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A solution of the electromagnetic scattering problem for confocal coated spheroids has been obtained by
the method of separation of variables in a spheroidal coordinate system. The main features of the
solution are ~i! the incident, scattered, and internal radiation fields are divided into two parts: an
axisymmetric part independent of the azimuthal angle w and a nonaxisymmetric part that with inte-
gration over w gives zero; the diffraction problems for each part are solved separately; ~ii! the scalar
potentials of the solution are chosen in a special way: Abraham’s potentials ~for the axisymmetric part!
and a superposition of the potentials used for spheres and infinitely long cylinders ~for the nonaxisym-
metric part!. Such a procedure has been applied to homogeneous spheroids @Differential Equations 19,
1765 ~1983!; Astrophys. Space Sci. 204, 19, ~1993!# and allows us to solve the light scattering problem for
confocal spheroids with an arbitrary refractive index, size, and shape of the core or mantle. Numerical
tests are described in detail. The efficiency factors have been calculated for prolate and oblate spheroids
with refractive indices of 1.51 0.0i, 1.51 0.05i for the core and refractive indices of 1.31 0.0i, 1.31 0.05i
for the mantle. The effects of the core size and particle shape as well as those of absorption in the core
or mantle are examined. It is found that the efficiency factors of the coated and homogeneous spheroids
with the volume-averaged refractive index are similar to first maximum.

Key words: Light scattering, nonspherical particles, inhomogeneous particles. © 1996 Optical
Society of America
1. Introduction

In the last several years, significant progress in the
theoretical study of light scattering by small particles
has been discerned. Themethods developedmake it
possible to calculate the optical properties of arbi-
trarily shaped particles with anisotropic optical prop-
erties and inclusions.1–5 However, the major part of
the numerical results deals with simple axisymmet-
ric particles such as homogeneous spheroids or finite
cylinders. Such models of particles should be useful
as a solution to various problems in atmospheric and
ocean optics, astrophysics, biophysics, etc. In most
cases of practical interest, it is necessary to average
over particle sizes and orientations. Then the com-
putational method must be fast to get accurate nu-
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merical results for polydispersions of aligned
nonspherical particles.
In this paper we present the solution to the prob-

lem of light scattering by core–mantle ~two-layered!
spheroidal particles, which makes it possible to con-
sider inhomogeneous nonspherical particles with
shapes that vary from needles ~prolate spheroids! to
disks ~oblate spheroids!. The problem is solved by
the method of separation of variables in a spheroidal
coordinate system. This method was used to obtain
a solution to the light scattering problem for spheres
and infinitely long circular cylinders that are both
homogeneous and core–mantle in structure.6–9 For
homogeneous spheroids, the problem was worked out
by Asano and Yamamoto10 and Farafonov.11 In Ref.
11 the special basis for expansion of the electromag-
netic fields was introduced. Numerical results12,13
indicate that the computational efficiency of this so-
lution is higher than that of Asano and Yamamoto.10
Here, similar ideas are used to solve the light scat-
tering problem for core–mantle spheroids.
Note that core–mantle spheroids have been previ-

ously considered by Onaka14 who extended the ap-
proach of Asano and Yamamoto.10 Some results
were published in Ref. 14 for dielectric particles with
refractive indices m̃core 5 1.66 1 0.0i and m̃mantle 5



1.33 1 0.0i. Cooray and Ciric15 studied the phase
function and radar cross sections for prolate layered
spheroids. Their solution is based on the method of
separation of variables developed by Sinha and Mac-
Phie16 for conducting spheroids. Coated spheroids
have also been considered in Refs. 17 and 18 where
the extended boundary conditions ~T-matrix! method
was applied. The results were done for small atmo-
spheric and biological particles. Some calculations
of the optical properties of optically soft core–mantle
spheroids were made on the basis of the Rayleigh–
Hans–Debye approximation ~see the discussion in
Ref. 19!.

2. Formulation of the Problem

The problem of electromagnetic light scattering by a
core–mantle particle can be solved in the prolate and
oblate spheroidal coordinate systems ~j, h, w! that are
connected with the Cartesian system ~x, y, z! in the
following way20,21:

x 5
d
2

~j2 7 1!1y2~1 2 h2!1y2 cos w,

y 5
d
2

~j2 7 1!1y2~1 2 h2!1y2 sin w,

z 5
d
2

jh, (1)

where j [ @1, `!, h [ @21, 1#, and w [ @0, 2p! for a
prolate coordinate system and j [ @0, `!, h [ @21, 1#,
and w [ @0, 2p! for an oblate coordinate system; d is
the focal distance. The upper sign corresponds to
the prolate system and the lower to the oblate system.
Note that the confocal spheroids correspond only to
the same spheroidal system. Then the thickness of
the coating is variable.
Let the time-dependent part of the electromagnetic

field be exp~2ivt! and E~i!, H~i! and Et
~i!, Ht

~i! be the
vectors of the electric and magnetic fields and their
tangential components, respectively. The subscript
i takes a value of 0, 1, 2, or 3, which refer to the field
of the incident radiation, the field of the scattered
radiation, and the radiation fields inside the mantle
and the core of a particle. Then the scattering prob-
lem is formulated as follows ~i 5 1, 2, 3!:

¹2E~i! 1 ki
2E~i! 5 0, (2)

=E~i! 5 0, (3)

Et
~0! 1 Et

~1!

Ht
~0! 1 Ht

~1!

5

5

Et
~2!

Ht
~2!J

j5j1

, (4)

Et
~2!

Ht
~2!

5

5

Et
~3!

Ht
~3!J

j5j2

, (5)

lim
r3`

rS]E~1!

]r
2 ik1E~1!D 5 0, (6)

where ki 5 =εimik0 is the wave number in a medium
with complex permittivity εi andmagnetic permeabil-
ity mi, k0 5 2pyl0 is the wave number in vacuum, r is
the radius vector, j1 and j2 are the radial coordinate
values at the surfaces of the mantle and the core,
respectively. The magnetic fields can be obtained
from electrical fields using Maxwell’s equations

H 5
1

imk0
= 3 E, E 5 2

1
iεk0

= 3 H.

We consider a plane electromagnetic wave with an
arbitrary polarization propagating at an incident an-
gle a to the rotational axis of a spheroid ~or the z axis;
see Fig. 1!. This wave can be represented as a su-
perposition of two components:

~a! TE mode

E~0! 5 2iy exp@ik1~x sin a 1 z cos a!#,

H~0! 5 Îε1
m1

~ix cos a 2 iz sin a!

3 exp@ik1~x sin a 1 z cos a!#; (7)

~b! TM mode

E~0! 5 ~ix cos a 2 iz sin a!exp@ik1~x sin a 1 z cos a!#,

H~0! 5 Îε1
m1

iy exp@ik1~x sin a 1 z cos a!#. (8)

Here ix, iy, iz are the unit vectors in the Cartesian
coordinate system.
The main features of the solution that we used are

~see also Ref. 13!:

~i! All the fields are divided into two parts:

E~i! 5 E1
~i! 1 E2

~i!, H~i! 5 H1
~i! 1 H2

~i!, i 5 0, 1, 2, 3,

(9)

Fig. 1. Scattering geometry for a prolate spheroid with a confocal
core–mantle structure. The space is divided into three parts:
the outer medium, the mantle, and the core. The scattered field
in the far-field zone is represented in the spherical coordinate
system. The origin of the coordinate system is at the center of the
spheroid whereas the z axis coincides with its axis of revolution.
The angle of incidence a is the angle in the x–z plane between the
direction of incidence and the z axis.
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whereE1
~i!,H1

~i! are the axisymmetrical parts indepen-
dent of the azimuthal angle w, whereas the integra-
tion of the nonaxisymmetrical parts E2

~i!, H2
~i! over w

gives zero.
~ii! The scalar potentials for the solution are chosen

in a special way: Abraham’s potentials for the axi-
symmetric part and the superposition of potentials
used for spheres and infinitely long cylinders for the
nonaxisymmetric part.

The independent solution to the first and second
parts of Eqs. ~9! is possible due to the commutation
of the operator corresponding to the diffraction
problem and the operator Lz 5 ]y]w ~Ref. 11!.
Thus, the problem under consideration can be un-
coupled relative to the azimuthal angle w, i.e., each
component of Fourier expansion @including axisym-
metric components E1

~i!, H1
~i!# can be found sepa-

rately.

3. Solution to the Axisymmetric Problem

If the electromagnetic field does not depend on the
azimuthal angle w, we can introduce Abraham’s po-
tentials21,22:

3 5 hwEw, 4 5 hwHw. (10)

Using these potentials, the expressions for all the
components of vectors E and H can be obtained:

Ej 5 2
i
k0ε

1
hhhw

]4

]h
, Hj 5

i
k0m

1
hhhw

]3

]h
,

Eh 5
i
k0ε

1
hjhw

]4

]j
, Hh 5 2

i
k0m

1
hjhw

]3

]j
, (11)

where

hj 5
d
2 Sj2 7 h2

j2 7 1 D
1y2

, hh 5
d
2 Sj2 7 h2

1 2 h2D1y2

,

hw 5
d
2

@~j2 7 1!~1 2 h2!#1y2

are Lamé ~metric! coefficients of the prolate ~upper
sign! or oblate ~low sign! spheroidal coordinate sys-
tem.
The azimuthal components of vectors E and H can

be written using the spheroidal functions with the in-
dexm 5 1 ~Ref. 21!. Let us consider a prolate spher-
oid. Then the components of the fields corresponding
to the incident, scattered, and internal ~inside the
mantle and the core of the particle! radiation are

E1w
~0! 5 (

l51

`

al
~0!R1l

~1!~c1, j!S1l~c1, h!,

H1w
~0! 5 (

l51

`

bl
~0!R1l

~1!~c1, j!S1l~c1, h!, (12)

E1w
~1! 5 (

l51

`

al
~1!R1l

~3!~c1, j!S1l~c1, h!,

H1w
~1! 5 (

l51

`

bl
~1!R1l

~3!~c1, j!S1l~c1, h!, (13)
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E1w
~2! 5 (

l51

`

@al
~2!R1l

~1!~c2, j!

1 cl
~2! 3 R1l

~3!~c2, j!#S1l~c2, h!,

H1w
~2! 5 (

l51

`

@bl
~2!R1l

~1!~c2, j!

1 dl
~2!R1l

~3! 3 ~c2, j!#S1l~c2, h!, (14)

E1w
~3! 5 (

l51

`

al
~3!R1l

~1!~c3, j!S1l~c3, h!,

H1w
~3! 5 (

l51

`

bl
~3!R1l

~1!~c3, j!S1l~c3, h!, (15)

where ci 5 kidy2 ~i5 1, 2, 3!, Sml~ci, h! are the prolate
angular spheroidal functions with normalization co-
efficients Nml~ci!, and Rml

~ j!~ci, j! are the prolate radial
spheroidal functions of the jth kind.21
The formulation of the problem @see Eqs. ~2!, ~3!,

and ~6!# is consistent with the fields described by Eqs.
~10!–~15!. One can determine the unknown coeffi-
cients al

~i!, bl
~i!, cl

~i!, and dl
~i! by solving the systems for

the boundary conditions @Eqs. ~4! and ~5!# after sub-
stitution of the field expansions.
For the incident radiation we obtain the following

coefficients ~see Ref. 13!:

~a! TE mode @Eqs. ~7!#

al
~0! 5 22ilN1l

22~c1!S1l~c1, cos a!, bl
~0! 5 0; (16)

~b! TM mode @Eqs. ~8!#

al
~0! 5 0, bl

~0! 5 2ilÎε1
m1

N1l
22~c1!S1l~c1, cos a!. (17)

Equations ~10! and ~11! show that Abraham’s poten-
tials can be found separately from each other.
Therefore, the potential 3~4! is nonzero only for the
TE ~TM! mode, which means that bl

~1! 5 bl
~2! 5 bl

~3! 5
dl

~2! 5 0 for the TE mode and al
~1! 5 al

~2! 5 al
~3! 5 cl

~2!

5 0 for the TM mode.
Let us substitute Eqs. ~10! and ~11! into the bound-

ary conditions @Eqs. ~4! and ~5!#. In the case of a
TE-type wave we have

3~0! 1 3~1!

1
m1

]

]j
@3~0! 1 3~1!#

5

5

3~2!

1
m2

]

]j
3~2!6

j5j1

,

(18)

3~2!

1
m2

]

]j
3~2!

5

5

3~3!

1
m3

]

]j
3~3!6

j5j2

.

(19)

Now let us substitute Eqs. ~12!–~15! into the expres-
sions for radiation fields @Eqs. ~18! and ~19!#. The
latter multiplied by N1n

21~c2!S1n~c2, h! and inte-
grated over h from 21 to 1 can be rewritten in matrix



form ~parameter f̃ is equal to 1 for the prolate sphe-
roids and 21 for oblate spheroids!:

HSm2

m1
2 1Dj1I1 ~j1

2 2 f̃!Fm2

m1
5̃3 2 51~c2, j1!GJZ~2!

1 HSm2

m1
2 1Dj1I1 ~j1

2 2 f̃!Fm2

m1
5̃3 2 53~c2, j1!GJY~2!

5
m2

m1
D~c2, c1!~j1

2 2 f̃!@53~c1, j1! 2 51~c1, j1!#F~0!,

FSm2

m3
2 1Dj2I1 ~j2

2 2 f̃!Sm2

m3
5̃1 2 51~c2, j2!DGP1Z~2!

1 HSm2

m3
2 1Dj2I1 ~j2

2 2 f̃!Fm2

m3
5̃3 2 51~c2, j2!GJP3Y~2! 5 0,

(20)

where

Z~ j! 5 $zl
~ j!%1

`, Y~2! 5 $yl
~2!%1

`, F~0! 5 $ fl
~0!%1

`,

zl
~1! 5 al

~1!R1l
~3!~c1, j1!N1l~c1!,

zl
~2! 5 al

~2!R1l
~1!~c2, j1!N1l~c2!,

yl
~2! 5 cl

~2!R1l
~3!~c2, j1!N1l~c2!,

f l
~0! 5 al

~0!R1l
~1!~c1, j1!N1l~c1!,

D~ci, cj! 5 $dnl
~m!~ci, cj!%m

`,

5j~ci, j! 5 $Rml
~ j!9~ci, j!yRml

~ j!~ci, j!dnl%m
`,

Pj 5 Pj~c2, j1, j2! 5 $Rml
~ j!~c2, j2!

yRml
~ j! 3 ~c2, j1!dnl%m

`,

5̃1 5 D~c2, c3!51~c3, j2!D~c3, c2!,

5̃3 5 D~c2, c1!53~c1, j1!D~c1, c2!,

I 5 $dnl%m
` is the unit matrix. (21)

The expression for integral dnl
~m!~ci, cj! is given in the

Appendix.
The coefficients al

~1! that describe the scattered
radiation can be used to determine the cross sec-
tions for extinction and scattering, the scattering
matrix, etc. They can be found from the following
equation:

Z~1! 5 D~c1, c2!~Z~2! 1 Y~2!! 2 F~0!. (22)

For the TMmode, the transformation of the infinite
system @Eqs. ~20! and ~21!# can be performed by the
replacements mi3 εi, εi3 mi and al

~ j!3 bl
~ j!, cl

~2!3
dl

~2!. In order to obtain the corresponding systems
for an oblate spheroid one must use the standard
replacements c 3 2ic ~d 3 2id!, j 3 ij and oblate
spheroidal functions instead of prolate functions.

4. Solution to the Nonaxisymmetric Problem

The second terms in Eqs. ~9! can be represented in the
following form:
~a! TE mode

E2
~i! 5 = 3 @U~i!iz 1 V~i!r#,

H2
~i! 5

1
imik0

= 3 = 3 @U~i!iz 1 V~i!r#; (23)

~b! TM mode

E2
~i! 5 2

1
iεik0

= 3 = 3 @U~i!iz 1 V~i!r#,

H2
~i! 5 = 3 @U~i!iz 1 V~i!r#. (24)

One can write the scalar potentialsU~i! and V~i! using
the spheroidal wave functions

U~0! 5 (
m51

`

(
l5m

`

aml
~0!Rml

~1!~c1, j!Sml~c1, h!cosmw,

V~0! 5 (
m51

`

(
l5m

`

bml
~0!Rml

~1!~c1, j!Sml~c1, h!cos mw, (25)

U~1! 5 (
m51

`

(
l5m

`

aml
~1!Rml

~3!~c1, j!Sml~c1, h!cosmw,

V~1! 5 (
m51

`

(
l5m

`

bml
~1!Rml

~3!~c1, j!Sml~c1, h!cosmw, (26)

U~2! 5 (
m51

`

(
l5m

`

@aml
~2!Rml

~1!~c2, j!

1 cml
~2!Rml

~3!~c2, j!#Sml~c2, h!cos mw,

V~2! 5 (
m51

`

(
l5m

`

@bml
~2!Rml

~1!~c2, j!

1 dml
~2!Rml

~3!~c2, j!#Sml~c2, h!cos mw, (27)

U~3! 5 (
m51

`

(
l5m

`

aml
~3!Rml

~1!~c3, j!Sml~c3, h!cos mw,

V~3! 5 (
m51

`

(
l5m

`

bml
~3!Rml

~1!~c3, j!Sml~c3, h!cosmw. (28)

For the TE mode, the coefficients that describe the
incident radiation are equal to ~see Ref. 13!

aml
~0! 5

4il21

k1
Nml

22~c1!
Sml~c1, cos a!

sin a
, bml

~0! 5 0.

For the TM mode, the coefficients aml
~0! have the oppo-

site sign and the multiplicand =ε1ym1 @see Eqs. ~7!,
~8!, ~23!, and ~24!#.
Let us introduce the vector wave functions ~see Ref.

20!

Mml
a 5 = 3 ~cmla!, Nml

a 5
1
k

= 3 Mml
a,

where a is either the unit vector of the Cartesian
system or the radius vector, cml are the scalar wave
functions that represent the solutions to the scalar
Helmholtz equation in the corresponding curvilinear
coordinate system. As follows from Eqs. ~23!–~28!,
our approach is equivalent to the choice of the vector
spheroidal wave functionsMml

z,Nml
z ~i.e., a5 iz! and
20 September 1996 y Vol. 35, No. 27 y APPLIED OPTICS 5415



Mml
r, Nml

r ~i.e., a 5 r! as the basic functions. Note
that a 5 r for spheres and a 5 iz for infinitely long
cylinders.23
The representation of the radiation fields as de-

scribed by Eqs. ~23!–~28! is consistent with the for-

mulation of the problem given by Eqs. ~2!, ~3!, and ~6!.
The boundary conditions @Eqs. ~4! and ~5!# are used to
find the unknown coefficients. We insert Eqs. ~23!
into the boundary conditions. After mathematical
transformations we obtain ~see Ref. 13!
h@U~0! 1U~1!# 1
d
2

jV~1! 5 hU~2! 1
d
2

jV~2!

]

]j Hj@U~0! 1U~1!# 1 f̃
d
2

hV~1!J5
]

]j FjU~2! 1 f̃
d
2

hV~2!G
ε1Hj@U~0! 1U~1!# 1 f̃

d
2

hV~1!J5 ε2FjU~2! 1 f̃
d
2

hV~2!G
1
m1

]

]j Hh@U~0! 1U~1!# 1
d
2

jV~1!J5
1
m2

H ]

]j FhU~2! 1
d
2

jV~2!G
1 S12

c2
2

c1
2D 12 h2

j2 2 f̃
]

]h FjU~2! 1 f̃
d
2

hV~2!GJ
6

j5j1

,

(29)

hU~2! 1
d
2

jV~2! 5 hU~3! 1
d
2

jV~3!

]

]j FjU~2! 1 f̃
d
2

hV~2!G 5
]

]j FjU~3! 1 f̃
d
2

hV~3!G
ε2FjU~2! 1 f̃

d
2

hV~2!G 5 ε3FjU~3! 1 f̃
d
2

hV~3!G
1
m2

H ]

]j FhU~2! 1
d
2

jV~2!G1 S12
c2

2

c3
2D 12 h2

j2 2 f
]

]h FjU~2! 1 f̃
d
2

hV~2!GJ
5

1
m3

]

]j FhU~3! 1
d
2

jV~3!G
6

j5j2

.

(30)
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In the case of the TM mode, the analogous expres-
sions can be obtained from Eqs. ~29! and ~30! by the
replacements mi 3 εi and εi 3 mi. Let us assume
that mi 5 1 and ε1 5 1. Then for the TM mode
transformed Eqs. ~29! and ~30! can be written in the
following form:
U~0! 1 U~1! 5 U~2!

]

]j Hj@U~0! 1 U~1!# 1 f̃h
d
2
V~1!J 5

]

]j FjU~2! 1 f̃h
d
2
V~2!G

V~1! 5 V~2!

1
ε1

]

]j Hh@U~0! 1 U~1!# 1
d
2

jV~1!J 5
1
ε2
H ]

]j FhU~2! 1
d
2

jV~2!G
1 S12

c2
2

c1
2D 12 h2

j2 2 f̃
]

]h FjU~2! 1 f̃
d
2

hV~2!GJ 6
j5j1

,

(31)



U~2! 5 U~3!

]

]j FjU~2! 1 f̃j
d
2
V~2!G 5

]

]j FjU~3! 1 f̃j
d
2
V~3!G

V~2! 5 V~3!

1
ε2
H ]

]j FhU~2! 1
d
2

jV~2!G 1 S1 2
c2

2

c3
2D 1 2 h2

j2 2 f̃
]

]h FjU~2! 1 f̃
d
2

hV~2!GJ
5
1
ε3

]

]j FhU~3! 1
d
2

jV~3!G 6
j5j2

.

(32)
In addition to previous definitions @see Eqs. ~21!#, we
introduce the following new ones:

Zj 5 $zj,l
~m!%m

`, Yj 5 $yj,l
~m!%m

`,

Xj 5 $xj,l
~m!%m

`, Fm 5 $ fl
~m!%m

`,

z1,l
~m! 5 k1aml

~1!Rml
~3!~c1, j1!Nml~c1!,

z2,l
~m! 5 c1bml

~1!Rml
~3!~c1, j1!Nml~c1!,

y1,l
~m! 5 k1cml

~2!Rml
~3!~c2, j1!Nml~c2!,

y2,l
~m! 5 c1dml

~2!Rml
~3!~c2, j1!Nml~c2!,

x1,l
~m! 5 k1aml

~2!Rml
~1!~c2, j1!Nml~c2!,

x2,l
~m! 5 c1bml

~2!Rml
~1!~c2, j1!Nml~c2!,

fl
~m! 5 k1aml

~0!Rml
~1!~c1, j1!Nml~c1!

5 4il21Nml
21~c1!

Sml~c1, cos a!

sin a
Rml

~1!~c1, j1!,
G~ci, cj! 5 $gnl
~m!~ci, cj!%m

`,

K~ci, cj! 5 $knl
~m!~ci, cj!%m

`,

S~ci, cj! 5 $snl
~m!~ci, cj!%m

`. (33)

The expressions for the integrals on the angular
spheroidal functions gnl

~m!, knl
~m!, snl

~m! are given in
the Appendix.
Let us substitute Eqs. ~25!–~28! into Eqs. ~29!–~32!,

then multiply them by Nmn
21~c2!Smn~c2, h!cos mw

and integrate over h from 21 to 1 and over w from 0 to
2p. Using the orthogonality of functions cosmw, after
some mathematical transformations ~see Ref. 13!, we
obtain a series of systems of equations ~m 5 1, 2, . . .!:
~a! TE mode
Hj1@5̃3 2 51~c2, j1!# 1 j1Sε2
ε1

2 1D!3JX1 1 f̃FG@5̃3 2 51~c2, j1!# 1 Sε2
ε1

2 1D!3GGX2

1 Hj1@5̃3 2 53~c2, j1!# 1 j1Sε2
ε1

2 1D!3JY1 1 f̃HG@5̃3 2 53~c2, j1!# 1 Sε2
ε1

2 1D!3GJY2

5 j1D~c2, c1!@53~c1, j1! 2 51~c1, j1!#Fm,

HG@5̃3 2 51~c2, j1!# 1 j1Sε2
ε1

2 1D@3JX1 1 Hj1@5̃3 2 51~c2, j1!# 1 f̃Sε2
ε1

2 1D@3GJX2

1 HG@5̃3 2 53~c2, j1!# 1 j1Sε2
ε1

2 1D@3JY1 1 Hj1@5̃3 2 53~c2, j1!# 1 f̃Sε2
ε1

2 1D@3GJY2

5 G~c2, c1!@53~c1, j1! 2 51~c1, j1!#Fm,

Hj2@5̃1 2 51~c2, j2!# 1 j2Sε2
ε3

2 1D!1JP1X1 1 f̃HG@5̃1 2 51~c2, j2!#

1 Sε2
ε3

2 1D!1GJP1X2 1 Hj2@5̃1 2 53~c2, j2!# 1 j2Sε2
ε3

2 1D!1JP3Y1

1 f̃HG@5̃1 2 53~c2, j2!# 1 Sε2
ε3

2 1D!1GJP3Y2 5 0,

HG@5̃1 2 51~c2, j2!# 1 j2Sε2
ε3

2 1D@1JP1X1 1 Hj2@5̃1 2 51~c2, j2!#

1 f̃Sε2
ε3

2 1D@1GJP1X2 1 HG@5̃1 2 53~c2, j2!#

1 j2Sε2
ε3

2 1D@1JP3Y1 1 Hj2@5̃1 2 53~c2, j2!# 1 f̃Sε2
ε3

2 1D@1GJP3Y2 5 0,
(34)
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where

!1 5 @j2~I 1 j25̃1! 2 f̃G5̃1G#Q~c2, j2!,

!3 5 @j1~I 1 j15̃3! 2 f̃G5̃3G#Q~c2, j1!,

@1 5 @j2G5̃1 2 ~I 1 j25̃1!G#Q~c2, j2! 1
1

j2
2 2 f̃

K~c2, c2!,

@3 5 @j1G5̃3 2 ~I 1 j15̃3!G#Q~c2, j1! 1
1

j1
2 2 f̃

K~c2, c2!,

G 5 G~c2, c2!, Q~c, j! 5 @j2I 2 f̃G2~c, c!#21;
(35)

~b! TM mode
1
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j1@5̃3 2 51~c2, j1!#X1 1 f̃G@5̃3 2 51~c2, j1!#X2

1 j1@5̃3 2 53~c2, j1!#Y1 1 f̃G@5̃3 2 53~c2, j1!#Y2

5 j1D~c2, c1!@53~c1, j1! 2 51~c1, j1!#Fm,

HG@5̃3 2 51~c2, j1!# 1 Sε2
ε1

2 1DFG5̃3 1
j1

j1
2 2 f̃

K~c2, c2!GJX1

1 Hj1@5̃3 2 51~c2, j1!# 1 Sε2
ε1

2 1DFI 1 j15̃3 1
f̃

j1
2 2 f̃

S~c2, c2!GJX2

1 HG@5̃3 2 53~c2, j1!# 1 Sε2
ε1

2 1DFG5̃3 1
j1

j1
2 2 f̃

K~c2, c2!GJY1

1 Hj1@5̃3 2 53~c2, j1!# 1 Sε2
ε1

2 1DFI 1 j15̃3 1
f̃

j1
2 2 f̃

S~c2, c2!GJY2

5
«2

«1
G~c2, c1!@53~c1, j1! 2 51~c1, j1!#Fm,

j2@5̃1 2 51~c2, j2!#P1X1 1 f̃G@5̃1 2 51~c2, j2!#P1X2

1 j2@5̃1 2 53~c2, j2!#P3Y1 1 f̃G@5̃1 2 53~c2, j2!#P3Y2 5 0,

HG@5̃1 2 51~c2, j2!# 1 Sε2
ε3

2 1DFG5̃1 1
j2

j2
2 2 f̃

K~c2, c2!GJP1X1

1 Hj2@5̃1 2 51~c2, j2!# 1 Sε2
ε3

2 1DFI 1 j25̃1 1
f̃

j2
2 2 f̃

S~c2, c2!GJP1X2

1 HG@5̃1 2 53~c2, j2!# 1 Sε2
ε3

2 1DFG5̃1 1
j2

j2
2 2 f̃

K~c2, c2!GJP3Y1

Hj2@5̃1 2 53~c2, j2!# 1 Sε2
ε3

2 1DFI 1 j25̃1 1
f̃

j2
2 2 f̃

S~c2, c2!GJP3Y2 5 0. (36)
The coefficients for the field of the scattered radiation
can be found from the following expressions:
~a! TE mode

Z1 5 D~c1, c2!HFI 1 Sε2
ε1

2 1Dj1
2Q~c2, j1!G~X1 1 Y1!

1 f̃Sε2
ε1

2 1Dj1GQ~c2, j1!~X2 1 Y2!J 2 Fm,
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Z2 5 D~c1, c2!HFε2
ε1
I 1 Sε2

ε1
2 1Dj1

2Q~c2, j1!G~X2 1 Y2!

2 Sε2
ε1

2 1Dj1GQ~c2, j1!~X1 1 Y1!J ; (37)

~b! TM mode

Z1 5 D~c1, c2!~X1 1 Y1! 2 Fm, Z2 5 D~c1, c2!~X2 1 Y2!.

(38)

If we turn to the spherical particles @j1 . j2 3 `,
d3 0, and j1 z ~dy2! 5 r1, j2 z ~dy2! 5 r2 are the radii
of confocal spheres#, then the systems of equations
give the exact solution. Its difference from the stan-
dard Mie solution is in the choice of distinct scalar
potentials and the uncomfortable coordinate system
with the z axis not coinciding with the direction of the
propagation of the plane wave.
The proposed solution allows us to investigate an-

alytically the systems of the linear algebraic equa-
tions and the convergence of the expansions for the
internal and scattered radiation fields. The final-



conclusions for core–mantle spheroids coincide with
those for homogeneous spheroids ~see the discussion
in Ref. 11!. The main ideas can be briefly described
as follows.
Let us consider an arbitrary prolate or oblate

spheroid that does not degenerate into a needle ~j1 5
1 for the prolate spheroidal coordinate system! or a
disk ~j1 5 0 for the oblate system!. Using the as-
ymptotic expansions for spheroidal functions and in-
tegrals dnl

~m!, gnl
~m!, etc. in the case of large indices l

and n, the systems of linear algebraic equations @Eqs.
~20!, ~34!, and ~36!# can be transformed into the fol-
lowing form:

zn 5 b1zn11 1 b2zn21 1 (
i51

`

gnizi 1 fn, (39)

where n 5 1, 2, . . . , z0 5 0 and

ub1u 1 ub2u # p , 1, (
i51

`

ugniu # constyn, (
n51

`

u fnu2 , `.

These systems are quasi-regular, i.e., the sum of the
absolute values of coefficients on the right-hand side
of Eq. ~39! becomes smaller than unity beginning
from some number n . Ñ:

ub1u 1 ub2u 1 (
i51

`

ugniu # p̃ , 1.

The systems given by Eq. ~39! have a unique solution
in space l2 ~i.e., •n51

` uznu2 , `!, which can be deter-
mined by the reduction method ~this means that we
can solve the truncated systems!. The obtained field
of the scattered radiation @see Eqs. ~13! and ~26!#
belongs to the space L2~S!, where S is the surface of
a confocal spheroid larger than or equal to the given
one.
Asano24 and Barber25 indicated that the solution of

Asano and Yamomoto and the T-matrix method lead
to the numerical instability that occurs when one
solves the system of linear equations for the axisym-
metric part when c $ 17. For the T-matrix method
it has been shown that the use of extended precision
in the calculations permits enlargement of the limits
to some extent.26 In the approach described, such a
defect is absent because Eqs. ~20! can be rewritten as
Eq. ~39! but with the coefficients b1 5 b2 5 0.

5. Characteristics of Scattered Radiation

Let us assume that the incident radiation propagates
in the x–z plane of the Cartesian coordinate system,
the scattering plane contains the Oz axis ~the rota-
tional axis of a spheroid!, and the wave vector of
scattered radiation ~see Fig. 1!. The relation be-
tween the fields of the incident and scattered radia-
tion is determined by the amplitude matrix

SEi
~1!

E'
~1!D5

1
2ik1r

exp@i~k1r2 k1r!#ST22

T21

T12

T11
DSEi

~0!

E'
~0!D , (40)

where the subscripts of the dimensionless intensity
functions Tij are made in accordance with the rule:
the first ~or second! index denotes the polarization of
an incident ~or scattered! wave. If it is equal to 1 ~or
2!, the electric vector of the beam is perpendicular ~or
parallel! to the corresponding reference plane.
In the far zone @r 3 ` in the spherical coordinate

system ~r, q, w! or j3 `, h3 cos q, ih3 2iq in the
spheroidal system#, we obtain ~see Ref. 13!

T11 5 (
l51

`

i2lal
~1!S1l~c1, cos q! 2 (

m51

`

(
l5m

`

i2~l21!

3 @k1aml
~1!Sml~c1, cos q!

1 ibml
~1!S9ml~c1, cos q!#sin q cos mw, (41)

T12 5 (
m51

`

(
l5m

`

i2lbml
~1!
mSml~c1, cos q!

sin q
sinmw, (42)

T21 5 (
m51

`

(
l5m

`

i2lbml
~1!
mSml~c1, cos q!

sin q
sinmw, (43)

T22 5 2(
l51

`

i2lbl
~1!S1l~c1, cos q! 1 (

m51

`

(
l5m

`

i2~l21!

3 @k1aml
~1!Sml~c1, cos q!

1 ibml
~1!S9ml~c1, cos q!#sin q cos mw. (44)

Using the amplitude matrix, we can find the scatter-
ing matrix27 that allows us to combine the Stokes
parameters of incident radiation with the scattered
radiation, which gives complete information about
scattered radiation. Elements of the scattering ma-
trix are not the amplitude functions, but the products
of them, the so-called dimensionless intensity func-
tions of scattered radiation iij 5 uTiju

2.
If the incident radiation is nonpolarized, the inten-

sity of scattered radiation can be calculated according
to the formula i~q, w! 5 1

2 ~i11 1 i12 1 i21 1 i22!. The
integral characteristics of scattered radiation ~cross
sections of a particle for extinction Cext, scattering
Csca, and absorption Cabs! are determined as27

Cext 5
4p

k1
2 Re@A

~1!, i~0!#uQ50°, (45)

Csca 5
1
k1

2 *
4p

* uA~1!u2dV, (46)

Cabs 5 Cext 2 Csca, (47)

where A~1! is the amplitude of the electrical field for
scattered radiation, i~0! is the unit vector that defines
the polarization of incident radiation, dV is an ele-
ment of the solid angle, and Q is the scattering angle
~angle between the directions of the incident and
scattered waves!. The angle Q is connected with
angles a, q, and w by the relation cos Q 5 cos a cos q
1 sin a sin q cos w.
Equations ~41!–~47! can be used to compute various

cross sections that are usually normalized by the
viewing geometric cross section of a spheroid ~the
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area of the particle shadow!:

G~a! 5 pb1~a1
2 sin2 a

1 b1
2 cos2 a!1y2 for a prolate spheroid, (48)

G~a! 5 pa1~a1
2 cos2 a

1 b1
2 sin2 a!1y2 for an oblate spheroid, (49)

where a1 and b1 are the major and minor semiaxes of
a coated spheroid. Then the corresponding effi-
ciency factors Q 5 CyG can be written as follows:

Qext 5
4

c1
2@~j1

2 2 f̃ !~j1
2 2 f̃ cos2 a!#1y2

3 ReH2(
l51

`

i2lal
~1!S1l~c1, cos a!

1 (
m51

`

(
l5m

`

i2~l21!@k1aml
~1!Sml~c1, cos a!

1 ibml
~1!S9ml~c1, cos a!#sin aJ , (50)

Qsca 5
1

c1
2@~j1

2 2 f̃ !~j1
2 2 f̃ cos2 a!#1y2

3 H2(
l51

`

ual~1!u2N1l
2~c1! 1Re (

m51

`

(
l5m

`

(
n5m

`

in2l

3 $k1
2aml

~1!amn
~1! * vln

~m!~c1, c1!

1 ik1@bml
~1!amn

~1! * kln
~m!~c1, c1!

2 aml
~1!bmn

~1! *knl
~m!~c1, c1!#

1 bml
~1!bmn

~1! * tln
~m!~c1, c1!%Nml~c1!Nmn~c1!J , (51)

where vln
~m!, kln

~m!, and tln
~m! are the integrals of angular

spheroidal functions ~see the Appendix!, the asterisk
denotes the complex conjugation. Equations ~50!
and ~51! are valid for TE and TM polarization of
incident radiation but for the TM mode the coeffi-
cients al

~1! should be replaced by coefficients bl
~1!,

whereas the coefficients aml
~1! and bml

~1! can be deter-
mined from Eqs. ~36! and ~38!.
To compare the optical properties of particles of var-

ious shape, the cross sections can be normalized by
the geometric cross section of the equivolume sphere

C
prv1

2 5
~j1

2 2 f̃ cos2 a!1y2

@j1
4~j1

2 2 f̃ !#1y6 Q. (52)

Here, rv1 is the radius of the sphere with the volume
equal to that of a given spheroidal particle and, as
above, f̃ 5 1 for prolate spheroids and f̃ 5 21 for
oblate spheroids. The radius of the equivolume
sphere can be defined as

rv1,2
3 5 a1,2b1,2

2 for prolate spheroids, (53)

rv1,2
3 5 a1,2

2b1,2 for oblate spheroids (54)
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where a2 and b2 are the major and minor semiaxes of
the core.
The radial coordinates j2 and j1 that define the

inner and outer boundaries of a spheroidal particle
~surface of the core and mantle! are connected with
the corresponding semiaxes as

j1,2 5
a1,2
b1,2

FSa1,2b1,2
D2 2 1G21y2

for a prolate spheroid, (55)

j1,2 5 FSa1,2b1,2
D2 2 1G21y2

for an oblate spheroid. (56)

The efficiency factors can also be considered as a func-
tion of size parameter 2pa1yl given by

2pa1
l

5 c1j1 for a prolate spheroid, (57)

2pa1
l

5 c1~j1
2 1 1!1y2 for an oblate spheroid. (58)

In some cases it is useful to know the ratio of the
core-to-mantle volume or the core volume to the total
volume of a coated particle. For confocal spheroids,
one can determine the latter ratio using the semiaxes
ratios or parameters j1 and j2 as

Vcore

Vtotal
5

j2~j2
2 2 f̃ !

j1~j1
2 2 f̃ !

. (59)

Equation ~59! also allows us to calculate the values of
j1 or j2 when the ratio VcoreyVtotal is the input param-
eter. For a prolate spheroid, the iterative scheme
can be applied in the following manner:

~j1,2!
~n! 5 F~j1,2!

~n21! 1
Vtotal,core

Vcore,total
j2,1~j2,1

2 2 1!G1y3

, (60)

where n 5 1, 2 . . . and the initial value ~j1,2!
~0! 5 j2,1.

For an oblate spheroid, parameter j1,2 can be found
using Newton’s method

~j1,2!
~n! 5

2@~j1,2!
~n21!#3 1

Vtotal,core

Vcore,total
j2,1~j2,1

2 1 1!

3@~j1,2!
~n21!#2 1 1

, (61)

where n 5 1, 2 . . . and the initial value ~j1,2!
~0! 5 0.

The thickness of the mantle t is not constant across
the surface of a confocal coated spheroid. For a ray
with incident angle a, t is equal to

t 5 a1FSa1b1D
2

sin2 a 1 cos2 aG21y2

2 a2FSa2b2D
2

sin2 a 1 cos2 aG21y2

(62)



Table 1. Efficiency Factors for Extinction Qext and Scattering Qsca for Core–Mantle Spheres and Spheroids at a 5 0° a

N

Sphere
Prolate Spheroid Oblate Spheroid

a1yb1 5 2 a1yb1 5 10 a1yb1 5 2 a1yb1 5 10

Qsca Qext Qsca Qext Qsca Qext Qsca Qext Qsca

4 1.09 4.15 4.03 0.232 0.219 1.84 2.56 0.185 0.178
6 3.638 6.419 6.445 0.224 0.221 1.608 1.629 0.162 0.169
8 3.5801 6.4163 6.4156 0.2250 0.2252 1.6369 1.6365 0.1637 0.1636
10 3.57777 6.41811 6.41812 0.22445 0.22444 1.63663 1.63664 0.163724 0.163724
12 3.577749 6.418088 6.418088 0.224454 0.224454 1.636630 1.636630 0.163729 0.163728
14 3.577749 6.418089 6.418089 0.224454 0.224454 1.636630 1.636630 0.163729 0.163729

am̃core 5 1.5 1 0.0i, m̃mantle 5 1.3 1 0.0i, 2pa1yl 5 5, and VcoreyVtotal 5 0.5.
for a prolate spheroid and

t 5 a1FSa1b1D
2

cos2 a 1 sin2 aG21y2

2 a2FSa2b2D
2

cos2 a 1 sin2 aG21y2

(63)

for an oblate spheroid.

6. Computational Tests

The numerical code for coated spheroids is based on a
previous code for homogeneous particles ~see Ref. 13!.
The restrictions for large particles are mainly the
result of calculation difficulties with the spheroidal
functions. This problem is divided into two parts:
determination of the eigenvalues and a reasonable
choice of the method for spheroidal function expan-
sion. At present, an exact and effective method for
determination of eigenvalues has been developed. It
appears to have no restrictions and can be used to
calculate the eigenvalues with parameter c as high as
100. For calculation of spheroidal functions, we use
the expansions in terms of Legendre functions, Bessel
functions, or solutions of the corresponding differen-
tial equations, depending on the size and shape of a
particle. The computational programwas examined
using various tests, which included internal control
as well as a comparison with known results for ho-
mogeneous spheroids and core–mantle spheres.

~1! For nonabsorbing particles the efficiency factors
for extinction and scattering must be equal for the
same azimuthal indexm: Qext

~m! 5Qsca
~m!@Q5 •m Q~m!#.

Then by increasing the number of terms N in sums
over l and n @Eqs. ~50! and ~51!#, one should obtain the
decreasing difference between these two factors, i.e.,
uQext

~m! 2 Qsca
~m!u 3 0 if N 3 `. Table 1 shows the

behavior of efficiency factors in the case of radiation
propagating along the rotation axis of a spheroid
when the sums over m contain only one term for
m 5 1. Our calculations demonstrate that the con-
vergence for spheroids follows that for core–mantle
spheres. The efficiency factors for core–mantle
spheres have been calculated using the method
from Ref. 28. The convergence can be determined
by the particle size 2pa1yl and is independent of its
shape. The latter is explained by the successful
choice of scalar potentials. Note that Asano and
Yamomoto10 used Debye’s potentials that requires
one to increase considerably the number of terms N
for extremely prolate or oblate particles.

~2! The values of the efficiency factors for TM and
TE polarization are the same as for parallel radiation
incidence ~i.e., if a 5 0°!. This test is not trivial since
one can carry out the calculations using different ex-
pressions for each mode.

~3! When summing over the azimuthal index m in
Eqs. ~50! and ~51!, the convergence of efficiency fac-
tors should also occur. This is shown in Table 2 for
radiation that propagates perpendicular to the rota-
tion axis of a spheroid. It can be seen how the con-
vergence process depends on particle shape. In
reality, the number of terms M correlates with the
volume of a particle that is proportional to parame-
ters c1 and j1 ~i.e., the volume grows with a decrease
of the ratio a1yb1!. Note that, as follows from Eqs.
~53!–~58!, for the same values of c1 and a1yb1 the
volume of the oblate particle is a1yb1 times larger
than that of a prolate particle.

~4! A detailed comparison of the optical properties
of core–mantle and homogeneous spheroids has been
made using different transformations of a core–
mantle particle to a homogeneous particle: ~i! Vcorey
Vtotal 3 0, ~ii! VcoreyVtotal 3 1, ~iii! m̃core 5 m̃mantle,
~iv! m̃mantle 5 1.0 1 0.0i. In all cases we found that
the factors for core–mantle particles became closer to
those for spheroids consisting of the core or mantle
material only.

Table 2. Efficiency Factors for Scattering Qsca
TM for Core–Mantle

Spheroidsa

M

Prolate Spheroid Oblate Spheroid

a1yb1 5 2 a1yb1 5 10 a1yb1 5 2 a1yb1 5 10

1 1.702229 0.04962866 2.152832 0.2755930
2 1.808355 0.04962866 3.317797 0.3845179
3 1.808948 — 4.503349 0.4001552
4 1.808949 — 4.670039 0.4008675
5 1.808949 — 4.673185 0.4008813
6 — — 4.673225 0.4008815
7 — — 4.673225 0.4008815

am̃core 5 1.5 1 0.0i, m̃mantle 5 1.3 1 0.0i, c1 5 4, a 5 90°, and
VcoreyVtotal 5 0.5.
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~5! When particles are nearly spherical, the optical
properties of coated spheroids and core–mantle
spheres should be almost the same. We considered
various absorbing and dielectric particles. Some re-
sults for nonabsorbing particles are shown in Fig. 2
where we present the relative differences in percent:

e 5
Qsca~sphere! 2 Csca~spheroid!yprv

2

Qsca~sphere!
100%. (64)

The values of e are plotted as a function of the size
parameter xv 5 2prvyl for spheroidal particles with
an aspect ratio of a1yb1 5 1.0001 and a volume ratio
of VcoreyVtotal 5 0.5. Then the aspect ratio of the
core is constant and equal to a2yb2 ' 1.00016. The
wavelike behavior is typical only for dielectric parti-
cles. For highly absorbing particles, the values of e
demonstrate smooth, monotonous growth with xv.
In the interval of the aspect ratios a1yb1 from 1.0001
to 1.01, the percent difference is invariant to this ratio
and ueu , 5~a1yb1 2 1! if xv # 20–25. Note also that
the behavior of percent difference is independent of
the particle structure ~ratio VcoreyVtotal!. The differ-
ence between spheroidal and spherical particles oc-
curs because of small deviations between their
shapes. Because of the different path of radiation
inside prolate and oblate spheroids @see Eqs. ~62! and
~63!# at parallel incidence, we obtained the interfer-
ence picture in the opposite phase. When a 5 90°,
the picture remains the same, but the open circles
~oblate spheroids! and filled circles ~prolate sphe-
roids! exchange places.
All the calculations were performed on a PCyAT-

486y50 computer. Using the last version of the nu-
merical code29 ~January 1995!, the PC requires ;1.5
min of CPU time and ;1.4 Mbytes of memory to
compute the efficiency factors in Table 2 ~oblate sphe-
roids, a1yb1 5 2, m 5 1, . . . , 7, N 5 14!. If we also
calculate the factors for the TEmode ~N5 20!, the PC
needs ;4.5 min of CPU time and ;3.3 Mbytes of
memory. We also found that the computational
time increases proportional to N2 4 N2.5 and the
required memory increases to N2.

Fig. 2. Percent difference between coated spheres and coated
spheroids e defined by Eq. ~64!: m̃core 5 1.5 1 0.0i, m̃mantle 5
1.3 1 0.0i, VcoreyVtotal 5 0.5, a1yb1 5 1.0001, F, prolate spheroids,
E, oblate spheroids.
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7. Numerical Results and Discussion

In this section we present the results of numerical
calculations that illustrate the behavior of efficiency
factors. The most intriguing feature in the case of
core–mantle spheroids is the opportunity to study the
influence of the particle structure ~i.e., core size and
shape!, whereas the variations of particle shape and
inclination angle a affect the optical properties in the
same way as for homogeneous spheroids. However,
because of the confocal structure, we cannot consider
the particles with arbitrary core and mantle size and
shape. To describe a core–mantle spheroid geome-
try, three different parameters can be used ~for ex-
ample, c1, a1yb1, a2yb2 or 2pa1yl, a1yb1, Vcorey
Vmantle!. Other particle characteristics can be
calculated from Eqs. ~53!–~63!. The principal limi-
tation for confocal spheroids is that a2yb2 . a1yb1,
which means that we can consider particles with a
nonspherical core and an almost spherical mantle but
not vice versa. Nevertheless, the remaining space of
possible parameter values enlarges considerably the
well-studied models of core–mantle spheres and infi-
nitely long cylinders.
Below we discuss some results for prolate and ob-

late spheroids with a1yb1 5 2 and 10. If we fix the
values of VcoreyVmantle and a1yb1, then the shape of
the core remains the same for all particle sizes
2pa1yl. For VcoreyVmantle 5 0.5 and a1yb1 5 2 ~or
10!, the core aspect ratio is equal to a2yb2 5 2.58 ~or
14.09! and 3.07 ~or 19.78! for prolate and oblate sphe-
roids, respectively. We considered the particles
with the following refractive indices of the core and
mantle: m̃core 5 1.5 1 0.0i, 1.5 1 0.05i and m̃mantle
5 1.3 1 0.0i, 1.3 1 0.05i. The calculations were
performed with a resolution of 0.1–0.2 in size param-
eter.

A. Nonabsorbing Spheroids

Figures 3 and 4 illustrate the size dependence of the
efficiency factors for scattering Qsca for nonabsorbing
spheroids with a1yb1 5 2 and a 5 0°. Three values
of the volume ratio VcoreyVmantle 5 0, 0.5, and 1.0 are
considered in which two extreme cases represent the
homogeneous spheroids consisting of mantle and core

Fig. 3. Scattering efficiency factors Qsca at a 5 0° as a function of
size parameter 2pa1yl for the prolate coated spheroids ~solid
curves!: m̃core 5 1.5 1 0.0i, m̃mantle 5 1.3 1 0.0i, a1yb1 5 2. The
dashed curve represents the results for homogeneous spheroids
with m̃ 5 1.4 1 0.0i.



materials. The large-scale behavior of the curves in
Figs. 3 and 4 is a result of the interaction between
incident radiation and the radiation that passes
through the particle. Because of the interference,
one can obtain a series of maxima and minima usu-
ally with decreasing amplitude. For coated sphe-
roids, the qualitative explanation of such oscillations
remains similar to that for homogeneous spheroids
~see Ref. 24!. The large-scale phenomena are
roughly described by an anomalous diffraction ap-
proximation: the maxima height depends on the
particle shape and the refractive index whereas their
position can be determined by the phase shift of the
central ray equal to r 5 4pyl~lcoreum̃core 2 1u 1
lmantleum̃mantle 2 1u!, where 2lcore and 2lmantle are the
ray paths in the core and mantle, respectively. The
oscillation period can be obtained from the solution to
r 5 2p. A similar explanation is also valid at oblique
incidence as seen from Figs. 5 and 6. The small
deviations of the period from that predicted by anom-
alous diffraction can be explained by the edge phe-
nomena.
It was also found that the curves for oblate sphe-

roids at parallel incidence resemble those for prolate
particles at perpendicular incidence and vice versa
~Ref. 24!. A comparison of Figs. 3 and 5 and Figs. 4
and 6 gives evidence that this is typical for coated
spheroids as well. Note that the positions of first
maxima for prolate spheroids with a1yb1 $ 2 are

Fig. 5. Scattering efficiency factors Qsca at a 5 90° as a function
of size parameter 2pa1yl for the prolate coated spheroids ~solid
curves!: m̃core 5 1.5 1 0.0i, m̃mantle 5 1.3 1 0.0i, a1yb1 5 2. The
dashed curve represents the results for homogeneous spheroids
with m̃ 5 1.4 1 0.0i.

Fig. 4. Same as Fig. 3 but for oblate spheroids.
approximately the samewhenwe consider the factors
as a function of parameter xv.
For a core–mantle particle, it is possible to intro-

duce the effective refractive index m̃eff that can be
defined as a volume-averaged refractive index m̃eff 5
~m̃coreVcore 1 m̃mantleVmantle!yVtotal. Then we obtain
m̃eff 5 1.4 for the cases shown in Figs. 3–6. The
corresponding curves that were calculated for homo-
geneous spheroids are plotted in Figs. 3–6 by the
dashed curves, indicating a good correspondence of
scattering factors for effective and coated particles to
a first maximum.
The curves of the efficiency factors for oblate par-

ticles show the small-scale ripples superimposed on
the major oscillations. These ripplelike fluctuations
result from the resonances of virtual modes27 and are
much more obvious for oblate particles than for pro-
late particles.
From Fig. 7, where the efficiency factors for elon-

gated and flat particles are plotted, it can be seen that
the values of Qsca for prolate and oblate spheroids
differ strongly at parallel incidence. At perpendicu-
lar incidence, the behavior of the factors resembles
the results presented in Figs. 3–6. However, the
difference between prolate and oblate spheroids is
greater. If we consider the cross sections instead of
the efficiency factors, the values of Csca between a1yb1
5 2 and 10 differ by a smaller amount than those
shown in Figs. 3, 4, and 7. This can be explained by

Fig. 6. Same as Fig. 5 but for oblate spheroids.

Fig. 7. Scattering efficiency factors Qsca at a 5 0° as a function of
size parameter 2pa1yl for the coated spheroids ~solid curves!:
m̃core 5 1.5 1 0.0i, m̃mantle 5 1.3 1 0.0i, a1yb1 5 10. The dashed
curves represent the results for homogeneous spheroids with m̃ 5
1.41 0.0i. The factors for oblate spheroids were multiplied by 20.
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the large difference in geometric cross sections G~a!
@see Eqs. ~48! and ~49!#.

B. Absorbing Spheroids

Figures 8 and 9 demonstrate how the absorption in
core or ~and! mantle influences the optical proper-
ties of prolate and oblate spheroids at parallel in-
cidence. The general behavior of extinction factors
for spheroids is similar to that for coated spheres:
the damping of the interference and ripplelike
structure and the convergence of efficiency factors
to the limit of geometrical optics ~Qext 3 2, Qsca 3
1, Qabs3 1! can be seen when the absorption grows.
Note that the absorption in core or ~and! mantle
causes a decrease of the height of maxima but acts
weakly on their position because of the same phase
shift of the central ray. However, because of dif-
ferent mantle thicknesses @as follows from Eqs. ~62!
and ~63!, ~a1 2 a2!ya1 ' 0.05, and ~b1 2 b2!yb1 ' 0.4
for prolate and oblate spheroids, respectively#, the
presence of an absorbing core or mantle gives dis-
tinct results ~curves 2 and 3 in Figs. 8 and 9!.
It is interesting to note that, for 2pa1yl $ 16, the

prolate coated spheroid with a dielectric mantle

Fig. 8. Efficiency factors for a, extinction Qext; b, scattering Qsca;
and c, absorption Qabs at a 5 0° as a function of size parameter
2pa1yl for the prolate coated spheroids: a1yb1 5 2; 1, m̃core 5
1.5 1 0.05i, m̃mantle 5 1.3 1 0.05i; 2, m̃core 5 1.5 1 0.05i, m̃mantle

5 1.3 1 0.0i; 3, m̃core 5 1.5 1 0.0i, m̃mantle 5 1.3 1 0.05i; 4, m̃core

5 1.5 1 0.0i, m̃mantle 5 1.3 1 0.0i.
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~curve 2 in Fig. 8! absorbs approximately as much
radiation as that composed of the absorbing core and
absorbing mantle. This phenomenon is due to the
inhomogeneity of the particle: the nonabsorbing
mantle refracts the incident light, concentrates it on
the absorbing core, and, thus, the total absorption
efficiency increases.
In the case of the nonabsorbing core and absorbing

mantle, the latter screens the core that leads the
optical properties of particles closer to those of the
dielectric particles than to the highly absorbing ones
but with a damped ripplelike structure.
For the oblate coated particles considered, the

absorption in core and mantle produces similar ef-
fects in extinction, scattering, and absorption ~see
curves 2 and 3 in Fig. 9!. It is also seen that the
ripplelike structure is attributed mainly to the di-
electric mantle because it is generated by the reso-
nances of virtual modes damped in the absorbing
particles.27

Appendix

The expressions for integrals of products of normal-
ized angular spheroidal functions S̄ml~c, h! 5
Nml

21~c!Sml~c, h! and their first derivatives S̄9ml~c, h!
5 Nml

21~c!S9ml~c, h! can be represented as a series
containing the expansion coefficients dr

ml of prolate

Fig. 9. Same as Fig. 8 but for oblate spheroids.



angular spheroidal functions in terms of associated
Legendre functions ~Ref. 21!:

dnl
~m!~ci, cj! 5 *

21

1
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5 Nmn
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The prime over the summations indicates that the
even ~odd! terms only are summarized when the in-
dex ~n 2 m! is even ~odd!.
To check the calculations we can use the rule that

the simultaneous replacements of n by l and ci by cj in
integrals dnl, gnl, vnl, and tnl should not change them,
i.e., dnl

~m!~ci, cj! 5 dln
~m!~cj, ci!, etc. The relations be-

tween integrals also exist:

knl
~m!~ci, cj! 1 kln

~m!~cj, ci! 5 2gnl
~m!~ci, cj!,

snl
~m!~ci, cj! 1 sln

~m!~cj, ci! 5 2dnl
~m!~ci, cj! 2 vnl

~m!~ci, cj!.

The coefficients dr
mn reach their maximum values for

the index r5 n2m: dn2m
mn ' 1; for the indices r,

n 2 m or r . n 2 m the coefficients dr
mn drop rapidly.

Therefore, the integrals ~sums! considered converge
rapidly. For oblate spheroidal functions the replace-
ments dr

mn~c! 3 dr
mn~2ic! and Nmn~c! 3 Nmn~2ic!

should be made.
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