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Abstract. We present the new grid-based codeisRay which has been developed to solve the full 3D continuum radiative
transfer problem generally arising in the analysis of star-forming regions, matter around evolved stars, starburst galaxies, or
tori around active galactic nuclei. The program calculates the intensity emerging from these complicated structures using a
combination of step-size controlled ray-tracing and adaptive multi-wavelength photon transport grids. Along with a 2nd order
finite differencing approach, the grids are optimized to reduce the discretization error and provide global error control. The full
wavelength-dependent problem is solved without any flux approximation, and for arbitrary scattering properties of the dust. The
program is designed to provide spatially resolved images, visibilities, and spectra of complex dust distributions even without
any symmetry for wavelengths ranging from the UV to FIR and allows for multiple internal and external sources. In this paper,
the algorithm is described and the capabilities of the code are illustrated by the treatment of 1D and 3D test cases. Analyzing
the properties of typical cosmic dust, we discuss the wavelength range for which the time-consuming solution on adaptive grids
can be omitted. The temperature is calculated self-consistently using standard accalétatation.
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1. Introduction multi-dimensional RT mandatory. But even for symmetric dust

. . . distributions, asymmetric source distributions or boundary con-
Nearly all information about astrophysical sources comes frg

. . . . tltions like, e.g., a single star near the dust cloud boundary
analyzing the radiation we receive from the objects. Therefohea{ve to be treated with 3D RT. This will be even more neces-
radiative transport (thereafter RT) is one of the most fund '

: . . &; ry in the near future, as the oncoming interferometers such
mental processes considered in astrophysics whenever ra BULTI, Keck, and ALMA will reach resolutions revealing de-

tion is altered on its way from the source to the telescope. T, Sis at milli-arcsecond level, hence resolving complicated 3D

alteration can range from small perturbations like the reddesQFuctures like planetary gaps (Bryden et al. 1999; D'Angelo

ing of stellar light due to interstellar extinction or the changgt al. 2002), density waves (Pfalzner et al. 2000), interaction
of polarization due to the Faradayfect, to almost complete ’ '

. . fith Kley 2002 isk Bouvi
shielding at short wavelengths and thermal re-emission at sireamers (Grither & Kley 2002), and disk warps (Bouvier

frared and sub-millimeter wavelengths in the case of deepfgl al. 1999).

Y- o - .
embedded star-forming regions, envelopes, and evolved stars But it is not only for explaining complex observational

or tori around active galactic nuclei ata that flexible three-dimensional RT programs are required.
In view of the complex structure of the matter arounﬁD Smooth-_ParticIe Hydrpdyna_mical (SPH) and_ Magneto-

these objects revealing filamentary, disk- or ring-like distr_ydrodyn_amlcal (MHD) S|mul_at|ons are now avallablt_e ar_1d

butions, simple 1D approximations often fail to describe ﬂ%roduce time-dependent density and temperature distributions

observed images and spectral energy distributions, mak rngSt and ga_s in star-forming rggions, proto-planeta_ry d.iSkS’
9 P 9y and in dust tori around AGNSs. Without a 3D RT code, it is im-

Send gprint requests toJ. Steinacker, possible to predict at which wavelengths or by which telescope
e-mail:stein@astro.uni-jena.de these 3D features can be detected. Moreover, only with a 3D




406 J. Steinacker et al.: 3D continuum radiative transfer. |.

RT program can the validity of the approximate RT used in 3paper, we compare the results for a standard accretion disk in
SPHMHD simulations be verified. a 2D benchmark project with three other RT codes (Pascucci
In line RT, the existing codes often use coarse approximet-al. 2003). Further publications will deal with applications
tions for the spatial resolution and the scattering to be ablettocircumbinary disks, warped disks, gaps in disks, pre-stellar
handle the numerically intensive calculation of the level popueres, and dust tori around AGNs.
lation (e.g. Folini & Walder 1999; Uitenbroek 2001; and refer- In Sect. 2, the continuum RT equation is described and
ences therein). the solution strategy is outlined. The optical properties of typ-
For 3D continuum RT, dferent methods have been applieétal cosmic dust are briefly reviewed in Sect. 3 and limiting
to solve the complex transport equation, but only a few codesvelengths are derived to decide when time-consuming cal-
are available. The advantage Monte-Carlo methodsés the culations on the adaptive multi-wavelengths photon transport
easy treatment of complex density distributions, complicatgeds have to be performed. The solution of the transport equa-
scattering functions, and polarization. Monte-Carlo methotlen in the case of substantial scattering is described in Sect. 4.
require high numbers of photons to cover re-emission in &kction 5 describes the discretization of the temperature distri-
directions and to treat optically thick regions, which can Heution. The code is tested in Sect. 6 for simple 1D cases and a
reduced using elaborated concepts like immediate reradiatioomplex 3D application. We summarize our findings in Sect. 7.
The major drawback, however, is that there is no global error
control when using Monte-Carlo schemes. They have been ap- ) ,
plied for 3D configurations in the papers of Egan & Shipmafr 1h€ 3D continuum transport equation

(1995), Wolf et al. (1999), Wolf & Henning (1999) incorporatyye describe the radiation field by the total specific intensity

ing polarization, and Gordon et al. (2001), Misselt et al. (ZOO})A(/L x, n), wherex gives the location in space,is the direc-

considering also transient heating. _ _ tion of the radiation, and its wavelength. Starting with the
Integrating the RT equation along the considered line ghyndary values, we can calculate the transport of the radiation

sight by using aay-traceris a very flexible method for treat- through the considered domain by solving the stationary 3D RT
ing complex density configurations. It provides full error consquation

trol, but requires the implicit re-calculation of the step size
and becomes very time-consuming when the optical depthn®, 7(1,x,n) = — [Kabs(,l, X) + k%41, X) ]]’(,1’ X, N)
?lgh, so that approximations have to be_used. The first solu- + x5, X) BLL T(X)]
ion was published by Yorke (1986) solving the wavelength- s
dependent problem in flux-limited approximation and without +M fdgf p(L, n, ) I(A4x,n) (1)
self-consistent temperature iteration. An g

Well-established in hydrodynamical simulations, solutions
on fixed gridscan also be performed in RT using a finite difwith the Planck functiorB, the dust temperatur€, and the
ference or short characteristics discretization. However, rgdase functiorp. For simplicity, we will skip thed index of
olution of all relevant structures for all wavelengths is verthe intensity which indicates that it is defined per wavelength
hard to achieve for most astrophysical applications. Given thaterval. The extincting properties of enshrouding matter are
the intensity depends on wavelength, three spatial and t@@scribed by the line and continuum absorption and scattering
directional coordinates, a decent resolution of 100 points 6fithe radiation by dust grains and gas species
each variable already leads to solution vectors wittf t@m- abssc abssc abssc
ponents, which is not possible to store simultaneously evén %) = Kgas™ (4 X) + Kguey 1.%). )

in supercomputers nowadays. Together with the compllcaﬁc{his paper, we focus on the solution of (1) for continuum ra-

mFegrp-dﬁerenﬂaI type of the RT. equat|on.wh|ch _makes aFHiation, and consider the absorption and scattering by dust only,
plication of common sparse matrix solvers impossible, a sol

Sitting the subscript “dust” in the rest of the text for clarity.
tion of the 3D RT can only be achieved by using sophisticat g P y

daoti i d fast soluti laorith Two 3D " will restrict our consideration to the use of dust particles
adapfive grids and fast solution aigortms. wo con "\}Syﬁ one size and a specific chemical composition. Equation (1)

uum RT grid codes are available. Stenholm et al. {1991) solv also be used for a size or composition distribution of dust

the transport equation on a regular grid using 1st order fin Fains, but then each of thefitirent dust species will have its
differencing with low spatial resolution. Folini et al. (2003 Wi te'mperature

hzvilgivf:]og:goa Cl?a (ée Etl?];ol:]/eotg?_og(;lc,:\?ll_l1¥Eth|;:Ié_,as:aélct)r::]ry, The physical quantities describing th&&eiency to absorb
wav 9 upled, unpotariz — radiative rangs 4 scatter the incident radiation by an ensemble of dust grains
fer problem for moving media of a given density. :
. S . X . can be written as

This publication is the second in a series presenting the new
grid-based 3D RT codet&NRay which incorporates the use,absscy ) y) = abssey ) x) p(x), (3)
of multi-wavelength adaptive photon transport grids to provide
global error control of the solution. The underlying grid genewhere p(x) is the gas density ankP’s¢q4, x) are the mass
ation mechanism was described in Steinacker et al. (2002b)absorption and scattering d@ieients of the dust ensemble,
this paper, the full discretization and solution strategy is giveaspectively.
including the self-consistent temperature iteration, as well as Two source terms of radiation are explicitely given in
simple test cases to show the capabilities of the code. In anotigr (1), namely scattering into the line of sight and re-radiation
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by the dust particles. The scattering into the directids de- with the known contributions

scribed by the probabilitp(4, n, ') that radiation is scattered K5, X)

from the directiom’ into n, with the solid angl&€’. The second C*(4,X, n) = S fdQ' p(a, n,n’) 1"(4, x, n") (10)
source is the re-radiation of the dust partiot&¥B. Q

Intensity and dust temperature are not independent. The ra- o0 1
diation field determines the temperature and in turn, the dgst(x) = fd/l QY1) — fdgf 1*(1, X, i) (11)
re-emission contributes to the radiation field. This couples the an o

partial integro—dferential RT equation to the local energy bal-

ance equation describing how a dust particle is heated by @nsl the abbreviatior®™! = xS+ x5¢4 C*(4, x, n) represents
source radiation and the radiation of all other particles. Tiiee source and thermal radiation that is scattered at the point
balance equation for the energy density in local thermal eqinto the directiom. The source and thermal contribution to the
librium at pointx is heating is described by*(x).

As intended by the split (5), the first transfer Eq. (7) can
be transformed to a path integral and thus easily be calculated
using the formal exponential solution. For an empirical optical
data set, the numerical solution is conveniently derived for all

xfdg/ (4, %, n). (4) Wavel_engths e.g. using fifth-order Runge—Kuttg with gdaptivg
stepsize control (Press et al. 1992) as ray-tracing routine. This
o provides error control for the solution, and can be used for all
The temperature is denoted By.q to distinguish it from optical depths from thin to thick regions. Moreover, it allows to
temperatures arising from other possible heating sources likgat multiple external and internal sources of radiation.
viscous heating, cosmic rays, or gas-grain collisions. The second Eq. (8) still has an integrdkdiential form

A simultaneous treatment of the 3D RT and hydrodynargnd requires a separate, more sophisticated treatment. The third

ical (HD) equations in one code is currently beyond the capaq. (9) allows to update the temperature from an intensity that

bilities of nowadays computers. HD simulations commonly u$fys been calculated assuming a fixed temperature using a stan-
an approximate RT to calculate radiative heating, while in turgard accelerated-iteration (Ng 1974).

RT codes can use the derived densities and the heating sources

to calculate the radiation field at a given time or in a stationa:r;y o i )

picture. . Limiting wavelength for the consideration

In view of the substantial computationafert to solve the  ©Of scattering
3D transport equation, it is mandatory to use any approxXimg-order to decide where the scattering integral becomes neg-
tion that is allowed by the physical conditions. With vamshlnggime and when the solution of the RT equatibhcan be
scattering integral, (1) becomes a 1st ordéfedential equation cqicylated by solving (7) easily, the optical properties of the
which can be solved without problems using ray-tracing. ;s grains have to be investigated. For the sake of comparison,
make use of this approximation, and since the operators in ig concentrate on homogeneous spherical particles of a uni-
integro-diferential Eq. (1) are linear if, we can (following  form sjze (radius = 0.1 xm) consisting of amorphous carbon
eg. !Efstatr_nog & Rowan-Robinson 199(_)) split the total SP€preibisch et al. 1993; Rouleau & Martin 1991) or astro-silicate
cific intensity into an unprocessed passing source compongsiiaine & L ee 1984 Draine 1985). Their optical properties are

I* that includes also the therma! cpntribution from the dugtyculated by the Mie theory for spheres (Mie 1908) using the
and a processed componémtf radiation that has encounteredy,qgified code of Barber & Hill (1990).

[ are B Tk = [d1Qttn o
0 0

scattering More complicated dust models like mixtures of (in)homo-
T=1"+1. (5) 9eneous spherical particles of various sizes and compositions
o can be treated by the code withouffatiulty, but at expense of
Substituting the source term to be longer computational time.
1 , , , To illustrate the typical behavior of the optical properties,
SA.x.n = -« 1.3 fdg p(4, n, ') 1(2, x, ') we show in Fig. 1 the ratio of the scattering and absorption ef-
Q ficiency factors of dust particles consisting of amorphous car-
+C*(, %, n), (6) bon for diferent sizes as a function of wavelength. The ratio

roughly remains around 1 for wavelengths smaller than the par-
ticle size and drops for larger wavelengths following.&28-
NV (A, X, n) = =2, X)17 (4, X, ) + €2, X)B[A, T(X)] (7)  powerlaw. In order to give a conservative criterion for neglect-

this leads to three equations

NVl (4, X, n) = =1, X) 1(4, X, n) + S(A, X, n). (8) ing scattering, we define the limiting wavelengthto be the

o0 o wavelength where the ratio has dropped to?10For larger
fd/l Q1) BLL T(X)] = fd/l QabS(/l)i wavelengths, we can omit solving (8) and directly derive the
J J 4n total intensity from (7). In Fig. 2, the limiting wavelength is

plotted against particle siza for amorphous carbon (dotted
x fdQ’ 1(A, X, ') + D*(X) (9) line) and astro-silicate (solid line). Roughly following ah'>-
e powerlaw, the line indicates that for optical wavelengths, all
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Fig. 1. Ratio of scattering and absorptioffieency factor as function of the wavelength. Th&eatient curves correspond toffdirent particle
sizesa. Two solid lines at the values 2 ar@ limit the regions where scattering and absorption is considered to dominate, respectively.

Importance of Scattering
1000.0 e e :

No Scattering
100.0 ¢
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Log,, (A5 /um)
o
o

of the incoming radiation to be scattered from the directibn
into n also has to be specified. This is important, as for
isotropic scattering, whep(4,n,n’) = 1, (1) can be simpli-
fied. Integrating over the solid angle, the scattering integral
disappears and the equation becomes an ordindigreintial
equation

T T %) = %, X) [B(A,X) - T (4, X)] (12)
for the total mean intensity
1.0F 3
E Seattering J(A,x) = 4i f dQ’ 7(a,x, 1) (13)
L T
0.1 L Q
0.01 o1 om] 1.00 1090 \which is easy to solve. We show in Fig. 3 the phase function

in polar coordinates for homogenous silicate spheres of size

Fig. 2. Limiting wavelength for which scattering can be neglectedy = 1 um for different wavelengths. Radiation that is traveling
plotted as a function of particle sizefor amorphous carbon (dot- parallel to thex-axis will be scattered by the dust particle at
ted) and astro-silicate (solid). In the parts above the lines, absorptmré origin with a probability into a direction described by

is more than a factor of 100 stronger than scattering.

Commonly, also the size parametere 2ra/A is used which
we give in the picture, as well as the complex refractive index
m, of the silicate. Evidently, in the optical wavelength range,

particles of astrophysical relevance larger thallim scatter forward scattering dominates, making the direct use of any ap-
the radiation. In the near IR, particles wah> 0.1 um require proximation like isotropic scattering impossible. But even for

scattering calculations. But even at higher wavelengths aroyrd limiting case of Rayleigh scatteriné%@ Im < 1), for

100 um, particles larger than 2m will scatter the radiation which the phase function is most symmetric, the ratio of the

substantially.

probability of the radiation to be scattered in forward and in

Depending on a given particle sizeand wavelengtht, perpendicular direction still equals 2, as can be seen in Fig. 4
the program switches from direct solution of the scatterindash-dotted line). Here, we have also plotted the phase func-

Egs. (7)—(9) for1 < As to the easier ray-tracing solution of (7)tion for a smaller particlea =

for A > As with the limiting wavelengthls = 100a12,
If scattering is important, beside the scattering cross sec- Anisotropic scattering can become very important. If the
tion, the phase functiop(1, n, n’) describing the probability dust grains are, e.g., of sizeutn, in the optically thin case,

0.12 um for different wave-
lengths.
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—— Phase function (polar coordinates) If more than one dust size is considered, the phase func-

tion may difer substantially between thefidirent sizes. For
efficient mixing of the dust grains (assuming the same density
distribution for all sizes), a mean scattering function may be
defined to handle the transport of the scattered part of the radi-
ation approximatively.

Homogeneous silicate sphere,
a=1.0 pum, m,=1.67+0.03*1

— x=15.8, A=0.40 um
x=8.7, A=0.72 um
_ _ x=6.3, A=1.00 um

L AL B

[es]
\
S,

4. Discretization and solution strategy of the RT
equation with scattering

In the following, we describe how the integrod@irential
Eq. (8) is discretized and solved in the program. For the direc-
. tion coordinate®, we choose spherical coordinates, while
270 R . . . . .
o s " - Cartesian coordinates y, z are best suited for spatial coordi-
P (0) nates in 3D RT problems with complex density distributions.
flence, (8) turns into

|
N
L I B L

IS
=]

Fig. 3. Scattering phase function in polar coordinates for homogeno
spherical silicate particle of size= 1 um for different wavelengths.
m, denotes the mean complex refractive index for all three plottegh 9 cosy . % y.2 9, ¢) + sind sing (4, %y.29,¢)
wavelengths and = 2ra/ 1 is the size parameter. In the optical wave- ox oy

length range, the scattering is strongly peaked in the forward direction. oA, X y,29,
gth rang g glyp +Cosﬁ% P D) (L Xy 2.5.0)
Phase function (polar coordinates) +S(/l’ XY, 2 ¥, 90) (14)
0.20: “““““““ o T ‘\‘ “““““ prT T ]
oo acodtlm  opogeneous slhcale sphere. ] It is likely that close to the source, the radiation field will be
[ X2 106, 22078 pm ] peaked in a certain direction. To minimize discretization er-

x=0.75, A=1.00| um

010 rors, the direction grid should be refined around thisBut

as this refinement strongly varies with the location, a coupled
location and direction grid would have to be used, which is nu-
merically prohibitive. Hence, we choose a direction grid that
is equally spaced on the unit sphere with as many grid points
as can be fforded numerically. Steinacker et al. (1996) have
calculated equally spaced nodes for the cubature of the unit

T T T T T T TT
\

H
=
<.

P (6)

-0.10

Rayleigh scatioring, x+lm,|<<i ] sphere and corresponding weights derived by evaluating spe-
om0 ‘ 270" - Jsotropic scattering ‘ 1 cial Gegenbauer polynomials. The grid points have been ob-
0.1 0.0 U 03 04 tained using a special Metropolis algorithm to maximize the

distance between the nodes. We denote the number of nodes
Fig. 4. Scattering phase function in polar coordinates for homogenowgth Ns,, and typical numbers we use range between 49 and
spherical silicate particle of size = 0.12 um for different wave- 400 for a dust partic|e size OfDme In view of the Strongly
lengths.m; denotes the mean complex refractive index for all threﬁeaked phase function for larger dust particles, higher numbers
plotted wavelengths anxl= 2ra/A is the size parameter. In the Opti'might be necessary to resolve the peak appropriately. For the
cal wavelength range, the scattering is peaked in the forward directign

i ; ; _ 0 f
but approaches the Rayleigh scattering limit where the ratio betwewavelength’ we introduce a logarithmic gbld = A" x ()

[ . . f
forward and perpendicular scattered intensities becomes 2, for IonQeQr/l | 'S, an mdex, while §2) deno.tesM to the pQV\{er off) .
wavelengths. with N, grid points, and use trapezoidal logarithmic integration

in all occurring integrals.

For the spatial discretization, we use the adaptive opti-
there will be just a few scattering events before the radimized multi-wavelength photon transport grids presented in
tion escapes the object, and the scattered radiation is strorgfiginacker et al. (2002b). These grids are obtained with a re-
peaked in the forward direction. Assuming isotropic scatterinfijnement grid generator to minimize the 1st order discretiza-
the scattered radiation will be more homogeneous and substi#n error and guarantee global error control for the solution of
tially different from the anisotropic case. We just mention e radiative transfer problem on the grid. For each wavelength
one prominent example the atmosphere of an accretion dggid point, a spatial grid is calculated, so that the numbjgr
where the matter has low density and just a few scatterinfgrid points per grid depends on the wavelength. The three
events occur before the radiation escapes the object. In parfiertesian coordinates axé y;, z; respectively, used at wave-
ular, interpreting images obtained for edge-on accretion didksigth grid pointf wheres= 1, ..., ng. The numbering of the
at short wavelengths is impossible without using the corregtid points bys is caused by the refinement procedure which
anisotropic phase function. In the program, we always use tpenerates the adaptive grids. They will be renumbered with re-
correct anisotropic phase function. spect to the boundary conditions and the considered direction.
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The intensity is therefore discretized by a solution vectqs' = (Arf )2 (20)
. t . -1
with Ny, 3 Ns,components, reaching values arounfifod ¢t
f=LN, r = 2Ar JAr, (21)
typical astrophysical applications. Each vector component of ; (12
the intensity can be written as Dr = - [Ar—l + Ar_z] (22)

(rf)2 Arf, - (ril)2 [Arfl + Ariz] + (rfz)2 At (23)

f
129 =1 (2" xbyl. 2. 99.¢7). 1s) &

The derivativenVyl (1, x, ) in (8) has to be calculated on theVith I € [X.4. 2. _ o
spatial grid in order to treat the transport of scattered radia- NSerting (16)—(23) into the radiative transfer Eq. (14), we
tion properly. Steinacker et al. (2002a) have shown that 1st 8RN
der finite diferencing schemes introduce numericafudiion sind, cosp, 1 ¢\ 14
into the solution of the RT equation, completely blurring theT [(Cx + AX) loo.0
features of the solution. We choose 2nd order finiteedénc- sir:ﬂ sin
ing to approximate the derivative, as 3rd order finitéedenc- +97%
ing schemes have been shown in that paper to be too time- EJ
consuming for 3D RT. cosi

The notation for a use of a 2nd order finitefdiencing +—r[(Cz + Az) 1580+ Dzlgg s + Balgg | =
scheme on an adaptively refined grid is shown in Fig. 5a. To to to
calculate the unknown intensity at a given podng (x?, &, z0) ~ k0001000 + So00° (24)

in the_gnd,.we use the known |ntenS|t|es at. the two precexl'ihe known factors can be abbreviated as
ing grid points along the Cartesian axes, with respect to the

fifg fifg
+ Dyl o0+ Bx|_2,oyo]

f o oAf\ fg fifg ffg
[(Cy + Ay) looo + Dyl 10+ ByloZo0

Z

considered ray propagation direction (we indicated this dil’e&:f,g _ sind, cosy, (25)

tion in the small coordinate system in the lower right corner of*  — Ef(

Fig. 5b). In this notation, e.g. the point precediglong the . sind, sing,

x-axis has the-coordinatex_;. The set of seven points defines3,’ = ———— (26)

a stencil that is moved through the grid in the course of solving E,

the transport equation for the scattered radiation. As shown izng _ cost 27)
= —,

Fig. 5a, this may lead to situations where for a pdinthere Y E,
is no second preceding grid point. In that case, 8-point inter-
polations are performed for the preceding cube to obtain taed solving the equation system with respedgﬁ% yields
intensity atC.
In 2nd order approximation, the derivatives with respect tq , U&’g,o

the point Q(é,yé, zé) and suppressing theindex read as 000 = % (28)
-
. .
8)15'30Axf2[2AXf1+AXf2]—| ffo o[AXf2+AXf1]2+I féqo o(AXfJ)Z V&’gyo ) KS?S%: a;f(g (Cf ' A)f() +B;’g (CJ ' A;)
- _2 f_ f_2 _va _f ; f 2_Hf - e (CZ+AZ) (29)
(xH?ax', — (xI))"[axT, + axty |+ (xf,) ax!, ULy = S50 —al? (DI 450+ Bl Z00)
" ae S CHLE AR
ayl, —y:?(Dilog_s + Bilgs o) (30)

I é”g’oAyfz[ZAyfﬁAyfz]—I&’fl,o[Ayi2+Ayil]2+Iéfz,o(Ayf])Z With (28), we can calculate the intensity of the scattered light
2 VTR f N2 at any grid point when the intensities at the previous two grid

W) Ay, - (y—l) [Ay_z + A.’/_l] + (-’/—2) Ay_y points along the three Cartesian axis are known. The density at

(17) the points of the adaptive grid is contained t;é andSé’go.

The boundary values are defined orsladow gridthat
is not part of the adaptive photon grid. The boundary inten-
. . F1 g f F12  fg £12 sities are determined by the interstellar radiation field and
Az 207l +AZ =108 Az + a7 [ 18 A7) nearby sources. As we use a 2nd ordefedéncing scheme,

(Zf)z AZiz _ (Zil)z [AZiz + AZil] " (Zi2)2 AZil * the shadO\_N grid will be_ 2 cglls d_eep. F_igure 5b shows s_uch_ a
shadow grid for a ray direction with positive components indi-

(18)  cated by the arrow in the bottom right corner. The cell size of

with 159 = |f,g(xjf’y|z’z|f)_ To abbreviate, we define thethe shadow grid will not influence the solution and is chosen to

conste{ﬁ’tls - be 1/10 of the computational domain.

ﬂ
0z

~

zf

| f.g
0,0,0

5 Since intensities of radiation propagating in all directions
Arf = (Ariz) (19) are calculated, the stencil will also be moved through the grid
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z

Fig. 5. Panela) Sketch of a refined grid and the location of the seven point 2nd order fiffitgaticing stencil centered at point A. In the upper
part, the points are labeled according to their numbering with respect to point A alorgsttendz-direction, respectively. Point B marks the
center of a stencil moved downward with respect to A, with the point C indicating a stencil point which is not located on the griol) Panel
Refined grid and two cell deep shadow grid for a direction that is indicated in the small coordinate system at the bottom.

in other directions than the one following the orientation of th@n this grid, we determine a start temperature by illuminating
axis. Equation (28) is also valid also for the down-winding cagach cell by the sources and then each cell by each cell. With
(one of the components of direction vectois negative) if you this temperaturdy, the unprocessed intensity is calculated
re-order the grid points with respect to the direction vector by solving (7). If scattering is important, al$ds determined
as can be shown by considerirfg< rfl < rfz withre[x,y,Z. by solving (8). In the latter case, we start with the scattered
A major numerical concern in 3D calculations is to redudgtensity from the formerly treated wavelength and calculate
the amount of calculations within the innermost loop of the Rthe source term (6). Then, the intensity is updated solving (8)
solver as much as possible. In this loop, (7) and (8) are solwih this source term and this-iteration is continued until
by A-iteration. We therefore pre-calculate the positions of dfte intensity change drops below a given vajuggypically we
stencils for all directions. There are eighffdient direction choosey = 1072). We use the standard technique proposed in
types to be considered ranging from all three Cartesian comtg (1974) to accelerate convergence by using former solutions.
nents ofn being positive to all being negative. Beside that, the Whenlt has been calculated, we update the temperature
standard refinement used in generating the grids guaranteesuiitg (9), and continue this outariteration until the tempera-
we can switch from a floating point storage of the grid pointsre has converged to the self-consistent value. During the iter-
to integer values as multiples of the smallest occurring grid celions, we check the global energy to be conserved (and equal
size. This reduces storage space of the grids and increasegatibe start source energy).
speed of the solution substantially.
Note that the solution scheme (28) has been derived for o o
a Cartesian grid, but equivalent schemes could be derived fofPiSCretization of the temperature distribution

other coordinate systems. Itis possible to derive a priori guesses as to where the radiation
The overall solution strategy can be summarized as followgansport needs fine spatial grids to resolve the physics cor-
we specify a density distribution of the dust, its size distribyectly and hence to deduce the emerging radiation. Knowing
tion, absorption and scattering properties, as well as the scatiRé density distribution and the optical properties of the dust
ing phase function. We define the location and the spectrumfrticles, the optical depth throughout a grid cell can be used
the radiation sources, and the boundary conditions. We spegiderive a wavelength-dependent first order finitetencing
the limiting wavelength for which we can neglect scattering. criterion for the grid generation (see Steinacker et al. 2002b).
To start the computation, we analyze the density disttih most cases, this leads to a refinement in the region around
bution and determine minima, maxima and strong gradients.= 1. For the temperature, this is hardly possible, as the
Using the concept of penetration depths (see Steinacker etetinperature couples to all wavelengths via (9) and hence, a
2002b), we construct adaptive photon transport grids for eadkar definition of ther = 1 layer is not evident. In regions
wavelength. For the temperature, we create another grid ddrere the radiation field is dominated by the source contri-
pending on the symmetry of the density and source distributidsution, the temperatures are expected to be high with high
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Fig. 6. Examples of temperature grids used hyiSRay. Depending on the density distribution, equidistant Cartes)agspherical grids with
logarithmic radial pointd), strongly overlapping nested Cartesian giijiscylindrical grids with logarithmic height gridind), and adaptive
grids with standard refinemeaj are used. The number of grid points has been reduced to keep the figure readable.

gradients. Considering e.g. an accretion disk, strong tempegéding (d), and adaptive grids with standard refinement (e) for
ture gradients at the inner boundary and in the disk atmospheases where the same grid for radiation and temperature can be
are related to strong density gradients. For shielded regions,used as the gradients within the object are smooth.

diation is dominated by re-emitted long-wavelength dust emis-

sion and the temperature gradients should be small. The outer temperature iteration requires to start with a

given initial temperature distributiog(x) and then to im-

Therefore, adaptively refining grids similar to the densitgrove this distribution using (9) to obtain the correct temper-
grids obtained in Steinacker et al. (2002b) could be used peduresT(x). As this outer iteration requires to run the entire
viding a global error control also for the temperature. Howevesplution process several times, it is essential to have quick con-
the use of two dterent adaptive grids is very time-consumingiergence and a good initial guess. In the Appendix, we derive
It has to be kept in mind that both the ray-tracing solver and taescheme to calculate the initial temperature distribufigfor
scattering-integral solver on the photon grids need the tempeegiven density distribution and optical dust propertigsis
ature at arbitrary points within the computational domain, amdbtained neglecting scattering but considering both stellar-cell
this very often. An 8-point interpolation is an acceptable e&nd cell-cell illumination. For deeply embedded sources, the
fort, but with an adaptive grid, a tree-code search algorithmtreinsformation of short-wavelength photons to infrared radia-
needed to find the corresponding grid cell, which is too much toén takes place in a thin dust layer, and as it matters little for
an dfort especially for the scattering integral solver. In view ahe overall temperature if the radiation is scattered there a few
the expected smooth behavior (compared to the radiation fiefid)es, T — To will be small and convergence fast. If one deals
of the temperature, simpler grids are usediandRay with the with a configuration that has an extended atmosphere, namely
drawback of having no a-priori error control for the tempera region that can be seen from outside with an optical depth
ture. Some of them are plotted in Fig. 6, namely an equidistthe order of 1 for wavelengths where scattering is important
tant Cartesian grid (a), a spherical grid with radial points bflike e.g. an accretion disk,p and T will di ffer substantially
ing logarithmically equidistant (b), strongly overlapping nested visible regions and thus the images calculated from them
Cartesian grids (c), cylindrical grids with logarithmic heightvill deviate too. As we have pointed out in Sect. 3, forward
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scattering dominates the scattering processes at wavelengths of ID: illuminated cloud slab
strong scattering. An improvel, can be calculated using this;  1-2F ~ =~~~ 7 T T T T T T T T T
effect: in the source illumination of each cell, only the absorpi e 1
tion instead of the complete extinction is considered, arguing '
that the radiation is not nearly lost but scattered forward in first

approximation. 3

o 0.6
6. Applications

ror (Ip—

Testing RT codes is flicult as even in simple 1D cases, forc 0-4
realistic density distributions, the RT equation already get$
too complicated to be solved analytically. Benchmark studies 0-2
based on well-defined RT problems can aid here to compaEe 0.0
the results of dtferent codes. It may be pointed out here explic-
itly, though, that there may be situations where the majority of
codes fails, e.g. due to resolution problems of standard algo-
rithms. Only by incorporating error control is it possible to inFig. 7. Relative error of the intensity in a homogenous illuminated
fer reliability of the technique. Hence, error control ire&Ray  cloud slab without continuum re-emission of the dust. The straight
will be one of the issues we will discuss in the following. line shows the error when using a constant stepsize tracer, the noisy
For 1D continuum RT, a benchmark was published Hipe gives the error of a 5th-order Runge Kutta-solver.
Ivezic et al. (1997). They compared results of three codes with

similar algorithms for an application in spherical geometry. . ] ) ] .
For 2D continuum RT, Pascucci et al. (2003) have defined calculated intensitigr with the analytical solutior, we

benchmark based on simulations of a standard accretion i@k analyze the behavior of the used ray-tracer. In Fig. 7, we
around a solar-type star. The project involved four separat&fOW the relative erray = (Igr — Iin)/Irr in units of 10° as
developed codes, two based on the Monte-Carlo technique &l¢nction ofx for a tracing with constant steps (straight line)
two based on grids, each with venyfigirent implementation. a_nd with a 5th—(.)rde.r Runge Kutta a}lgorlthm and adaptive step
SremRay has been tested in this collaboration in good over&iZ€ control (noisy line). Both solutions have errors below the
agreement with the other three codes. given limit ¢ = 1073. However, the adaptive step size solver
There is no benchmark project for 3D continuum radiatiyill automatically use the lowest number of points possible,
transfer yet. Hence, we present first results of the code twijld works for any density distribution.
folded: we show simple test cases where the solution is either
exactly or approximately known, and & more complex 3D Scg-p. simple 1D test case: Spherically symmetric
nario to show the capabilities. For applications to circumbinary geometry
disks, warped disks, disks with planets, and AGN dust tori, as
well for a 3D benchmark test including images, we refer to the spherical geometry, the intensity will spatially depend on the
later papers of this series. radius only, and we can use the scaling argument by Ivezic et al.
(1995) to reduce the amount of free parameters in the 1D RT
problem by normalizing the occurring parameters. We use the
benchmark provided by lvezic et al. (1997) to test the code in
spherical geometry. From their models, we choose the scaled
In order to compare with an analytical solution, we stafxample of a central source with = 2500 K, a temperature
with the most simple case possible, namely radiation passitighe inner boundary of; = 800 K, an outer radius normal-
through a homogeneous dust medium with a constant densa§d to the inner boundary of = 1000, density power law
and no dust emission radiation. We follow the radiation up #6dex p = 0 (constant density), and optical depth at the ref-
a distance of 1000 AU from the source that is emitting radigrence wavelengthy = 1 um to ber; = 10. For the sake of
tion just along thex-axis. For this so-called slab geometry, w€omparison, we also use isotropic scattering.

L 1 L L A 1 L L A 1 L L L 1 L L L
200 400 600 800 1000
x [AU]

6.1. Simple 1D test cases: Slab and spherically
symmetric geometry

assume a constant dust number density of 4, spherical sili- We show the adaptive photon transport grid for the scat-
cate dust particles of sizel® um, and a wavelength of 3@m tered radiation at a wavelength #f= 0.165um in Fig. 8. As
so that scattering can be neglected. The optical depth the penetration depth in this casedis- 473 AU, the grid gen-

erator has just refined the grid within a sphere of this radius to

X
3 , , keep the optical depth across one grid cell below the given er-
(4% = f dXk(4, X) (31) ror limit of e = 1072. The smallest cells are not plotted to keep
0 the figure readable.
along a ray (assumed to be parallel to #axis) simplifies in The upper panel of Fig. 9 shows the temperature we

this case tar(4, X) = k(2)x. The solution of the continuum RT obtained (solid line) along the-axis as a function of the
Eq. (1) thenisl (4, X) = lpexp [-7(4, X)] for all x and vanishes normalized radius and the benchmark results (crosses). We
for all directions except along theaxisn = e,. Comparing confirm their findings and the agreement was achieved after
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Fig. 8. Adaptive photon transport grid for the scattered part of the ra- {,—1
diation passing through a dust envelope with spherically symmetric

density distribution, for the wavelength= 0.165um. 107 Rk
P
N
5 10-3L
three outerA-iterations. The deviation of the temperatures at o4l

a given radius for all directions in the spherical temperature
grid was less than 1%. In the lower panel of Fig. 9, the nor- |,=5|
malized, distance- and luminosity-independent spectral energy

-6

distribution AF,/ [ F,dA is given as a function of the wave-  1° : : :

length. Again, there is good agreement between benchmark re- 0.1 1.0 N 1[0';] 100.0 1000.0
sult (crosses) andr&inRay simulation (solid line). The slight H

deviations might arise from theftiérent resolution of the grids. Fig. 9. Comparison with the 1D benchmark results of Ivezic et al.
Using the full symmetry of the problem, the 1D codes are ab{&997) forT; = 800 K, Y = 1000,p = 0,71 = 10, 44 = 1 um,

to spend all the computer resources on resolving 1 dimensiénd a resulting rati§’ = 3 of incoming and re-radiated flux at the in-
while the 3D code has to use a rather coarse grid oflNust 60 Nner bogndary. The upper papel shows the benchmark temperatures a:
wavelength grid points, a direction grid dbf¢ = 144 for the a function of _nor'mallzed radius (crosses) and t.he res_ult obtained with
scattered radiation, a spatial grid containing less th&rcals SrewRay (solid line). _In the IOV\_/er panel, the dlmen5|0nless spectral
per wavelength, and temperature cell numbers fewer thén fBapelF’{/fF’{d’l(ﬁ) 's plotted in the same notation.

for the entire domain.

are destroyed. We choose a slight time shift in the evolution to
6.3. Full 3D test case: Two stars within cavities have cavities with dferent sizes 1000 AU and 2000 AU, re-
in a molecular cloud core spectively, and at distances of 1500 and 2000 AU from the core
center. The stars are moved away from the cavity centers to-
Tests with a 2D RT benchmark have been given in Pascuegrds the core center to distances of 1500 AU and 1000 AU,
et al. (2003) comparing the results obtained witlhr€Ray for respectively. This is to take into account the density gradient
a 2D standard accretion disk with three other 2D and 3D Riithin the core and its influence on the cavity formation. The
codes. They show very good overall agreement in both tensity within the core is assumed to be a Gaussian of the form
spectrum and the temperature distribution. We therefore ppo= po exp[-r?/rj] with pg = 1 m=3 andrq = 2000 AU.
ceed to full 3D RT. But here, no benchmark has been defined Figure 10 illustrates the density distribution in the- 0-
sofar. And moreover, there is no benchmark yet that gives iplane. The position of the two stars is indicated by two peaks
ages for multi-dimensional continuum RT. So, to show the caithin the cavities. We consider this scenario as a possible
pabilities of the code, we just give here images of a complekapshot from the evolution of a dense core where two stars
test case and refer to further applications and benchmark rinase been formed and do not consider how stable this con-
in forthcoming papers. figuration will be over longer time scales (a distortion of the
The example we choose is a spherically symmetric clogdre center due to gravitational torque from the stars seems
core that contains two young stars having formed at slightikely). With this strongly asymmetric configuration, the stars
different times, close to the core center. We assume the stadisplaced from the center of the cavities offeient size, and
be massive Nl = 8 M), with a luminosity ofL = 2200L,, theinner core center between the stars, clearly, 3D RT is needed
and a surface temperature ©f = 20000 K. The emerging to calculate the self-consistent temperature distribution and to
radiation is assumed to have already formed cavities freeprbduce images for all wavelengths of interest. On the other
dust, and all remnants like disks that may have formed the stsigde, the configuration is still simple enough to allow for
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At wavelength of1 = 20 um, the inner part of the core is
optically thick. Part of the emission from the dust around the
larger cavity is obscured by the dense core. The same is valid
for the image aft = 10um. As the absorption is stronger here,
the smaller cavity is deeply embedded and emission is only
seen from parts where the density of the dense core drop due to
the Gaussian profile. In both pictures, emission from the star is
too weak to be seen.

In the left upper panel of Fig. 12, the stars can be seen at
= § A = 3 um (view along they-axis, stars ak = 1000 AU and

—1500 AU, total extend 10000 AU). Still it is the dust close

to the surface of the cavity that is dominating the emission, but

only the emission in the outer parts can be seen as the extinction

drops with the density.

The emission from the cavity surfaces is not entirely

Fig. 10. Cut through the density distribution of the 3D test case &mooth, showing a slight numerically caused ring pattern. This
z= 0. The two massive stars are located in cavities that have formisdan dfect of the finite grid size of 100 AU of the temperature
within a dense core with a density maximum in-between the two staggid. Doubling the number of grid points in each direction (100
their position is indicated by peaks. to 200) would increase the size of the temperature array by a
factor of 8 and the computational time by a factor of 64. The
Hse of an adaptive temperature grid reduces the finite grid cell

interpretation of the obtained temperatures and images. . . . )
calculated self-consistent temperature inxtheplane is shown errors bUt. increases the runt|me_as the interpolation beFW‘?e”
the adaptive photon transport grid for the scattered radiation

in Fig. 11. In panel a, we show the temperature distributign . . .
. : and the temperature grid becomes more time-consuming.
for a run where we placed just one star on #axis atx =

. The numerically by far most flicult part is to produce im-
—1500 AU. The star heats the dust on its side of the core out- . -aly by P P
. . o . es in the optical and UV. We have choser 0.344 um,
side the cavity. To heat up the opposite side of the core, its radi- S . L .
; : . : S the scattering is maximal in this wavelength range. With a
ation has to pass the inner core maximum and heating therefgre . S , .
. L : eeply embedded pair of stars like in our configuration, hardly
is reduced. Radiation passing through the small empty cavi :
. . afiy scattered light can be expected to leave the core before be-
though, can reach the dust behind the smaller cavity more eas- . )
absorbed. As the images showed just the reddened stars,

. L . ; I
|I)_/ than radl_atlon not crossing t_he cavity. Therefore, the duvé\;'ltg decided to lower the density by a factor of 50 to make es-
directly behind the smaller cavity should be hotter than dus : ; . .

X L . cape of scattered light possible. We show two images at this
that is heated by radiation not passing through the smaller cdVL elenath in Fia. 13 with an inclination of the view bv<30
ity. This efect can indeed be seen in panel a. Note that scatter: 9 9. y

ing blurs this &ect as ford < 6 xm, radiation is scattered Ou,[W|th respect to the-axis, and with the large cavity in the front.

or into the cavities. In panel b, we give the temperature distThe left image gives the intensity of scattered radiation calcu-

i- . : ) : :
. . : | nder th mption of isotropi ring. M mis-
bution when the other star is added to the smaller cavity. DL?éEd under the assu pt_o ' 0 sotropic spatte 9. ost emis
L slon comes from the radiation scattered in the cavity. Its ring-

to the smaller extent of the small cavity, it is not able to he . . - :
ike shape is an interplay of the low density in the right part of

the material in the vicinity of the cavity to higher temperatur . ; : . )
than the star in the larger cavity, as the optical depth is higf?ﬁr? cavity reducing scattering and the high density towards the

. . : . . anter causing absorption. There is also wedlusgle scatter-
In Fig. 12, we show the images of the cavity configuration fig in the entire core with radial gradient following the densit
wavelengths oft = 3 um, 10um, 20um, and 25Q:m, respec- 9 9 9 y

tively. The view is inclined by 50with respect to thec-axis gradlent.. . . I
o The right image is calculated for the same viewing angle
where both stars are located, and the smaller cavity is in the ; L . .
front anc_j wav_elength, but with a realistic scattering fun_ctlon as de-
' ) o . . scribed in Sect. 3. At = 0.344um, forward scattering domi-
For A = 250um, the configuration is optically thin and the
L . ates. Therefore, only the front part of the surface of the larger
dust emission at the surface of both cavity shells accumula?es. . ; .
. o cavity that is close to the star and that has substantial density
so that they are clearly visible at all viewing angles. The re- h diati he ob dditionally th .
emission function can scatter the radiation to the observer. Additionally there is
some difuse scattered radiation coming from the front border
R = @Y1, x) B[4, T(X)] (32) ofthe dense center of the core caused by the other star.

This comparison shows that a wrong approximation of
of the dust has its maximum for temperatures around 15 K, the scattering will alter the resulting images substantially.
emission should mainly be expected from the outer parts. BAnimations varying the viewing angle to support visualization
due to the gradient of the Gaussian profile of the dense carkthe 3D structure can be found undertp: //www.astro.
radiation of the hotter dust at the surface of the cavities stithi-jena.de/Users/stein/Ani/anin.htm.
dominates, which radiates accordind®with Planck emission Both ray-tracing and finite élierencing on the transport
in the Rayleigh-Jeans range. The stars do not emit substantighigls allow error control of the solution. Nevertheless, we point
at this wavelength. out that in contrast to the intensity calculations, for the
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a

Fig. 11. Temperature distribution of the cavity configuration in thg-plane.a) Single star located on theaxis atx = —1500 AU. b) Two
stars located on the-axis atx = 1000 AU andx = —1500 AU.

I
[

Fig. 12.Images of the cavity configuration at= 3 um, 10um, 20um, and 25Qum, respectively. The stars are locateckat 1000 AU and
—1500 AU on thex-axis, the viewing angle is inclined by 580 that the smaller cavity is in the front.

temperature iteration, it is impossible to give an a priori erréor temperature grids with cell numbers exceeding For the
limit. Here, we rely on usual a posteriori methods, namely gimulations, global energy conservation within 5% was used as
check the global energy conservation when integrating the oabnvergence criterion for the outariteration.

coming flux over a closed surface around the source of energy.

The main sources of numerical errors are the interpolations
the temperatures for the ray-tracing and the transport grids.
they have to be carried out often, a quadratic or higher polyrthis paper, we presented the solution algorithm implemented
nomial interpolation is too time-consuming. The same is valid the grid-based coder&nRay, designed to solve the 3D

f .
'fA).SConclusmns
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Fig. 13.Images of the cavity configuration at= 0.344 um. The stars are located at= 1000 AU and-1500 AU on thex-axis, the viewing
angle is inclined by 20so that the larger cavity is in the front. The left image has been obtained using isotropic scattering, the right image has
been calculated with the correct phase function.

continuum radiative transfer problem for the intensity emerg- The power emitted by a star with the luminosif that
ing from objects in star-forming regions, evolved stars with ers received by the dust particleof sizea with the absorption
velopes, starburst galaxies, and AGNs. The method is a cmﬁ“}ciencijbSat a distance, through vacuum is (Evans 1994)

bination of step-size controlled ray-tracing and solution on oo
adaptive multi-wavelength photon transport grids, on whicfgk K = na? fd/l £ Ofbs (33)
the finite-diferencing discretization error is minimized. We ™ 4nr? A

0

briefly analyzed the optical properties of typical cosmic dust
grains, and discussed the wavelength range for which the tifY¥ith R. and T being the stellar radius andfective surface
consuming solution on adaptive grids has to be used. For fg@perature, respectively, the luminosityjs = 47R 7B,(T.)
temperature, we have presented and discussed possible gHifkwe get

on which the temperature distribution can be calculated self- 2 %

consistently. Aside from 2D benchmark comparisons presenteg(k) = ra? (&) f dA 7B,(T.) Q3% (34)
elsewhere, we have tested the code with simple 1D cases and Mk 0

illustrated the capabilities by treating a complex 3D test Caﬁ'\/

The temperature is calculated self-consistently using standflrdIdlng the do_m_am intoN; cell g:ubes of equal density and
. ) emperature within the cube, with volumé& the number of
accelerated\-iteration.

particlesNk in a cellK can be obtained from the number den-
Acknowledgements]. S. thanks F. Evans for valuable comments igity n(x) using
the course of improving the adaptive photon transport grids. We thagk
D. Folini for an excellent referee report helping to improve the papetK = Vi n(x), (35)
at various points. if a single-sized distribution of the dust is assumed. Hence, the
stellar power received at ceél writes as

8. Appendix: Initial temperature distribution

Computer time can be saved substantially when starting the s r.k
lution of the RT equation with a temperature that is already
close to the correct value. The temperature iteration in the ®herer.x is the distance between the star and &ell

solution scheme will converge quickly when an initial temper- In the presence of extincting matter between star and dust,
ature is used that is derived for the case that the high-energ8iR intensity along a rax = u ex from the star to celK is
source radiation has been absorbed and re-distributed by dagped according to

dust particles already. Here, we derive a scheme to calculatg 2 ~ext

the initial temperature for a given dust configuration. The maigy = ~7& Qi N Li(w) (37)
approximation is that the influence of scattering is neglect@gh the unit vectore.x pointing from the star to celK,

for the heating process. In view of the strong forward scatt§fis|ging

ing in the wavelength regions where scattering plays a role, this U

assumption is reasonable to derive an initial temperature distri- 2 mext L,

bution. We concentrate here on stellar illumination, butacorrjégx") = Ba(T.) = exp|—na” Q; fdu n(u)

sponding scheme can be derived for other radiation sources like 0

evolved stars or the central engine of an active galactic nucleus.

2 (o]
Pg_(K) = Vk n(xx) ma® ( R, ) f da 7B, (T.) Q2 (36)
0

Ba(T.) DX, (38)
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leaving the stellar power received at c€lto be on a given wavelength grid; for f = 1,..., N, and use trape-
, zoidal integration
P (K) = Vi n(xk) n&® ( R ) f dA 7B, (T.) DY Q3" (39) 1N
.k [ Foadx= 5 3 [+ Foxe-n)] 00 - x1-0) (46)
0 2 f=2

To define the temperatufig, we consider the power re-emitted . i o
by the cellK in local thermal equilibrium The numerical scheme for calculating the temperature distribu-

tion iteratively is

Prall) = Vi o) 4| Qi) A0 3 (B, (1Y) Q2%+ By, (1Y Q3 (- ) = (47)
0

N
At
f=2

Hence, a starting temperature distributibhfor the cells can 1
be obtained just from stellar illumination by settif (K) = 2 (

R* 2 Ny . .
) Z [Wlff + W,Ifffl] (Af — As-1)

(R

Pout(K) for each cell. Inserting we find \ f=2 N
o oo 15 a2 N [ p il A
1 (R 2 +7 DIV (k) 5 > (Wil + Wit | (s = Ara).
f dA By(TY) Q2bs= y (r—) f dA By(T.) DY Q%S (41) k=1 N 7=
*K
0 0
In the next step, we consider that the cells illuminate each otH3gerences
The power that is received by céllfrom cellK is Barber, P. W.,, & Hill, S. C. 1990, Light Scattering by Particles:
5 Computational Methods (World Scientific Publ. Co Pte Ltd)
PX(L) = VL n(x) a Vk n(xk) 4na? Bouvier, J., Chelli, A, Allain, S., et al. 1999, A&A, 349, 619
in anrg, Bryden, G., Chen, X., Lin, D. N. C., Nelson, R. P., & Papaloizou, C. B.
o0 1999, ApJ, 514, 344
0y A abs D’Angelo, G., Henning, Th., & Kley, W. 2002, A&A, 2002, 385, 647
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