УДК 524.37

СОДЕРЖАНИЕ Не, С, N И О В АНСАМБЛЕ ГАЛАКТИЧЕСКИХ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ

© 2009 г. Ю. В. Миланова^{*}, А. Ф. Холтыгин

Астрономический институт Санкт-Петербургского государственного университета Поступила в редакцию 25.06.2008 г.

На основе анализа новых наблюдений планетарных туманностей (ПТ) переопределены содержания Не, С, N и O в свыше, чем 120 туманностях нашей Галактики и Магеллановых облаков. Полученные при моделировании спектров характеристики туманностей использованы при составлении нового каталога параметров галактических и внегалактических планетарных туманностей, размещенного по адресу http://www.astro.spbu.ru/staff/afk/GalChemEvol.html. Проанализированы ошибки в определении параметров туманностей и содержаний в них химических элементов, связанные с неточностью наблюдательных данных. Содержание Не определяется с точностью 0.06 dex, тогда как ошибки определенных содержаний С, N и O составляют 0.1–0.2 dex. Учет неточностей поправок за стадии ионизации элементов, линии которых отсутствуют в спектрах туманностей, увеличивает ошибки в определении содержания Не до 0.1 dex, а содержаний С, N и O – до 0.2–0.3 dex. Выполнен анализ содержаний элементов в планетарных туманностях различных галактических подсистем и туманностей Магеллановых облаков, который позволил сделать вывод о сходстве объектов балджа Галактики с туманностями типа II в классификации Пеймберта, звезды-предшественники которых принадлежат населению тонкого диска с возрастами не менее 4–6 млрд. лет. Установлено подобие содержаний элементов в туманностях Магеллановых облаков и гало Галактики.

Ключевые слова: Галактика: эволюция, подсистемы; Магеллановы облака: эволюционный статус; планетарные туманности: содержания элементов.

PACS numbers: 98.35.Bd; 98.56.-p; 98.38.Ly; 98.38.Am *Key words*:

ВВЕДЕНИЕ

Одной из важнейших задач исследования планетарных туманностей (ПТ) является их диагностика — определение электронной температуры и концентрации и содержаний в них химических элементов и их ионов. Определения содержания элементов в ПТ могут быть использованы для проверки теорий эволюции звезд промежуточных масс

^{*}Электронный адрес: yulia.milanova@gmail.com

 $1-8M_{\odot}$ (см., например, Мариго, 2001; Генри, 2004; Хервига, 2005), а также для изучения химической эволюции Галактики (Станджеллини и др., 2006; Маттеуччи, 2008).

Несмотря на большое количество работ, посвященных нахождению параметров ПТ, точность их определения и особенно точность нахождения содержаний элементов пока недостаточно велика. Различие содержаний, определяемых разными авторами, может достигать порядка величины. Одной из причин этих расхождений является то, что содержание элементов в ПТ (за исключением водорода и гелия) находится по интенсивностям линий, возбуждаемых электронным ударом, которые чувствительны к флуктуациям электронной температуры (см. Пеймберт, Костеро, 1969; Рубин, 1969) и электронной концентрации (Рубин, 1989), присутствующим в туманностях.

Другим важным обстоятельством, влияющим на определяемые по интенсивностям линий содержания элементов, является существенно разная точность определения интенсивностей слабых (по сравнению с линией $H\beta$) и сильных линий в спектрах туманностей. Относительная ошибка измерения интенсивности увеличивается с уменьшением интенсивности линии (см., например, Рола, Стасинска, 1994). В работе Ролы, Пела (1994) было показано, что интенсивности линий с малым отношением сигнал/шум (S/N \leq 6) могут быть переоценены в 2–6 и более раз.

В работе Холтыгина (1998а) разработана методика, позволяющая учесть влияние как флуктуаций температуры и плотности газа в туманностях на интенсивности линий, так и разной точности измерения интенсивностей линий в спектрах ПТ. Данная методика оказалась эффективной при анализе свечения разреженной астрофизической плазмы, в частности, областей горячего газа в расширяющихся атмосферах горячих звезд (Холтыгин и др., 2003). В работах Холтыгина (19986, 2000) предложена *стохастическая модель* туманностей. Ее использование позволяет получить значительно более точные, чем ранее, содержания элементов в туманностях.

Однако с момента выхода цитируемых работ был выполнен большой объем новых высокоточных измерений интенсивностей линий в спектрах туманностей. Использование новых наблюдательных данных позволяет как уточнить параметры ПТ для тех объектов, которые рассматривались в работах Холтыгина (1998а, 1998б, 2000), так и получить такие параметры для тех объектов, для которых к моменту выполнения соответствующих расчетов не имелось достаточно надежных спектральных данных. Решению данной задачи и посвящена настоящая статья. В отличие от публикаций Холтыгина (1998а, 1998б, 2000), в настоящей работе используются более точные атомные данные, а также вычисляются теоретические интенсивности линий ионов Не и определяется содержание гелия в туманностях.

В работе приведены основные формулы для расчета интенсивностей линий в среде с флуктуациями температуры и плотности газа. Описаны используемые модели туманности и статистической процедуры определения параметров туманностей из сравнения наблюдаемых и рассчитанных интенсивностей линий. Проведен анализ ошибок в определении параметров ПТ и приведены найденные параметры и содержания Не, С, N и О для большой выборки туманностей Галактики. Далее обсуждаются свойства ансамбля ПТ Галактики и Магеллановых облаков. В заключение предсталены некоторые выводы.

ИНТЕНСИВНОСТИ ЛИНИЙ В СПЕКТРАХ ТУМАННОСТЕЙ

Для вычисления интенсивностей возбуждаемых электронным ударом интеркомбинационных, запрещенных и разрешенных линий ионов С, N и О, а также рекомбинационных линий Н и ионов Не, С, N и О, будем использовать метод анализа свечения плазмы низкой плотности с флуктуациями температуры и электронной концентрации, предложенный в статьях Холтыгина (2000) и Холтыгина и др. (2003). Для большей общности, с целью возможного применения при исследовании спектров объектов астрофизической плазмы низкой плотности любой природы, переформулируем основные соотношения метода с использованием понятия парциальной дифференциальной меры эмиссии плазмы.

Туманности практически всегда прозрачны в указанных линиях, поэтому полная энергия, излучаемая туманностью в какой-либо рекомбинационной или столкновительной линии $k \rightarrow i$ иона X^{n+} , определяется следующим соотношением:

$$E_{ki} = E_{ki}(\mathbf{X}^{n+}) = \int \int_{V} \int 4\pi \varepsilon_{ki} dV = (1)$$
$$= h\nu_{ik} \int_{T_{e}^{1}}^{T_{e}^{2}} \int_{n_{e}^{1}}^{n_{e}^{\text{eff}}} r_{ki}^{\text{eff}} \mu_{\mathrm{F}}(T_{\mathrm{e}}, n_{\mathrm{e}}) dn_{\mathrm{e}} dT_{\mathrm{e}}.$$

Здесь ε_{ki} — коэффициент излучения в линии $k \rightarrow i$. Интегрирование выполняется по полному объему V плазмы, излучающей в данной линии. Величина $\mu_{\rm F}(T_{\rm e}, n_{\rm e})$ — дифференциальная

парциальная мера эмиссии, определяемая соотношением $\mu_{\rm F}(T_{\rm e},n_{\rm e})dn_{\rm e}dT_{\rm e}=n_{\rm e}n_{\rm F}dV_{(T_{\rm e}n_{\rm e})},$ где $dV_{(T_e n_e)}$ – элементарный объем плазмы, электронная температура в котором находится в интервале $(T_{\rm e}, T_{\rm e} + dT_{\rm e})$, а электронная концентрация — в промежутке $(n_e, n_e + dn_e)$. Величина $n_F = n(X_F) - n(X_F)$ концентрация иона X_F, возбуждение (или рекомбинация) которого приводят к излучению в линии $k \to i$. Для столкновительных линий $X_F \equiv X^{n+}$, тогда как для рекомбинационных линий X_F = $= X^{(n+1)+}$

Эффективный коэффициент образования линии r_{ki}^{eff} определяется следующим соотношением (Бычков, Холтыгин, 2007):

$$4\pi\varepsilon_{ki} = n_k A_{ki} h\nu_{ik} = n_e n_F r_{ki}^{\text{eff}} h\nu_{ik},.$$
 (2)

Здесь n_k — населенность уровня k, A_{ki} — вероятность перехода $k \rightarrow i$.

Величины $T_{\rm e}^1$ и $T_{\rm e}^2$ – соответственно минимальное и максимальное значения электронной температуры в объеме, занимаемом ионом Xⁿ⁺. Значения $n_{\rm e}^1$ и $n_{\rm e}^2$ – то же, но для электронной концентрации. Значения полных энергий, излучаемых туманностью в линиях, могут быть использованы для нахождения отношений потоков в соответствующих линиях спектров туманностей (исправленных за межзвездное поглощение).

Используя понятие дифференциальной парциальной меры эмиссии иона X_F, определим полную парциальную меру эмиссии:

$$EM_{\rm F} = \int\limits_{T_{\rm e}^{1}}^{T_{\rm e}^{2}} \int\limits_{n_{\rm e}^{1}}^{n_{\rm e}^{2}} \mu_{\rm F}(T_{\rm e}, n_{\rm e}) dn_{\rm e} dT_{\rm e}.$$

Средние по объему туманности, излучающему в рассматриваемых линиях, значения параметров T_e и *n*_e:

$$\langle T_{\rm e} \rangle_{\rm F} = \overline{T_{\rm e}} = E M_{\rm F}^{-1} \int_{T_{\rm e}^1}^{T_{\rm e}^2} \int_{n_{\rm e}^1}^{n_{\rm e}^2} T_{\rm e} \mu_{\rm F}(T_{\rm e}, n_{\rm e}) dn_{\rm e} dT_{\rm e}, \quad (3)$$

И

$$\langle n_{\rm e} \rangle_{\rm F} = \overline{n}_{\rm e} = E M_{\rm F}^{-1} \int_{T_{\rm e}^1}^{T_{\rm e}^2} \int_{n_{\rm e}^1}^{n_{\rm e}^2} n_{\rm e} \mu_{\rm F}(T_{\rm e}, n_{\rm e}) dn_{\rm e} dT_{\rm e}.$$
(4)

Здесь усреднение проводится по распределению дифференциальной парциальной меры эмиссии $\mu_{\rm F}(T_{\rm e}, n_{\rm e})$, т.е. параметры $\overline{T_{\rm e}}$ и $\overline{n_{\rm e}}$ зависят, вообще говоря, от распределения иона X_F в объеме туманности.

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 35 № 7 2009

Параметры, характеризующие среднеквадратичные флуктуации T_e и n_e, определяются следующими формулами:

$$\mathbf{t}^{2} = E M_{\rm F}^{-1} \int_{T_{\rm e}^{1}}^{T_{\rm e}^{2}} \int_{n_{\rm e}^{1}}^{n_{\rm e}^{2}} \left(T_{\rm e} - \overline{T_{\rm e}}\right)^{2} \mu_{\rm F}(T_{\rm e}, n_{\rm e}) dT_{\rm e} dn_{\rm e},$$
(5)

$$\mathbf{tn} = EM_{\rm F}^{-1} \int_{T_{\rm e}^{1}}^{T_{\rm e}^{2}} \int_{n_{\rm e}^{1}}^{n_{\rm e}} \left(T_{\rm e} - \overline{T_{\rm e}}\right) \times$$

$$\times (n_{\rm e} - \overline{n_{\rm e}}) \mu_{\rm F} (T_{\rm e}, n_{\rm e}) dT_{\rm e} dn_{\rm e},$$
(6)

$$\langle (n_{\rm e} - \overline{n_{\rm e}}) \, \mu_{\rm F}(T_{\rm e}, n_{\rm e}) dT_{\rm e} dn_{\rm e},$$

$$\mathbf{n^2} = EM_{\rm F}^{-1} \int_{T_{\rm e}^1}^{T_{\rm e}^2} \int_{n_{\rm e}^1}^{n_{\rm e}^2} (n_{\rm e} - \overline{n_{\rm e}})^2 \times$$
(7)

$$\times \mu_{\rm F}(T_{\rm e}, n_{\rm e}) dT_{\rm e} dn_{\rm e}.$$

Величина tn в формуле (6) — это единый параметр, а не произведение t · n. В предположении, что амплитуды флуктуаций T_e и n_e малы по сравнению с самими величинами электронной температуры и концентрации, справедливо соотношение

$$E_{ki} = E_{ki}^0 \left(1 + \mu_{tt} \mathbf{t}^2 + \mu_{tn} \mathbf{tn} + \mu_{nn} \mathbf{n}^2 \right).$$
(8)

Параметры μ_{tt}, μ_{tn} и μ_{nn} определяются следующими выражениями:

$$\mu_{tt} = \left[\frac{1}{2} \frac{\partial^2 r_{ki}^{\text{eff}}}{\partial T_{\text{e}}^2} (r_{ki}^{\text{eff}})^{-1} T_{\text{e}}^2\right]_{T_{\text{e}} = \overline{T_{\text{e}}}; n_{\text{e}} = \overline{n_{\text{e}}}}, \qquad (9)$$

$$\mu_{tn} = \left[\frac{\partial^2 r_{ki}^{\text{eff}}}{\partial T_{\text{e}}} \partial n_{\text{e}} (r_{ki}^{\text{eff}})^{-1} T_{\text{e}} n_{\text{e}}\right]_{T_{\text{e}} = \overline{T_{\text{e}}}; n_{\text{e}} = \overline{n_{\text{e}}}}, \quad (10)$$

$$\mu_{nn} = \left[\frac{1}{2} \frac{\partial^2 r_{ki}^{\text{eff}}}{\partial n_{\text{e}}^2} (r_{ki}^{\text{eff}})^{-1} n_{\text{e}}^2\right]_{T_{\text{e}} = \overline{T_{\text{e}}}; n_{\text{e}} = \overline{n_{\text{e}}}}.$$
 (11)

Наши вычисления показали, что малость может трактоваться очень широко. Даже при значениях $\mathbf{t}^2 \approx 0.25$, соответствующих отклонениям от средней температуры в туманности, равным ±50%, отличия полных энергий, излучаемых туманностями в линиях видимой и УФ-областей спектра, вычисленных непосредственно по формуле (1) и с помощью приближенного соотношения (8), в большинстве случаев не превышают 3-5%. Такие же по величине значения параметров ${f tn}$ и ${f n^2}$ также могут считаться малыми в указанном выше смысле.

Полная амплитуда вариаций температуры в туманности складывается из крупномасштабных флуктуаций, связанных с относительно медленным

уменьшением средней температуры в туманности с возрастанием расстояния до центральной звезды туманности и характерными размерами, сравнимыми с размерами самой туманности, и мелкомасштабных — с размерами, значительно меньшими размера туманности. Согласно расчетам Грюенвальд, Вигас (1995), амплитуды крупномасштабных флуктуаций $t^2_{large-sc} \leq 0.03$. В то же время для согласования наблюдаемых и теоретических интенсивностей линий спектров ПТ во многих случаях необходимо использовать значения $t^2 \approx 0.10-0.16$. Тем самым напрашивается вывод, что основной вклад в амплитуду температурных флуктуаций вносят мелкомасштабные флуктуации.

Амплитуда изменения интенсивностей линий, как видно из формулы (8), определяется не самим параметром t^2 , а произведением $\mu_{tt}t^2$. Из формулы (9) видно, что абсолютные значения параметра μ_{tt} малы для рекомбинационных линий в силу слабой зависимости эффективных коэффициентов рекомбинации от температуры. По этой причине интенсивности рекомбинационных линий слабо зависят от амплитуды флуктуаций T_e в туманности.

В то же время значения μ_{tt} могут быть велики для линий, возбуждаемых электронным ударом, так как соответствующие эффективные коэффициенты образования линий экспоненциально быстро растут с ростом электронной температуры в области формирования линий (см., например, Холтыгин, Феклистова, 1992). По этой причине интенсивности столкновительных линий могут возрасти в 2 и более раз при переходе от однотемпературной туманности к туманности с той же средней температурой и умеренными значениями параметра $\mathbf{t}^2 =$ = 0.02-0.06.

Интенсивности линий, возбуждаемых электронным ударом, очень сильно зависят от амплитуды флуктуаций $T_{\rm e}$, интенсивности рекомбинационных линий малочувствительны к таким флуктуациям. При наличии флуктуаций $T_{\rm e}$ интенсивность линии СШ λ 1907 может увеличиться в 1.5–2 раза по сравнению с однородной по температуре плазмой, тогда как интенсивности чисто рекомбинационных линий Н β и СШ λ 4267 остаются практически неизменными (Холтыгин, 2000).

Современные наблюдения планетарных туманностей свидетельствуют о возможности существования вариаций их химического состава (Тсамис и др., 2008). Изменения содержания С, N, O и более тяжелых элементов в каком-либо объеме туманности приводят к изменению скорости охлаждения газа туманности, т.е. к изменению температуры газа в данном объеме. Таким образом, вариации химического состава приводят к увеличению флуктуаций температуры в туманности, учитываемых в настоящей модели. Это означает, что, по крайней мере, частично вариации химического состава не слишком большой амплитуды могут быть учтены и в данной модели.

В то же время при значительных вариациях химического состава туманностей их влияние не сводится только к температурным вариациям, поэтому авторы планируют в дальнейшем ввести в модель дополнительный параметр, описывающий вариации химического состава.

СТОХАСТИЧЕСКАЯ МОДЕЛЬ ТУМАННОСТЕЙ

Для учета влияния флуктуаций температуры и плотности на спектры туманностей используем следующую полуэмпирическую модель (Холтыгин, 2000). Область туманности, в которой формируются линии рассматриваемой группы ионов, является разреженной и оптически тонкой в этих линиях плазмой. В каждом элементарном объеме плазмы значения T_e и n_e являются случайными величинами, характеризуемыми средними значениями температуры $\overline{T_e}$ и электронной концентрации $\overline{n_e}$ и их среднеквадратичными флуктуациями в данной области t^2 и n^2 , а также параметром tn, описывающим корреляцию флуктуаций $\overline{T_e}$ и $\overline{n_e}$. Будем также предполагать постоянство относительных содержаний элементов во всем объеме туманности.

В общем случае каждый ион X^{n+} , присутствующий в туманности, описывается своим набором величин $\overline{T_e} = \overline{T_e}(X^{n+})$ и $t^2(X^{n+})$. Однако многочисленные вычисления показали (например, в статье Харрингтона и др., 1982), что небулярные температуры, усредненные по распределению ионов в туманностях, очень близки. Эти величины для большинства ПТ отличаются не более чем на 100–200 К. Вычисления Грюенвальд, Вигас (1995) показывают, что этот результат не зависит от параметров модели и сохраняется при изменении эффективных температур и светимостей центральных звезд, также как и при вариациях средней электронной концентрации и содержания элементов в туманности.

Значения параметра \mathbf{t}^2 для различных ионов, усредненные по всему объему туманности, отличаются незначительно. Основываясь на результатах цитированных работ, можно сделать вывод, что значения параметров $\overline{T_e}$ и \mathbf{t}^2 для ионов He⁺, C^+-C^{4+} , $N^{2+}-N^{3+}$ и $O^{2+}-O^{4+}$ близки. Кроме того, сами величины \mathbf{t}^2 определяются, в основном, мелкомасштабными флуктуациями, амплитуда которых не слишком отличается для различных областей туманности. Для ионов более низкой степени ионизации O⁺ и N⁺ в случае сильно неоднородных туманностей следует использовать другой набор

параметров: $\overline{T_e}^*$, $\overline{n_e}^*$ и $(t^2)^*$. Вариации параметров **tn** и **n**² в туманностях могут быть значительны (см., например, Рубин, 1969). Однако вследствие того, что мы будем рассматривать свечение туманностей в линиях элементов, близких по потенциалам ионизации, а также вследствие слабой зависимости интенсивностей линий от этих параметров, мы также будем полагать параметры **tn** и **n**² постоянными в туманностях.

В заключение приведем список параметров модели: $\overline{T_e}$, $\mathbf{t^2}$, $\overline{n_e}$, $\mathbf{n^2}$, \mathbf{tn} , He/H, C/H, N/H, O/H, где He/H, C/H, N/H и O/H обозначают относительные содержания He, C, N и O: N(He)/N(H), N(C)/N(H), N(N)/N(H) и N(O)/N(H) соответственно.

Особым вопросом является выбор параметров $\overline{T_{\rm e}}$ и ${f t^2}$ для областей ионизации НІІ и HeII. Объем этих областей может превышать объем областей ионизации CIII-V, NIII-IV и OIII-V, поэтому значения $\overline{T_e}$ (HII) и $\overline{T_e}$ (HeII) должны быть меньше, чем для указанных областей ионизации. В то же время эти различия не очень велики и не превышают 1000-1500 К (Харрингтон и др., 1982), при этом интенсивности водородных и гелиевых линий (усредненные по всему объему областей HII или HeII) при учете этих различий меняются не более, чем на 2-3%, что меньше ошибок измерения наблюдаемых потоков в линиях. По этой причине будем использовать для расчета интенсивностей линий HI и HeI значения параметров модели, принятые для зон ионизации CIII-V, NIII-IV и OIII-V.

Обычный способ определения параметров туманности - итеративная процедура согласования наблюдаемых и рассчитанных интенсивностей линий. Результат такой процедуры очевидным образом зависит от принятого метода подгонки и точности используемых данных. Важно отметить, что интенсивности линий в спектрах туманностей измеряются с ошибкой, которая существенно зависит от самой интенсивности линий. Если ошибка измерения интенсивности сильных линий не превышает 5% (Фейбельман и др., 1996), то ошибка в измерении интенсивностей слабых линий (интенсивность которых составляет меньше чем 0.01 интенсивности линии НВ) может составить 30-50% и более. Это обстоятельство обычно не принимают во внимание при определении небулярных параметров. Для учета различной точности измерения интенсивностей линий в работе Холтыгина (1998а) предложена процедура, основанная на принципе максимального правдоподобия (см., например, Брандт, 1975). Такая же процедура использована и в настоящей работе. Определяемые согласно этой процедуре параметры туманности будем называть оптимальными.

Следуя Холтыгину (1998а), предположим, что для функции распределения интенсивности сильных линий мы можем использовать нормальный закон:

$$P^{N}(I) = \frac{1}{\sigma^{N}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{I^{\text{obs}}-I}{\sigma^{N}}\right)^{2}\right], \quad (12)$$

где I — среднее значение наблюдаемой интенсивности линии, $I^{\rm obs}$ — наблюдаемое значение интенсивности линии, а для стандартного отклонения σ^N будем использовать следующее приближенное выражение

$$\sigma^N = \alpha \sqrt{I^{\text{obs}} I(N_1 + N_2)}, \qquad (13)$$

основанное на анализе большого числа наблюдений спектров туманностей (Рола, Стасинска, 1994). Здесь $I(N_1 + N_2)$ — суммарная интенсивность *небулярных* линий [OIII](4959 + 5007) Å в спектре туманности. Значения параметра $\alpha \approx$ ≈ 0.01 для линий видимой и ИК-областей спектра и $\alpha \approx 0.03$ для УФ-линий.

С уменьшением интенсивности линии относительная ошибка ее измерения увеличивается. В случае слабых линий ($I^{\rm obs} < 0.1$ в шкале $I(H\beta) =$ = 100) для описания функции распределения интенсивностей линий мы использовали логарифмнормальное распределение со смещением, предложенное Рола, Пела (1994) и описывающее систематическое завышение наблюдаемых интенсивностей слабых линий.

В табл. 1 представлены типичные результаты согласования наблюдаемых и рассчитанных интенсивностей оптических и УФ-линий в спектре туманности NGC 5882. Наблюдаемые интенсивности линий спектра туманности были взяты из работы Тсамиса и др. (2003). В первых двух столбцах табл. 1 указаны ион и длина волны линии в А, в третьем и четвертом столбцах - наблюдаемая (исправленная за межзвездное покраснение света) и вычисленная интенсивности линии. В следующем столбце указаны абсолютные величины разностей наблюдаемых и вычисленных интенсивностей в единицах рассчитанного по формуле (13) стандартного отклонения для функции распределения интенсивностей (12), приведенного в последнем столбце табл. 1. Из таблицы видно хорошее качество подгонки наблюдаемого спектра туманности в стохастической модели.

При определении полного содержания атомов Не, С, N и O по содержанию отдельных ионов этих элементов необходимо вводить ионизационные поправочные множители, учитывающие вклад ненаблюдаемых стадий ионизации. Содержание

Ион	$\lambda, \mathrm{\AA}$	$I^{\rm obs}$	I^{calc}	$ I^{ m obs}-$ $-I^{ m calc} /\sigma(I^{ m obs})$	$\sigma(I^{ m obs})$
He	5876	16.00	15.51	0.41	1.20
He	6678	4.31	4.74	0.69	0.62
$\mathrm{He^{+}}$	4686	2.75	2.75	0.00	0.50
C^+	4267	0.40	0.09	1.64	0.19
C^{2+}	1907	24.70	25.31	0.14	4.47
C^{2+}	4650	0.06	0.06	0.00	0.07
N^+	5755	0.27	0.16	0.68	0.16
N^+	6548	4.87	4.90	0.05	0.66
N^+	6583	14.40	14.43	0.03	1.14
N^{2+}	1750	4.50	4.50	0.00	1.91
N^{2+}	4640	1.12	1.12	0.00	0.32
O^+	3726	10.20	8.81	1.45	0.96
O^+	3729	4.98	5.98	1.49	0.67
O^{2+}	1663	4.90	5.24	0.17	1.99
O^{2+}	4363	5.56	5.65	0.12	0.71
O^{2+}	4931	0.14	0.10	0.32	0.11
O^{2+}	4959	353.0	361.7	1.54	5.64
O^{2+}	5007	1050.0	1040.8	0.94	9.72

Таблица 1. Интенсивности УФ- и оптических линий в спектре NGC 5882

Таблица 2. Сравнение наблюдаемых (I^{obs}) в спектрах туманностей NGC 3918, NGC 6543 и NGC 6572 интенсивностей ИК-линий СІІ и ОІІІ с рассчитанными (I^{calc}) в стохастических моделях туманностей

Ион	λ,	z obs	r cale	Содержание элемента [X] = lg(N(X)/N(H)) + 12			
PIOH	MKM	I^{obs} I^{calc} $\begin{bmatrix} [X] = lg(N(X)/N(F) \\ \hline 6e3 \ HK- \\ ЛИНИЙ \\ \hline ЛИНИЙ \\ \hline 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 8.57 \\ 88.6 \\ 83.4 \\ 9.06 \\ 88.6 \\ 27.5 \\ 31.8 \\ \hline NGC \ 6543 \\ 0.18 \\ 0.18 \\ 8.39 \\ 208.17 \\ 216.7 \\ 8.30 \\ 60.70 \\ 49.94 \\ \hline NGC \ 6572 \\ 0.46 \\ 0.46 \\ 9.03 \\ 8 \\ 40.2 \\ 40.2 \\ 0.16 \\ 0$	с ИК- линиями				
	_		NG	C 3918			
C^+	157	0.21	0.21	8.57	8.64		
O^{2+}	52	88.6	83.4	9.06	8.57		
	88	27.5	31.8				
			NGO	C 6543			
C^+	157	0.18	0.18	8.39	8.37		
O^{2+}	52	208.17	216.7	8.30	9.01		
	88	60.70	49.94				
			NGO	C 6572			
C^+	157	0.46	0.46	9.03	8.86		
O^{2+}	52	40.6	40.8	9.16	9.11		
	88	6.61	4.49				

иона \mathbf{X}^{m+} элемента X может быть получено из соотношения

 $N(\mathbf{X}^{m+}) = r(\mathbf{X}^{m+})N(\mathbf{X}),$

где $r(X^{m+})$ — относительное содержание иона X^{m+} в полном содержании N(X) элемента X.

Обычно относительное содержание ионов получается в результате построения ионизационных моделей туманностей. Проведенный нами анализ (см., Холтыгин, 1998а) показал, что это значение характеризуется, главным образом, классом возбуждения туманности E_x (Аллер, Лиллер, 1966). Используя результаты многочисленных расчетов ионизационных моделей туманности, приведенные в работах Аллера, Чижака (1979, 1983), мы получили зависимости величин $r(X^{m+})$, усредненных по классам возбуждения туманности, от величин E_x для ионов С, N и О. Найденные значения $r(X^{m+})$ для ионов углерода оказались близки к эмпирическим величинам, полученным Холтыгиным (1984) на основании изучения рекомбинационных линий ионов углерода.

Для рассматриваемых нами ионов и туманностей любых классов возбуждения значения ионизационных поправок за стадии ионизации, линии которых отсутствуют в спектрах туманностей, меньше двух. Проведенный нами анализ возможных ошибок в определении величин E_x и связанных с ними ошибок множителей $r(X^{m+})$ приводит к заключению, что погрешности в определении полного содержания С, N и O не превышают 10–20%. Для нахождения класса возбуждения E_x туманностей мы использовали отношения интенсивностей линий элементов разных стадий ионизации в спектрах туманностей согласно критериям, приведенным в книгах Аллера, Лиллера (1966) и Гурзадяна (1962).

В последнее десятилетие в результате запуска космических ИК-телескопов ISO и Spitzer, появилась возможность использовать интенсивности ИК-линий переходов между уровнями тонкой структуры ионов С, N, O и других элементов для анализа спектров ПТ. Сравнение в табл. 2 интенсивностей ИК-линий ионов С⁺ и O²⁺, рассчитанных в стохастической модели для трех ярких планетарных туманностей, с наблюдаемыми по данным работы Лиу и др. (2001) позволяет сделать вывод о том, что данная модель адекватно описывает ИК-спектр туманностей. Этот вывод иллюстрируется на рис. 1, на котором видно хорошее согласие наблюдаемых интенсивностей ИК-линий ОІІІ с

Рис. 1. Сравнение наблюдаемых и рассчитанных интенсивностей ИК-линии ОШ λ 52 мкм (а) и ОШ λ88 мкм (б) в спектрах туманностей.

рассчитанными в стохастической модели. В то же время, как видно из табл. 2, исключение ИК-линий из списка линий, используемых при построении моделей туманностей, в ряде случаев может привести к значительным ошибкам в определении содержаний элементов в туманностях.

ПАРАМЕТРЫ ГАЛАКТИЧЕСКИХ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ И ОШИБКИ ИХ ОПРЕДЕЛЕНИЯ

В табл. З даны полученные нами параметры туманностей и содержания гелия, углерода, азота и кислорода. Источники используемых при определении параметров туманностей интенсивностей линий представлены на странице http://www.astro.spbu.ru/staff/afk/GalChemEvol/-Neb_Ab.html, размещенной на сайте Астрономического института СПбГУ.

Для расчета величин r_{ki}^{eff} — эффективных коэффициентов образования линий, возбуждаемых электронным ударом, нами решались уравнения баланса населенностей уровней всех ионов С, N и О, линии которых присутствуют в спектрах туманностей. Необходимые атомные данные и величины r_{ki}^{eff} для рекомбинационных линий брались либо из каталога Головатого и др. (1997), либо из статей, цитированных Бычковым, Холтыгиным (2007).

В столбцах 1–2 табл. 3 даны название туманности и ее класс возбуждения E_x . Столбец 3 содержит электронную температуру T_e , в четвертом столбце дан параметр t^2 , описывающий амплитуду среднеквадратичных флуктуаций $T_{\rm e}$. В пятом — используемая при расчетах электронная концентрация. В столбцах 6—9 представлены определенные нами содержания He, C, N и O в логарифмической шкале: [X] = lg(N(X)/N(H)) + 12. Зависимость интенсивностей линий в спектрах туманностей от параметров \mathbf{n}^2 и tn оказалась слабой, поэтому их значения не могут быть определены с достаточной степенью точности и они не приводятся в таблице. Исключением является туманность NGC 7027, значения параметров \mathbf{n}^2 и tn для которой приведены в статье Холтыгина (2000).

Ошибки определения параметров туманностей в используемой нами стохастической модели определяются неточностями в измерении наблюдаемых интенсивностей линий, ошибками (при нахождении содержаний элементов) ионизационных поправочных множителей и неточностью атомных данных.

Ошибки содержаний элементов, связанные с неточностью ионизационных поправок, рассмотрены в предыдущем разделе и не превосходят 0.06 dex. Вклад неточностей атомных данных в полные ошибки определения содержаний элементов также мал, так как современные расчеты показывают, что ошибки в используемых при вычислениях интенсивностей линий в спектрах туманностей вероятностях переходов и силах столкновений для запрещенных, интеркомбинационных и разрешенных линий в большинстве случаев не превосходят 5–10% (Ниимура и др., 2002).

Таким образом, можно сделать вывод, что ошибки в определении параметров туманностей

МИЛАНОВА, ХОЛТЫГИН

Таблица 3. Содержания He. C. N и O в галактических планетарных туманностях

					[V]	1 (M/V	$(\Lambda T(\mathbf{II}))$	10
ПТ	Ex	$\overline{T_{\mathrm{e}}}$	\mathbf{t}^2	$n_{ m e}$	[A] [He]	$= \lg(N(X))$	$\frac{N(H)}{1}$	[0]
Δ19	5	11/30	0.000	2.60×10^2	11.10	[0]	8.23	8 4 2
A12 A18	5	15400	0.000	3.60×10^2	11.10		8.21	7 91
A20	6	10680	0.000	9.87×10^3	10.93		8 46	8 15
BB1	4	12920	0.000	4.09×10^{3}	10.99	8 96	8 11	7 74
BD + 3036	2	9350	0.000	1.00×10^{3} 1.30×10^{3}	10.00	8.61	7.96	8 58
BoBn1	4	8690	0.000	4.20×10^4	11.11	0.01	7.48	8.49
DdDm1	4	12260	0.034	7.36×10^{3}	11.04	7 18	7 99	8.07
H3-75	6	12730	0.000	1.20×10^2	10.90		8.23	8.62
H4-1	4	11990	0.036	8.82×10^2	11.08	9.19	7.55	8.41
Hb4	6	9520	0.000	5.88×10^{3}	11.18	9.51	8.43	8.67
Hb12	4	11060	0.000	5.22×10^{5}	11.03	8.55	8.14	7.65
Hu1-2	10	19520	0.000	2.12×10^{3}	11.09	8.21	8.19	8.01
Hu2-1	4	6580	0.103	1.07×10^{4}	11.11	8.89	8.49	8.49
IC2003	8	11950	0.000	5.14×10^{3}	11.03	8.21	7.65	8.59
IC2165	8	9340	0.120	2.82×10^3	11.04	9.17	9.08	8.92
IC2448	7	13100	0.000	1.19×10^2	11.12			8.44
IC3568	5	10900	0.000	1.08×10^3	11.01	8.61	8.16	8.34
IC4191	5	6450	0.108	$9.65 imes 10^3$	11.21	8.96	8.99	9.01
IC4406	5	10070	0.000	4.81×10^2	11.08	8.39	8.60	8.63
IC4593	3	6000	0.076	8.28×10^2	11.12	8.76	8.87	8.66
IC5117	6	16840	0.000	1.09×10^4	11.33	8.65	8.56	7.58
IC5217	6	7250	0.101	1.25×10^4	11.14	8.73	9.05	8.95
J320	5	8220	0.120	4.30×10^3	11.17		8.65	8.87
J900	7	7440	0.100	4.77×10^3	11.04	9.15	9.10	8.98
K1-7	6	15750	0.000	36.8	11.06		8.22	8.03
K2-1	8	6030	0.130	7.36×10^3	10.91		8.38	8.88
K3-66	3	6050	0.100	2.39×10^4	11.09		7.78	8.25
K3-70	6	15220	0.000	3.05	11.18		8.72	7.87
K648	4	10710	0.044	$4.44 imes 10^3$	11.00	9.13	7.87	7.92
M1-6	3	6760	0.100	1.22×10^4	11.04		7.97	8.20
M1-7	5	9430	0.000	2.53×10^4	11.17		8.46	8.63
M1-8	7	16140	0.000	$1.30 imes 10^2$	11.17		8.92	8.20
M1-9	5	10700	0.000	1.03×10^4	10.89		7.86	8.23
M1-13	6	6010	0.080	1.13×10^3	11.24		8.63	9.00
M1-14	3	11220	0.090	1.93×10^3	11.01		7.18	8.09
M1-16	7	6810	0.080	6.73×10^{3}	11.21		10.10	9.35
M1-17	7	6550	0.090	4.80×10^{3}	11.06		9.49	9.15
M1-18	4	7840	0.006	4.09×10^{4}	11.26		8.76	9.03
M1-25	4	7460	0.000	1.29×10^{4}	11.25	8.86	10.00	9.03
M1-50	7	6840	0.099	6.09×10^{3}	11.15		9.40	9.21
M1-54	6	10420	0.000	3.84×10^{3}	11.19	8.95	9.36	8.61
M1-57	7	7530	0.100	1.02×10^{4}	11.17	9.56	9.32	9.20
M1-74	5	6150	0.100	2.60×10^4	11.17	9.05	7.91	9.31
M1-80	6	6710	0.080	1.10×10^{2}	11.07	9.17	9.12	9.03
M3-2	7	13200	0.000	2.02×10^{3}	11.43		9.49	8.09
M3-15	5	8420	0.000	3.70×10^{3}	11.18	8.55	9.25	8.93
Mel-1	5	6790	0.100	5.03×10^{3}	11.19	7.74	8.87	8.98

Таблица 3. Окончание

ПТ	Fv	\overline{T}	+2	n	[X]	$] = \lg(N(X))$	(N(H)) + (12
	LA	Ie	U	$n_{\rm e}$	[He]	[C]	[N]	[0]
MyCn18	4	8980	0.100	2.47×10^3	11.09	8.64	8.27	8.25
Mz1	6	7450	0.000	5.38×10^3	11.43	8.73	11.54	8.47
NGC40	2	8510	0.000	2.09×10^3	10.87	8.45	7.96	8.61
NGC650A	5	11160	0.036	$4.68 imes 10^2$	11.01	9.02	8.25	8.49
NGC650B	5	11150	0.027	4.68×10^2	11.02	9.02	8.55	8.57
NGC1514	5	14550	0.000	15.2	10.97		7.51	8.25
NGC1535	7	7480	0.108	1.51×10^4	10.93	8.18	8.85	8.70
NGC2371	9	8540	0.094	$2.00 imes 10^3$	11.03	8.57	8.93	8.90
NGC2438	7	9090	0.049	1.09×10^4	11.08	9.46	9.18	9.12
NGC2440	9	11780	0.062	4.24×10^3	11.10	8.96	9.15	8.94
NGC3132	6	9680	0.062	$3.74 imes 10^2$	11.12	8.45	8.26	8.60
NGC3242	6	14020	0.093	7.98×10^2	11.02	8.01	8.30	8.27
NGC3587	5	10810	0.000	6.84×10^3	10.93		7.96	8.64
NGC3918	9	12510	0.061	4.05×10^3	11.05	8.65	8.23	8.71
NGC2818	6	14430	0.060	$9.92 imes 10^2$	11.13	8.22	8.74	8.28
NGC5307	5	8350	0.072	1.95×10^4	11.08	8.25	8.37	8.98
NGC5315	4	6040	0.126	9.93×10^3	11.23	5.83	8.04	8.67
NGC5882	9	9470	0.000	2.68×10^3	11.10	8.14	8.60	8.91
NGC6072	7	9670	0.000	1.13×10^4	11.40		9.66	8.93
NGC6153	6	7030	0.048	2.12×10^3	11.24	8.09	8.73	8.92
NGC6210	5	7680	0.025	3.62×10^3	11.07	8.27	8.31	8.99
NGC6302	9	6970	0.128	3.53×10^4	11.35	9.47	9.87	10.22
NGC6309	8	10220	0.072	30.6	11.11	9.21	9.12	8.77
NGC6369	5	6530	0.090	4.05×10^3	11.16		8.35	9.08
NGC6543	5	7860	0.000	3.26×10^3	11.26	8.71	8.29	8.96
NGC6567	5	10840	0.024	1.27×10^4	11.07	8.94	8.72	8.45
NGC6572	6	8900	0.119	1.79×10^4	11.17	8.12	8.23	8.86
NGC6578	6	6000	0.097	9.39×10^2	11.20	9.49	9.33	8.78
NGC6720	6	10430	0.000	3.79×10^2	11.05	8.78	8.64	8.58
NGC6741	8	13400	0.082	$6.35 imes 10^3$	11.09	8.49	8.29	8.50
NGC6781	7	10890	0.000	5.29×10^2	11.10	9.37	9.18	8.68
NGC6790	6	14090	0.000	2.67×10^4	11.08	8.24	8.09	8.30
NGC6818	6	11840	0.104	3.08×10^3	11.03	8.42	8.08	8.61
NGC6826	5	8330	0.078	7.83×10^2	11.08	8.20	8.13	8.45
NGC6833	5	10740	0.059	$6.73 imes 10^4$	11.16		7.57	8.47
NGC6879	5	9130	0.024	2.60×10^4	11.10		9.00	8.72
NGC6884	6	9600	0.081	$5.15 imes 10^3$	11.06	8.47	8.75	8.34
NGC6886	8	11050	0.031	$7.57 imes 10^3$	11.12	8.82	8.61	8.79
NGC6891	5	9520	0.000	2.95×10^3	11.08	8.85	8.84	8.51
NGC6894	5	7180	0.000	2.99×10^4	11.14		8.82	9.10
NGC6905	7	11740	0.000	2.51×10^2	11.01	8.69	7.28	8.57
NGC7009	6	6510	0.098	3.60×10^3	11.17	9.22	9.23	8.94
NGC7026	6	7600	0.015	7.22×10^3	11.19	9.38	9.33	9.05
NGC7027	10	12100	0.037	5.18×10^4	11.08	8.92	8.44	8.92
NGC7662	8	12270	0.057	1.83×10^3	11.03	8.90	7.76	8.61
SwSt1	3	7500	0.070	1.62×10^4	10.73	7.91	7.90	8.18
Tc1	5	9610	0.000	$1.26 imes 10^3$	10.87	8.59	8.00	8.09

Рис. 2. (а) — Функция распределения ошибок определения содержания Не в NGC 7027 (в линейной шкале) и ее гауссова аппроксимация (сплошная линия). (б) — То же, что на рис. 26, но для содержания углерода (в логарифмической шкале).

вызваны, главным образом, неточностями наблюдаемых интенсивностей линий. В данном пункте мы исследуем влияние ошибок измерения интенсивностей на определяемые по этим интенсивностям глобальные характеристики туманностей. Для анализа ошибок в определении параметров ПТ использована процедура стохастического моделирования. Измеряемые потоки излучения в линиях в спектрах туманностей являются случайными величинами, поэтому анализируемые величины интенсивности линий — также представляют собой случайные величины.

Для моделирования была выбрана туманность NGC 7027, наблюдаемые интенсивности линий в спектре которой известны с высокой точностью, поэтому их можно в первом приближении считать равными их математическим ожиданиям. Предположим, что было выполнено $n \gg 1$ определений интенсивностей линий в спектре туманности. Для случайной величины І_k – интенсивности линии в спектре туманности, где k – номер измерения, можно предположить справедливость нормального распределения (12), стандартное отклонение σ^N которого будем описывать формулой (13). В качестве вектора математических ожиданий интенсивностей линий примем набор значений интенсивностей, определенных в работе Жанга и др. (2005) по высокоточным измерениям потоков в линиях в спектре туманности.

Стандартными методами статистического моделирования нами была получена выборка объемом n = 1000 значений случайных векторов интенсивностей линий в спектре туманности, распределенных в согласии с функцией (12). По каждому из векторов данной выборки были определены параметры туманности с использованием процедуры, описанной выше. Полученные в результате процесса моделирования параметры туманностей также являются случайными величинами. Функция распределения параметров туманности, ввиду нелинейности их зависимости от интенсивностей линий, не обязательно будет нормальной и должна быть установлена из дополнительного исследования.

Вследствие пропорциональности содержания элемента в туманности интенсивностям линий ионов данного элемента в спектре туманности в первом приближении можно предположить справедливость гипотезы о нормальности распределения содержаний элементов. Гипотеза о нормальности распределения полученных содержаний химических элементов в NGC 7027 проверена нами с помощью критерия χ^2 (Брандт, 1975) на уровне значимости $\alpha = 10^{-3}$.

Результаты проведенного нами анализа показывают, что лишь распределение содержания гелия удовлетворяет критерию нормальности. Итоговая функция распределения отношения содержаний He/H (в линейной шкале) представлена на рис. 2a, а содержания углерода (в логарифмической шкале) — на рис. 26.

Этот результат легко объясним. Содержание Не в туманности определяется по интенсивностям рекомбинационных линий, слабо зависящим от средней электронной температуры туманностей и от амплитуды ее флуктуаций. В то же время интенсивности *столкновительных* линий ионов CNO экспоненциально зависят от температуры, причем показатели экспоненты определяются структурой

Рис. 3. То же, что на рис. 2, но для содержания N (а) и O (б).

Рис. 4. То же, что на рис. 2, но для $\lg n_e$ (а) и T_e (б) и параметра \mathbf{t}^2 (в). Штриховая линия — аппроксимация функции распределения \mathbf{t}^2 суммой экспоненциального и нормального распределения (см. текст).

уровней конкретного иона, и для разных линий одного иона так же, как для линий разных ионов, могут сильно отличаться.

Сказанное выше иллюстрируется на рис. 3, на котором даны полученные нами функции распределения содержаний N и O в логарифмической шкале. Видна существенная асимметрия функций распределения. Из проведенного нами анализа можно сделать вывод, что содержание Не определяется с точностью около 10–15%, тогда как ошибки определенных содержаний С, N и O составляют 0.1–0.2 dex. Учет неточностей ионизационных поправок за стадии ионизации элементов, линии которых отсутствуют в спектрах туманностей, увеличивает ошибки в определении содержания Не до 0.1 dex, а содержаний С, N и O – до 0.3 dex.

На рис. 4 представлена функция распреде-

ления логарифма электронной концентрации n_e, электронной температуры $T_{\rm e}/10^4$ и величины ${f t}^2$. Ошибки в определении электронной температуры не превосходят 100-200 К, тогда как погрешности определения ne составляют 10-20%. Функция распределения параметра $\mathbf{t}^{\mathbf{2}}$ может быть представлена суммой двух компонентов. Первый из них может быть описан экспоненциальной функцией распределения $f_{\exp}(\mathbf{t}^2) = 35 \exp(-0.01 \mathbf{t}^2)$, вто $f_{\text{norm}}(\mathbf{t}^2) = 29 \exp\{-[0.5(\mathbf{t}^2$ рой — нормальной: $(-0.036)/(0.009)^2$ }. Вклад в полную функцию распределения компонента экспоненциального распределения составляет 35%, а нормального — 65%. Можно предложить следующее объяснение полученной зависимости. Первая компонента соответствует вкладу крупномасштабных флуктуаций Те

Тип		He/H	$\lg(N/O)$	$\lg(\mathrm{N/H}) + 12$	\overline{M},M_{\odot}	\overline{z} , KIIK	Область Галактики
Ι		$\geqslant 0.125$	≥ -0.30	—	0.64-1.09	$\ll\!\!1(<0.3)$	Тонкий диск
II	IIa	$\geqslant 0.125$	< -0.30	≥8.00	0.57 - 0.64	<1	Тонкий диск
	IIa	< 0.125	≥ -0.60	≥8.00			
	IIb	< 0.125	< -0.60	<8.00			
III		_	—	—	0.56 - 0.57	$\geqslant 1 (\leqslant 1.45)$	Толстый диск
IV		_	—	—	0.55 - 0.56	$\gg 1(> 1.45)$	Гало
V		_	—	_	Большой разброс	<1.3	Балдж

Таблица 4. Модифицированная (Куиреза и др., 2007) классификация галактических ПТ по Пеймберту (1978)

Таблица 5. Глобальные параметры планетарных туманностей Галактики и Магеллановых облаков

Тип 7	<u>~</u> KUK	σ-	\overline{M} M	(The	Элемент $[X] = lg(X/H) + 12$							
1 111	2, KIIK	O_z	M , M_{\odot}	ΟM	[He]	$\sigma_{\mathrm{[He]}}$	[C]	$\sigma_{\rm [C]}$	[N]	$\sigma_{[N]}$	[O]	$\sigma_{\mathrm{[O]}}$
Ι	0.23	0.25	0.686	0.081	11.21	0.1	8.32	1.35	8.96	0.66	8.63	0.69
IIa	0.31	0.29	0.638	0.046	11.13	0.09	8.82	0.44	8.73	0.69	8.75	0.33
IIb	0.56	0.36	0.617	0.033	11.03	0.1	8.55	0.4	8.36	0.57	8.53	0.38
III	1.05	1.12	0.599	0.026	10.94	0.27	8.60	0.01	7.92	0.50	8.41	0.30
IV	1.35	0.0	0.588	0.0	11.06	0.06	8.64	0.84	7.98	0.5	8.22	0.36
Балдж	0.56	0.29	0.614	0.03	11.16	0.1	8.74	0.44	8.59	0.59	8.86	0.42
БМО	_	_	_	_	11.02	0.11	8.8	0.58	7.49	0.86	8.24	0.55
ММО	—	—	—	—	11.10	0.08	8.98	0.83	8.08	1.03	8.30	0.21

в туманности, вторая — мелкомасштабных. Для получения более надежного заключения о вкладе температурных вариаций разной природы в полную амплитуду флуктуаций $T_{\rm e}$ необходимо исследование функций распределения параметра ${\bf t}^2$ для других ПТ.

АНСАМБЛЬ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ ГАЛАКТИКИ И МАГЕЛЛАНОВЫХ ОБЛАКОВ

Характеристики планетарных туманностей зависят, главным образом, от масс их звездпредшественников, которые сильно различаются у объектов различных подсистем Галактики. Сравнивая характеристики ПТ различных галактических подсистем, а также Магеллановых облаков, можно сделать выводы об их происхождении.

Для определения того, к какой именно галактической подсистеме принадлежит та или иная туманность, наиболее удобно использовать систему классификации ПТ согласно Пеймберту (1978), критерии которой (в модифицированном варианте Куирезы и др., 2007) представлены в табл. 4. Туманности I типа соответствуют начальным массам звезд-предшественников туманностей на главной последовательности $M_{\rm ini} \ge 2.4 M_{\odot}$, в то время как II и III типов — массам $M_{\rm ini} \le 2.4 M_{\odot}$.

В последних столбцах табл. 4 даны средние массы центральных звезд данных типов \overline{M} и их средние расстояния до галактической плоскости \overline{z} . Для перехода от масс звезд-предшественников к массам центральных звезд ПТ использовалось соотношение начальная — конечная массы звезд промежуточных масс (Миланова, Холтыгин, 2006).

Различие между средними параметрами туманностей типов I–V иллюстрируется в табл. 5, в которой представлены рассчитанные нами по данным настоящей работы и каталога Холтыгина и Милановой (2008) средние расстояния туманностей разных типов от галактической плоскости \overline{z} , средние массы их центральных звезд \overline{M} , средние содержания элементов [X], а также стандартные отклонения σ_z , σ_M и $\sigma_{[X]}$ указанных величин. Зна-

чения \overline{z} регулярно увеличиваются, а величины \overline{M} — уменьшаются при переходе от туманностей типа I к туманностям типа IV.

Из табл. 5 видно, что туманности типа I отличаются от туманностей других типов большей средней массой центральных звезд и большей концентрацией у галактической плоскости. Различия средних масс туманностей типов II и III статистически незначимы, в то время как при переходе от подтипа IIа к типу III среднее расстояние туманностей от галактической плоскости существенно увеличивается.

Согласно данным табл. 5 среднее содержание кислорода в БМО оказалось незначительно (на 0.06 dex) меньше, чем в ММО, хотя по другим объектам (звезды, гигантские области HII) содержание кислорода больше в БМО. В недавней работе Ванг, Лиу (2008) получено среднее содержание [O/H] = 8.38 для ансамбля планетарных туманностей БМО, что лишь на 0.14 dex больше полученного в настоящей работе, а для туманностей ММО в цитированной работе [O/H] = 8.10 на 0.20 dex меньше значения 8.30, данного в настоящей статье. Таким образом, среднее значение [О] в БМО в настоящей работе получилось меньшим, чем в ММО, вероятнее всего, в результате случайного отклонения в разные стороны от среднего значения для всех туманностей БМО и ММО соответственно.

Одной из важнейших из еще нерешенных проблем физики Галактики является вопрос о происхождении ее балджа. Разделяют "истинные" балджи, образуемые в спиральных галактиках типов S0-Sb в результате аккумуляции газовой или звездной составляющих галактик на ранних стадиях их эволюции, и "псевдобалджи", формируемые в спиральных галактиках поздних типов вследствие неустойчивости их дисков. Балдж нашей Галактики является, вероятнее всего, "истинным" (Зоккали и др., 2006; Маттеуччи, 2008).

Чаще всего предлагаются следующие сценарии образования истинных балджей: аккреция уже сформировавшихся звездных агрегатов в центре Галактики; аккумуляция газа, находящегося при формировании галактики в ее центральных областях, в результате которой начинается звездообразование и формирование звездной составляющей балджа; аккреция обогащенного металлами газа в гало, тонком и толстом диске (Маттеуччи, 2008).

Согласно Зоккали и др. (2006) наиболее вероятным является предложенный в работе Иммели и др. (2004) сценарий образования балджа в результате слияния быстродвижущихся массивных молекулярных облаков в центральной области Галактики и следующих в результате данных слияний вспышек звездообразования. Такой же вывод сделан в обзоре Миннити, Зоккали (2007), в котором говорится о быстром формировании балджа в первый миллиард лет эволюции Галактики.

Однако, даже при условии справедливости данного сценария для нашей Галактики, остаются неясными многие детали формирования балджа и его роль в образовании различных галактических подсистем, в частности, тонкого и толстого дисков. Пролить свет на этот вопрос может анализ содержаний элементов в этих подсистемах. В работе Мелендеза и др. (2008) определены содержания С, N, O и Fe в атмосферах красных гигантов диска и балджа Галактики и сделан вывод о подобии содержаний этих элементов в объектах балджа и толстого диска.

Отметим, однако, что анализ рис. 2 и 3 из работы Мелендеза и др. (2008), на которых представлены зависимости отношений содержания [O/Fe] и [C+N/Fe] от металличности [Fe/H] не позволяет, по нашему мнению, сделать вывод о статистически значимом различии данных отношений для объектов тонкого и толстого диска. Основываясь только на данных Мелендеза и др. (2008), можно с той же степенью уверенности сделать вывод о подобии указанных содержаний в объектах балджа и тонкого диска.

В работе Гутенкунста и др. (2008) сделан вывод о существенном различии содержаний О, Ne, Ar и S в ПТ балджа и тонкого диска. Этот вывод противоречит проведенному нами анализу средних содержаний элементов в ПТ различных типов, результаты которого представлены в табл. 5.

Заключение, сделанное в работе Гутенкунста и др. (2008), основано на анализе *всех* туманностей диска, тогда как содержания элементов существенно зависят от возраста звезд-предшественников туманностей (см., например, Лунева, Холтыгин, 2002). Для того чтобы выяснить, какие именно ПТ, принадлежащие диску Галактики, подобны объектам балджа, мы сравнили содержания Не, С, N и О в туманностях балджа и диска. Проведенный анализ показывает, что наиболее близки по содержаниям указанных элементов туманности балджа и ПТ типа II. Наиболее близки по содержаниям Не- и СNO-элементов в ПТ балджа туманности тонкого диска типа IIa, что иллюстрируется на рис. 5а.

К тому же, как видно из данных табл. 5, средние расстояния \overline{z} туманностей толстого диска (тип III по Пеймберту) от галактической плоскости значительно превышают величины \overline{z} для ПТ балджа и превышают размеры балджа в плоскости, перпендикулярной диску Галактики (Миннити, Зоккали, 2007). В то же время средние расстояния \overline{z} туманностей типа II и туманностей балджа согласуются значительно лучше.

Рис. 5. Сравнение содержаний Не, С, N и O в ПТ различных подсистем Галактики: (а) — галактические ПТ типа IIa (темные столбики) и туманности балджа (светлые столбики); (б) — то же, что на рис. 5а, но для туманностей Гало Галактики и БМО; (в) — то же, что на рис. 5б, но для туманностей ММО.

Туманности типа IIa, согласно данным табл. 4, являются объектами тонкого диска и соответствуют промежуточному возрасту звезд-предшественников, равному 4—6 млрд. лет от современной эпохи (Куиреза и др., 2007). Подобие ПТ балджа и тонкого диска свидетельствует о том, что интенсивное звездообразование в балдже, как и в тонком диске, происходило по крайней мере до эпохи, отстоящей от современной не более, чем на 4—6 млрд. лет.

Если сделанный нами вывод справедлив, то зависимость содержаний элементов в ПТ балджа от расстояния до центра Галактики *R* должна продолжать подобную зависимость для ПТ тонкого диска. Для проверки этого предположения мы проанализировали зависимость содержания О от *R*. Содержание О практически не меняется в ходе эволюции звезд промежуточных масс, поэтому содержание О в ПТ отражает первичное содержание О в их звездах-предшественниках, определяемое содержанием этого элемента в межзвездной среде в момент их образования.

При нахождении данной зависимости галактический диск представлялся системой пяти вложенных колец с шириной $\Delta R = 2$ кпк от центра Галактики до R = 10 кпк. К ПТ балджа мы отнесли объекты в пределах первого кольца с галактоцентрическими расстояниями, меньшими 2 кпк, которые классифицированы как туманности балджа Куирезой и др. (2007).

Вопрос о принадлежности ПТ типа II, находящихся в пределах второго кольца (2 кпк $\leq R \leq$ ≤ 4 кпк), к объектам балджа или диска не вполне ясен. С одной стороны, так как протяженность балджа в галактической плоскости не превышает ± 2 кпк от центра Галактики (см., например, Миннити, Зоккали, 2007), туманности, находящиеся в этой области, должны принадлежать диску. С другой стороны, некоторые ПТ, находящиеся на галактоцентрических расстояниях 2—4 кпк, согласно Куирезе и др. (2007), считаются принадлежащими балджу, что кажется сомнительным. Возможно, эти туманности принадлежат не балджу, а бару или диску. Однако следует отметить, что они могут и на самом деле являться объектами балджа, расстояния которых от центра Галактики переоценены вследствие отмеченной Никифоровым и Бобровой (1999) недооценки расстояний ПТ до Солнца в существующих к настоящему времени шкалах расстояний до ПТ.

В силу некоторой неопределенности статуса объектов, галактоцентрические расстояния до которых находятся в пределах второго кольца, мы исключили их из общей выборки ПТ тонкого диска и балджа. Все туманности типа II, находящиеся на галактоцентрических расстояниях $R \ge 4$ кпк, считались принадлежащими тонкому диску. Для всех туманностей балджа или диска, расстояния которых от центра Галактики находятся в пределах кольца, определялись средние содержания О и соответствующие им стандартные отклонения. Эти содержания относились к средним по ансамблю всех ПТ в данном кольце расстояниям: $\langle R^1 \rangle = 0.8$ кпк, $\langle R^3 \rangle = 4.9$ кпк, $\langle R^4 \rangle = 7$ кпк и $\langle R^5 \rangle = 8.5$ кпк.

На рис. 6 представлены полученные указанным выше способом зависимости содержания О в ПТ балджа и тонкого диска от среднего расстояния туманностей до центра Галактики. На рис. 2а в выборку туманностей тонкого диска включены только туманности типа IIa, на рис. 26 - все туманности типа II. Градиент содержания кислорода d[O/H]/dR в первом случае (при включении в выборку только туманностей типа IIa) равен $-0.017 \pm \pm 0.01$ dex/кпк, что немного выше, чем значение

Рис. 6. (а) — Зависимость усредненных содержаний кислорода в туманностях типа IIa (звездочки) и в туманностях балджа (заполненный квадрат) от их среднего расстояния до центра Галактики: сплошная линия — аппроксимация данной зависимости прямой линией с коэффициентом, равным градиенту d[O/H]/dR, пунктирные линии — такие же зависимости, но с коэффициентами, отличающимися на \pm одно стандартное отклонение величины d[O/H]/dR. (б) — То же, что на рис. 6а, но для всех туманностей типа II.

d[O/H]/dR = -0.012 dex/кпк, полученное Холтыгиным и Милановой (2007) из анализа содержания О во всех галактических ПТ, принадлежащих диску Галактики. При включении в нашу выборку всех туманностей типа II величина d[O/H]/dR = $= -0.031 \pm 0.014 \text{ dex/кпк}$, что совпадает с градиентом содержания кислорода для ПТ галактики МЗ1 (Гарнетт и др., 1997), что, возможно, свидетельствует о подобии нашей Галактики и МЗ1.

Анализ рис. 6 показывает, что объекты балджа продолжают зависимость содержание кислорода галактоцентрическое расстояние для туманностей тонкого диска. Для объяснения полученной зависимости можно предложить следующий сценарий. На ранних стадиях эволюции Галактики, в согласии с моделью Иммели и др. (2004), формируется галактический балдж. После образования балджа происходит формирование диска, начиная с областей, близких к балджу. Затем звездообразование начинается в более удаленных от центра Галактики областях. При этом интенсивное звездообразование как в балдже, так и в тонком диске продолжается по крайней мере до эпохи, отстоящей от современной не более чем на $(4-6) \times 10^9$ лет. К сожалению, ошибки определения градиента оказались значительными, поэтому для подтверждения сделанного вывода требуется в дальнейшем проанализировать большую, чем рассмотренная в настоящей работе, выборку ПТ. В этом сценарии, в согласии с полученной нами на рис. 6 зависимостью, возраст впервые сформировавшихся звезд тем меньше, чем больше расстояние звезды до центра Галактики, а содержание О убывает с ростом этого расстояния.

В настоящее время для спектральных наблюдений доступно большое число внегалактических ПТ. Для ближайших из них — туманностей БМО и ММО — получены высококачественные спектры, которые могут быть промоделированы с помощью описанной выше процедуры. Результаты такого моделирования частично представлены в табл. 6. Более полные данные по содержаниям элементов в туманностях Магеллановых облаков будут представлены в следующих публикациях. На рис. 5б и 5в сравниваются содержания Не, С, N и O в туманностях гало и Магеллановых облаков. Из рис. 5 видна близость содержаний элементов в этих объектах, что может свидетельствовать об их одинаковом эволюционном возрасте.

Выполненные нами массовые определения параметров галактических и внегалактических ПТ использованы для обновления созданного ранее авторами интернет-каталога параметров планетарных туманностей (Холтыгин, Милановаб 2008). В обновленный каталог добавлены полученные нами в настоящей статье содержания Не, С, N и О и другие параметры для более чем ста двадцати туманностей Галактики и Магеллановых облаков. Для туманностей, спектры которых, полученные в последние 5–7 лет, отсутствуют в литературе, мы использовали расчеты других авторов, представленные в работах, опубликованных не ранее 1994 г. Из этих же работ взяты оценки содержания Ne, S, Cl и Ar, также представленные в новом каталоге.

В случае, когда содержание одного и того же элемента заданной ПТ было определено в нескольких статьях (различие не превосходило 0.3 dex), мы брали в качестве искомого содержания среднее от

ПТ	Fx	T_{0}	+2	n	$\lg(N(\mathbf{X})/N(\mathbf{H})) + 12$				
	LA	10	U	n _e	[He]	[C]	[N]	[O]	
LMC-SMP1	4	7187	0.100	$1.92{\times}10^4$	11.09	9.15	8.04	8.76	
LMC-SMP2	3	8763	0.080	$5.98{ imes}10^2$	11.04	8.14	6.96	8.15	
LMC-SMP3	4	13428	0.000	$2.03{\times}10^4$	10.90		6.19	7.73	
LMC-SMP4	8	10369	0.000	$1.07\!\times\!10^5$	11.13		9.07	8.91	
LMC-SMP5	3	13717	0.040	50.3	10.80		6.14	7.81	
LMC-SMP6	6	11200	0.090	4.53×10^{3}	10.96		8.06	8.75	
LMC-SMP7	8	20983	0.023	1.11×10^{3}	10.97		7.76	7.78	
LMC-SMP8	4	8414	0.000	$2.77{\times}10^5$	11.25		6.76	8.14	
LMC-SMP9	6	15366	0.000	2.37×10^3	11.04		7.97	8.06	
LMC-SMP10	5	13102	0.100	$3.53{\times}10^4$	10.99		7.57	8.90	
LMC-SMP11	3	29164	0.000	2.84×10^{3}	10.95		6.64	6.97	
LMC-SMP61	5	9361	0.014	1.78×10^{4}	11.11	9.41	7.32	8.70	
LMC-N141	5	10252	0.000	$5.04\!\times\!10^4$	11.07	8.49	7.81	8.45	
LMC-N66	7	14753	0.035	1.95×10^{3}	11.01		8.51	8.23	
SMC-SMP1	4	11235	0.000	5.03×10^4	10.97	8.59	6.98	8.12	
SMC-SMP2	6	12166	0.100	7.63×10^{3}	11.07	9.39	7.50	8.35	
SMC-SMP3	4	9103	0.106	$2.50{\times}10^4$	11.10	9.98	8.58	8.62	
SMC-SMP4	5	12888	0.027	$1.29{\times}10^5$	11.12	7.37	8.65	8.17	
SMC-SMP5	5	9760	0.150	5.33×10^{3}	11.12	8.94	7.50	8.55	
SMC-SMP6	4	12944	0.000	$6.51{\times}10^4$	11.08	9.50	9.95	8.16	
SMC-N87	8	11540	0.000	$1.80{ imes}10^4$	11.25	9.07	7.40	8.13	

Таблица 6. Содержания Не, С, N и О в туманностях Магеллановых облаков. Описание столбцов таблицы дано в заголовке табл. 3

этих величин. Если же различия содержаний превышали указанную величину, то были использованы только данные работ, опубликованных позже 2001 г.

Кроме содержаний в каталоге представлены: галактические координаты ПТ, их гелио- и галактоцентрические расстояния, а также высоты над плоскостью Галактики, рассчитанные нами в предположении, что расстояние Солнца до центра Галактики равно 7.7 кпк (Никифоров, Боброва, 1999), классификация ПТ по типам, а также массы центральных звезд. Источники наблюдаемых интенсивностей линий в спектрах ПТ и параметров туманностей могут быть найдены в цитированном каталоге.

ЗАКЛЮЧЕНИЕ

В настоящей работе на основании использования новых наблюдательных данных переопределено содержание He, C, N и O в свыше 120 ПТ Галактики и Магеллановых облаков. Из анализа полученных результатов можно сделать следующие выводы.

1. Ошибки в определении параметров туманностей и содержаний в них химических элементов определяются главным образом неточностями в определении наблюдаемых интенсивностей линий. При этом содержание Не определяется с точностью 10–15%, тогда как ошибки определенных содержаний С, N и O составляют 0.1–0.2 dex. Учет неточностей ионизационных поправок за стадии ионизации элементов, линии которых отсутствуют в спектрах туманностей увеличивает ошибки в определении содержания Не до 0.06 dex, а содержаний С, N и O – до 0.3 dex.

2. Исследование функции распределения параметра \mathbf{t}^2 при его определении из анализа спектра туманности NGC 7027 показывает возможное

присутствие двух компонентов, первый из которых возможно соответствует вкладу крупномасштабных, второй - мелкомасштабных вариаций температуры в туманности.

3. Из анализа содержаний элементов различных подсистем Галактики сделан вывод о возможном сходстве объектов балджа Галактики с туманностями типа II в классификации Пеймберта, а туманностей Магеллановых облаков – с объектами гало Галактики. Предложен сценарий последовательного формирования балджа и тонкого диска Галактики.

Исследование выполнено при финансовой поддержке программы Президента РФ поддержки ведущих научных школ (грант НШ-1318.2008.2).

СПИСОК ЛИТЕРАТУРЫ

- 1. Аллер Л., Лиллер У., Планетарные туманности (М.: Мир, 1966), с. 30.
- 2. Аллер, Чижак (L.H. Aller and S.J. Czyzak), Astrophys. Space Sci. 62, 397 (1979).
- 3. Аллер, Чижак (L.H. Aller and S.J. Czyzak), Astrophys. J. Suppl. Ser. 51, 211 (1983).
- 4. Брандт З., Статистические методы анализа наблюдений (М.: Мир, 1975), с. 312.
- 5. Бычков К.В., Холтыгин А.Ф., Элементарные процессы в астрофизической плазме (М.: Изд-во ГАИШ МГУ, 2007), с. 186.
- 6. Гарнетт и др. (D.R. Garnett, G.A. Shields, G.A. Skillman, et al.), Astrophys. J. 489, 63 (1997).
- 7. Генри (R.B.C. Henry), Origin and Evolution of the Elements, The Carnegie Observatories Centennial Symposia (Ed. A. McWilliam, M. Rauch, Cambridge: Cambridge Univ. Press, 2004), p. 43.
- 8. Головатый и др. (V.V. Golovatyj, A. Sapar, T. Feklistova, and A.F. Kholtygin), Astron. Astroph. Trans. 12, 85 (1997).
- 9. Грюенвальд, Вигас (R. Gruenwald and S.M. Viegas). Astron. Astrophys. 303, 535 (1995).
- 10. Гурзадян Г.А., Планетарные туманности (М.: Наука, 1962), с. 42.
- 11. Гутенкунст и др. (S. Gutenkunst, J. Bernard-Salas, S.R. Pottash, et al.), arXiv:0803.182v1 (2008).
- 12. Жанг и др. (Y. Zhang, X.-W. Liu, S.-G. Luo, et al.), Astron. Astrophys. 442, 249 (2005).
- 13. Зоккали и др. (M. Zoccali, A. Lecureur, B. Barbuy, et al.), Astron. Astrophys. 457, L1 (2006).
- 14. Иммели и др. (A. Immeli, M. Samland, O. Gerhard, et al.), Astron. Astrophys. 413, 547 (2004).
- 15. Куиреза и др. (С. Quireza, H.J. Rocha-Pinto, W.J. Maciel), Astron. Astrophys. 475, 217 (2007).
- 16. Ванг, Лиу (W. Wang and X.-W. Liu), MNRAS 389, L33 (2008).
- 17. Лиу и др. (X.-W. Liu, M.J. Barlow, M. Cohen, et al.), MNRAS 323, 343 (2001).
- 18. Лунева Ю.В., Холтыгин А.Ф., Астрофизика 45, 451 (2002).
- 19. Мариго (P. Marigo), Astron. Astrophys. 370, 194 (2001).
- 20. Маттеуччи (F. Matteucci), arXiv:0804.1492v1 (2008).

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 35 № 7

- 21. Мелендез и др. (J. Meléndez, M. Asplund, A. Alves-Brito, et al.), Astron. Astrophys. 484, L21 (2008).
- 22. Миланова Ю.В., Холтыгин А.Ф., Письма в Астрон. журн. 32, 618 (2006).
- 23. Миннити, Зоккали (D. Minniti and M. Zoccali), Formation and Evolution of Galaxy Bulges, IAU Symp. 245 (in press); arXiv:0710.3104v1 (2007).
- 24. Ниимура и др. (M. Niimura, S.J. Smith, and A. Chutjian), Astrophys. J. 565, 645 (2002).
- 25. Никифоров И.И., Боброва А.Ю., Кинематика и физика небесных тел, Приложение 2, 29 (1999).
- 26. Пеймберт, Костеро (M. Peimbert and R. Costero), Boletín de los Observatorios de Tonantzintla y Tacubaya 5, 3 (1969).
- 27. Пеймберт (M. Peimbert), Planetary Nebulae, IAU Symp. 76 (Dordrecht: D. Reidel Publishing Co., 1978), p. 215.
- 28. Рола, Пела (C. Rola and D. Pelat), Astron. Astrophys. 287, 677 (1994).
- 29. Рола, Стасинска (C. Rola and G. Stasinska), Astron. Astrophys. 282, 199 (1994).
- 30. Рубин (R.H. Rubin), Astrophys. J. 155, 841 (1969).
- 31. Рубин (R.H. Rubin), Astrophys. J. Suppl. Ser. 69, 897 (1989).
- 32. Станджеллини и др. (L. Stanghellini, M.A. Guerrero, K. Cunha, et al.), Astrophys. J. 651, 898 (2006).
- 33. Тсамис и др. (Y.G. Tsamis, M.J. Barlow, X.-W. Liu, et al.), MNRAS 345, 186 (2003).
- 34. Тсамис и др. (Y.G. Tsamis, J.R. Walsh, D. Pequignot, et al.), MNRAS 86, 22 (2008).
- 35. Фейбельман и др. (W.A. Feibelman, S. Hyung, and L.H. Aller), MNRAS 278, 625 (1996).
- 36. Харрингтон и др. (J.P. Harrington, M.J. Seaton, S. Adams, et al.), MNRAS 199, 517 (1982).
- 37. Хервиг (F. Herwig), Ann. Rev. Astron. Astrophys. 43, 435 (2005).
- 38. Холтыгин А.Ф., Астрофизика **20**, 503 (1984).
- 39. Холтыгин А.Ф., Феклистова Т.Х., Астрон. журн. 69, 960 (1992).
- 40. Холтыгин (A.F. Kholtygin), Astron. Astrophys. 329, 691 (1998a).
- 41. Холтыгин (A.F. Kholtygin), Astrophys. Space Sci. **255**, 513 (1998b).
- 42. Холтыгин А.Ф., Астрофизика 43, 627 (2000).
- А.Ф.. 43. Холтыгин Миланова Ю.В., http://www.astro.spbu.ru/staff/afk/GalChemEvol/-Neb Ab.html; http://www.astro.spbu.ru/staff/afk/-GalChemEvol/ExtraGal_Ab.html (2008).
- 44. Холтыгин и др. (A.F. Kholtygin, J.C. Brown, J.P. Cassinelli, et al.), Astron. Astrophys. Trans. 22, 499 (2003).
- 45. Холтыгин, Миланова (A.F. Kholtygin and Yu.V. Milanova), Galaxy Evolution Across the Hubble Time, IAU Symp. 235 (Cambridge: Cambridge Univ. Press, 2007), p. 324.

2009