer,
respectively.

An example of importance of the inner boundary is provided by the three-layered ellipsoids
examined in Fig. 4. Due to the largest contribution to the volume-averaged refractive index the main
layer of this particle is the middle one. Its outer boundary has the semiaxis ratio equal to that of
the homogeneous ellipsoid also presented in the ;gure, but the diEerence between the RA and QSA
for the ellipsoids is very large. We believe that it is the eEect of signi;cant eccentricity of the inner
boundary of the main layer of the three-layered ellipsoid (and a relatively large ratio V i=V o).
We have compared the QSA with the most popular approximation—the RA and now discuss

its comparison with some other approaches. Our program realizations of the EBCM (gmEBCM)
and SVM (gmEBCMsc) show that due to relative complexity of the algorithms the size of codes
and speed of calculations are at least an order of magnitude larger than those for the QSA in the
nonconfocal case, which is not analytic and hence much more complicated. Also the restrictions of
the EBCM and SVM should be noted. As far as we know there is no formulation of the SVM in
ellipsoidal coordinates, i.e. this method is still mainly limited by spheroids with confocal boundaries
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(a generalized SVM suggested in [31] can be applied to scatterers of any shapes but its computational
e>ciency and applicability range are not clear). The e>ciency of the EBCM for nonaxisymmetric
particles is even lower than that of the DDA [51].

In principle most volume integral equation methods (e.g., the DDA) can be applied to multilay-
ered ellipsoids. Our calculations performed with the DDA code [49] can serve as a test of these
approaches. We found that this code required computational time that was orders of magnitude larger
than that of the QSA in the nonconfocal case and accuracy of the DDA results were generally not
much higher than the QSA ones. Note also that the QSA does not have strong demands to computer
memory typical of the DDA.

It should be pointed out that the formulation of the QSA for layered particles with the confocal
boundaries (see Eqs. (41)–(53)) does not contain any signs of the speci;c character (confocality) of
these particles. We applied these formulas to particles with nonconfocal boundaries and found that
such an approximation, being analytic and hence quite fast, was practically as accurate as the QSA
formulated for nonconfocal boundaries.

Now we turn to the EMT which is used to replace long (or even impossible) calculations of
the optical properties of inhomogeneous particles by calculations for homogeneous ones with an
averaged refractive index (see, e.g. [43]). We compared the rule provided by Eqs. (50)–(53) with
the standard ones for layered spheroids (for multilayered spheres it was done in [48]). It is found
that in the region of small diEraction parameter values (xV ¡ 0:3), the new rule provides a very good
approximation, in contrast to other rules of the EMT (cf. curves marked by SVM+N and SVM+B
in Fig. 5). Note that the standard rules of the EMT, like the Bruggeman one used in Fig. 5, give a
wrong limit at xV → 0, since, unlike the rule (57), they do not involve information on the internal
structure of the scatterer.

8. Conclusions

We have further developed and systematically discussed several exact and approximate methods
extended to treat light scattering by layered nonspherical particles. Comparative consideration of the
methods allowed us to summarize their diEerences and connections.

Analytic and preliminary numerical investigations of the ranges of applicability of the methods
(and codes) show their supplementary nature which can be useful in applications. The extended
boundary condition method formulated in spheroidal coordinates and the analytic formulas of the
quasistatic approximation were found to be in particular perspective for treatment of light scattering
by multilayered nonspherical particles.
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