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STOCHASTIC DATA IN ASTRONOMY: FOURIER ANALYSIS OF HIGHLY NONUNI-
FORM TIME SERIES

A. F. Kholtygin and A. B. Shneiwais UDC:  524.35: 539.186

The features of the CLEAN algorithm for Fourier analysis of time series with data separated by long pauses
are analyzed in detail.  Estimates are obtained for the limits of variability of the parameters of harmonic
components that can be determined on a specified time grid.  This analysis are used to search for harmonic
components in the spectral line profile variations of the star λ Ori A (O8III) obtained in 2001 with the 1 m
telescope at the Special Astrophysical Observatory of the Russian Academy of Sciences.
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1. Introduction

The most efficient way to study the structure of astronomical objects is to make spectral observations over a

sufficiently long period.  During these observations a large number of spectra are obtained for different times.  Sets of

spectra of this sort are usually called the dynamic spectrum of the object being studied.  The measured flux at frequency

ν
j
 is a random function which takes the random value ( )jitF ν ,  at a given time t

i
.  Thus, when analyzing the data obtained

over the entire observation period we examine a set of random processes.

This analysis yields information on a specific random process and reveals the constancy or variability of the

measured quantity.  If the quantity being studied turns out to be variable, then we can ask about the type of variability:

is it regular or the changes are random?  It is important to keep in mind the statistical nature of the answer to this question,

which depends on the accepted level of significance; for one level of significance an answer can be obtained, while for

another, not.

When studying random functions (the set of values of ( )jitF ν ,  at a given time t
i
) the problem of clarifying the

degree of dependence of the values of this function at different points may arise: are these values independent or does

some correlation exist among them?  In an analysis of an entire set of time varying random functions (the set of random
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processes ( )jitF ν ,  for fixed values of jν ) one may formulate the problem of establishing the presence or absence of a

dependence of the random processes for different values of the frequency variable jν  on one another.

Astronomical observations and, in particular, spectral observations, have a number of features which are not typical

of observations made under earthbound conditions, so special approaches are required to analyze them.  One such feature

is their uniqueness and nonreproducibility.  Thus, for example, when analyzing astronomical time series we are dealing

with a single segment of a series; this makes it difficult to obtain statistical estimates.  Most astronomical observations

are made at night and the very possibility of making them depends on suitable conditions, the state of the detection

apparatus, etc.  For this reason, data obtained through astronomical observations are in the form of nonuniform (unevenly

spaced) time series.

This article is the first of a series of articles devoted to the analysis of sets of random processes obtained from

astronomical observations.  The main instrument for this analysis is the methods of mathematical statistics, Fourier and

wavelet analysis techniques, and factor and correlation analysis, all of which are fully discussed in the literature [1-5].

We, on the other hand, shall emphasize those details of the analysis which are associated with the above specifics of

astronomical observations.  In the first article of this series we discuss Fourier analysis techniques for nonuniform time

series obtained in the course of spectral observations of stars in early spectral classes.

2.  Statement of the problem

Suppose that a series of observations at time t
i
 yields n values of a random function F(t

i
, x

j
) with i  = 1, ..., m,, where

m is the number of observations that have been made, and j  = 1, ..., n, where x
j
 is a parameter, such as the average wavelength

of a spectral interval within which the radiant flux from the object under study varies.  In the case, for example, of spectral

observations the F(t
i
, x

j
) are the measured radiation fluxes at time t

i
 ,1 arriving from the object within specified spectral

intervals.

The measurements are one of the realizations of a two-dimensional random quantity F(t,x) which represent a

random process for each value of x.  In this article we shall assume that the random quantities F(t, x
k
) and F(t, x

l
) with

lk ≠  are independent for arbitrary times t.  We shall also assume that the step size for the time grid is the same for all

x.

Thus, an analysis of the two-dimensional random quantity F(t,x) reduces to studying n independent time series

( ) ( )jj xtFtF  ,≡ , where j  = 1, ..., n.  In the following we shall assume that all the time series are centered, i.e.,

( )∑
=

=
m

i
ij tF

1

, 0 (1)

and, also, that any linear trend (if it was present) has been eliminated from the time series.  G
j
(t) denotes the values of

F
j
(t) after centering and elimination of any linear trend.  For convenience we shall omit the subscript i on the variable

t.  Let us assume that the function G
j
(t) can be represented as a set of harmonic components and white noise.  Then

1
  In general, observations are made over some finite time interval ∆t; however, an observation can usually be attributed to a certain instant

of time t , which might, for example, be taken to be the middle of the interval ∆t.
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( ) ( ) , 2cos
1

NN

L

k
kkk tAtG σ+ϕ+πν= ∑

=
(2)

where A
k
, kν , and kϕ , respectively, are the amplitudes, frequencies, and phases of the harmonic components, L is the

number of harmonics, N  is a normally distributed random quantity with zero mathematical expectation and unit

dispersion, and Nσ  is the standard deviation of the noise component.  Let ( )LkAA kmax  ..., ,1 ,max ==  be the maximum

amplitude of the harmonic components.

We write σ
n
 = A

max
/U, where U is a characteristic of the degree to which the noise component contributes to the

experiment signal.  U >> 1 corresponds to a small contribution from the noise component.

Two problems can be formulated here.  The first is to find the harmonic components at a specified level of

significance q−=α 1  (q << 1) in real series of observations.  The second is the same as the first, but for model time series

on a temporal grid determined by the real series with model harmonic components and with the parameters for the

harmonic components obtained by solving the first problem.  In this case the solution of the model problem should

confirm the reliability with which the harmonic components have been found from the real series at the specified level

of significance.

3.  Fourier analysis of model line profiles

One of the purposes of this article is to construct an optimal algorithm for finding the harmonic components in

the experimental signal.  The most effective way to detect harmonic components from an initial signal when the time

series are nonuniform is the CLEAN algorithm [14].  In this paper we shall use a modified version of this algorithm

described in Ref. 3.  The Cleanest algorithm [7,8] is also currently in use, but it offers no significant advantages for

analyzing highly nonuniform time series.

We shall state the problem in the following way:  during an analysis by the CLEAN method of a real time series

G 
obs(t) on a temporal grid determined by the times the observations to be analyzed are made, let the harmonic components

kν , A
k
, and kϕ ,  with Lk  ..., ,1= , be found.  Equation (2) is then used on the same temporal grid to construct a model

time series that includes harmonic components with the frequencies, amplitudes, and phases (kν , A
k
, kϕ ,  Lk  ..., ,1= )

determined above, which, as we assume can actually be present in the observed time series.

A detailed analysis of the model series is carried out for different values of L and a determination is made of

whether the given components can be isolated from the model series for specific values of ϕν  , , A  or whether the found

values of the parameters belong to false peaks in the Fourier spectrum.

In addition, we also solve the problem of how close the parameters ∗∗ν kk A , , and ∗ϕk  obtained as a result of the

Fourier analysis of the model series are to the corresponding values kν , A
k
, and kϕ .

3.1.  Constructing model time series.  Constructing model time series requires selecting a temporal grid, a set

of parameters kν , A
k
, and kϕ  in Eq. (2), and a ratio U.  In analyzing observations that have already been made, these

parameters are determined by the real time grid and parameter set determined by analyzing the observations.  For planning

future observations with the aim of choosing an optimal strategy for making them, it is appropriate to choose parameters
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close to their typical values for real observations.

Based on a study [6] of spectra of several bright O-supergiants obtained on the 1 m telescope at the Special

Astrophysical Observatory (SAO), we shall assume that the average exposure time t
exp

 is 10-15 minutes (0.007-0.01 day).

The total observation time T
obs

 for the chosen object depends on the time of year, the weather conditions, and its

declination and culmination time.  For a suitable choice of observation date, T
obs

 is 4-10 hours.  Profile variations with

a characteristic time of 2-6 hours [6] are studied using observations taken over a number N
night

 of observation nights.

We shall assume initially that the observations are organized in an ideal fashion; that is, on each of the N
night

 nights

the observations begin at the same time, so the number N
obs

 = T
obs

/t
exp

 of observations per night is strictly constant when

t
exp

 is held constant for the entire observation period.  Thus, on each of the N
night

 nights, N
obs

 observations are made,

followed by N
gap

 = (1 - T
obs

)/t
exp

 gaps (for times measured in days).

We shall consider the time of each individual measurement to be the midpoint of the exposure and assume that

the time of the midpoint of the first exposure on the first observational night corresponds to time T = 0, so the time of

observation No. i on observational night j is given by ( ) ( ) expk tijt 11 −+−= , where ( ) iNjk obs+−= 1 .

In reality, from 15 to 60 spectra of a star can be obtained over a single observation night with a characteristic

ratio NmaxA σ=U  for the variable components of the lineshapes in the spectrum of the observed stars of 63−=U .  The

number of observations and their starting time can, in general, vary from night to night.  For a more realistic description

of the temporal grid for the observations, we shall use the formula

( ) ( ) , 11 jexpk Ttijt ∆+−+−= (3)

where jT∆  is the shift in the time of the observations during night No. j relative to the starting time of the observations

during the first night.

As an illustration, Fig. 1 shows several temporal grids corresponding to different observation strategies.  The time

t
exp

 between successive observations has been taken to be 13.1 minutes (00910.≈  day), a typical exposure time for spectral

Fig. 1.  Temporal grid for the model series.  The time is
measured in days and the times at which values of the series
are obtained are indicated by arrows.  The labels correspond
to the model sequences 1-5 discussed in Section 3.1.

Time, days

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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observations of bright supergiants on the 1 m telescope at the SAO [6].

The upper sequence of time markers (No. 1 in Fig. 1) corresponds to hypothetical around-the-clock observations

(e.g., on an extraterrestrial observatory).  Such observations might, in principle, be organized on the earth through

cooperative observations at several telescopes located at different latitudes; however, organizing observations of this sort

is extremely cumbersome and such observations have thus far only been made for about ten objects.  (See Ref. 10, for

example.)  There is also the problem of reducing the observations made on different instruments to a unified system.  Time

marker sequences 2 and 3 in Fig. 1 correspond to ideally organized earthbound observations.  Here we have assumed that

observations were made over four days with constant t
exp

.  In real observations, t
exp

 is the sum of the exposure time, as

such, plus the array readout time, which we assume to be constant throughout the observation period.  For sequence No.

2 of time markers it was assumed that the observations were made for 10 hours, which is, in principle, possible for bright,

high-latitude objects, such as αCam during the winter.  Here 47 observations can be made during a night or 188

observations over the 4 observation nights.

Time-marker sequence No. 3 corresponds to 6-hour observation periods in each day.  Here 25 observations are made

per night and 100, over the entire observation period.

In order to account for realistic, practical observations, when bad weather causes the loss of an observation night,

we have constructed time sequence No. 4 assuming that no observations were made on the third night.

And, finally, the last time sequence, No. 5, corresponds to real observations of the star λOri made on the 1 m

telescope at the SAO in December 2001.  Then, 28 observations were made on the first night, 24 on the second, and 23

on the fourth.  No observations were made on the third night.  The observations on the second and fourth nights began

0.019 and 0.024 days later, respectively, than on the first night.

The frequencies of the periodic components determined by analyzing lineshapes in the spectra of some stars in

spectral class O and in early subclasses of spectral class B lie in the range of 0.1-6 d-1 with periods dh 104 ÷=P

[11,9,10,6,13].  Thus, our problem involves choosing a method for determining the harmonic components of time series

with these frequencies specified on the temporal grids shown in Fig. 1.

3.2.  Choice of optimal values for the parameters.  When determining the optimal values for the parameters A ,ν ,

and ϕ  of the harmonic components of the signals, it is important to make a correct choice for the parameter χ  which

determines the density of the sample of values for the frequencies used for calculating the refined Fourier spectrum of

the signal being analyzed.  Larger values of χ  correspond to a denser frequency grid.  The difference between neighboring

values on the grid is χδν 1~ .

Our analysis shows that for both uniform and nonuniform time series with A/N > 1 the parameters A ,ν , and ϕ

determined using the CLEAN algorithm depend significantly on the choice of χ .  The effect of improvements in the

accuracy of these parameters when choosing an optimal value of ϕ  is illustrated in Table 1.

It was assumed that the observations were made over 3.3 days with a step size of 0.00909 days, for a total of 364

values of the test function.  The test series on the given time grid is assumed to be a cosine curve with frequencies ranging

from 0.2 to 50 with the ratio 5=U , A=1  and 00.=ϕ .  The table shows clearly that a suitable choice of χ  yields much

more accurate values for the parameters than a constant value of 5=χ .

Choice of the optimum value of g.  The parameter g determines the extent to which a found harmonic is deducted

from the “dirty” periodogram.  g = 1 means that in each step of cleaning up the periodogram the found harmonic is

subtracted entirely.  For time grids that are close to uniform, choosing g < 1 makes it possible to improve the quality
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of cleanup of the periodogram [11].  Our calculations showed that for the highly nonuniform series considered in this

article, the optimum choice is g = 1.

Choice of the optimum value of X
q
.  X

q
 determines the threshold for detection of a signal in the noise with a

probability of q−=α 1  for uniform and nonuniform time series.  To obtain the value of this parameter we simulated white

noise for a given time series and studied the maximum counting statistics for the periodogram.

Let us assume that N >> 1 white noise simulations have been carried out and that for m of them the maximum count

exceeds X
q
.  In that case we assume Nm−=α 1 .

4.  Degree of reliability of the harmonic components determined for the test signal

In the case of highly nonuniform time series the CLEAN algorithm for refining the periodograms does not provide

complete confidence that the resultant periodic component of the time series being analyzed is actually present in the

series and not a false component.  In addition, even if a harmonic component found by analyzing a specific series actually

is present in the series, the accuracy with which its parameters are determined may be low.

In order to establish the degree of reliability of the presence of a found harmonic component in the test time series

and to estimate the errors in determining its parameters, we shall use the following method.  Let us assume that applying

the CLEAN algorithm to the time series reveals component with parameters A ,ν , and ϕ .  We then construct a sequence

of model time series with that fixed value of A and values of ν  and ϕ  within the intervals maxmin ν≤ν  and maxmin ϕ≤ϕ

chosen so as to encompass all the possible values of ν  and ϕ  for the given process.  In particular, ϕ  is chosen to be

within the interval π≤ϕ≤ 20 .

For all values on the ( ϕν  , ) grid a model time series is analyzed using the CLEAN algorithm and the parameters

∗∗ν A , , and ∗ϕ  are found.  then the errors ∗ν−ν=ν∆ , ∗−=∆ AAA , and ∗ϕ−ϕ=ϕ∆  these model series parameters

TABLE 1.  The Differences Between the Exact Values of the Parameters

ν , A, and ϕ  and those determined by the CLEAN method for 5=χ  and
an optimal choice of the parameter  χ .

        || calcν−ν              || calcAA−          || calcϕ−ϕ

ν 5=χ optimalχ 5=χ optimalχ 5=χ optimalχ

0.21 0.032 0.032 0.075 0.075 0.47 0.47

0.51 0.035 0.003 0.029 0.016 0.39 0.05

0.71 0.017 0.003 0.018 0.005 0.17 0.04

1.11 0.010 0.000 0.002 0.002 0.09 0.04

2.20 0.020 0.000 0.008 0.001 0.20 0.03

3.30 0.03 0.000 0.022 0.000 0.33 0.04

4.30 0.00 0.00 0.000 0.000 0.01 0.01
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are determined.

An accuracy criterion for the determination of a given parameter is selected that reduces to choosing the maximum

possible deviation of the exact and found value for each of the parameters for the process being analyzed.  That is, it

is assumed that if the errors in determining the parameters of the found harmonic component ∗∗ν A , , and ∗ϕ  did not

exceed the chosen maximum deviations, then this component is present in the process being analyzed.  If, on the other

hand, the error in determining the magnitude of even one of the parameters exceeds the maximum possible error, then

it is assumed that this harmonic cannot be recovered on the given time grid with sufficient accuracy.

Our preliminary analysis [6] showed that the frequencies of the possible periodic components of the lineshape

variations for the time grid shown in Fig. 1 lie within the interval of 0.3-2.0 d-1.

Let us consider three accuracy criteria:

Criterion A: 10.<ν−ν ∗ , 10.AA <− ∗ , and 10.<ϕ−ϕ ∗ ;

Criterion B: 20.<ν−ν ∗ , 20.AA <− ∗ , and 20.<ϕ−ϕ ∗ ; and,

Criterion C: 50.<ν−ν ∗ , 50.AA <− ∗ , and arbitrary ∗ϕ−ϕ .

The time is taken to be measured in days, frequencies in d-1, and phase ϕ  in radians.  The amplitudes of all the

model line profiles were assumed to be 1.

Criteria A and B make it possible to evaluate the frequency, amplitude, and phase of an unknown periodic process

with a fairly high degree of reliability, while criterion C only indicates that a periodic process is present in a given time

series but additional observations are required for a reliable determination of the characteristics of this process.

Using these accuracy criteria for the parameters A ,ν  and ϕ , we now introduce the reliability function ( )K , , ϕνR ,

defined as

( )




=ϕν
satisfied, is  criterion , 0

satisfied, is  criterion, 1
 , ,

K
K

KR

The value of the reliability function ( )K , , ϕνR  clearly depends on the choice of accuracy criterion K . The degree

of reliability with which an unknown harmonic component is isolated from a time series can be conveniently illustrated

with the aid of reliability plots which show the values of ( )K , , ϕνR  as functions of ν  and ϕ .

Figure 2 is an example of plots of this type for the time grids shown in Fig. 1 and the accuracy criteria A, B, and

C.  In this figure the ranges of ν  and ϕ  within which the reliability function ( ) 1 , , =ϕν KR  are indicated in black.  The

parameters of the model series can be recovered with the specified accuracy within these regions.  The figure shows that

when the weakest accuracy criterion C is used, the parameters of an harmonic component specified on all the temporal

grids can be recovered in the regions with 2≥ν  for all possible values of ϕ  and for all the time sequences considered

here.

At the same time, for a series with large gaps (the middle and right hand reliability plots in the lower series) in

the region with 2≤ν  the possibility of determining ν  and ϕ  depends on their specific values.  For example, for time

sequence 3 there are regions of frequency ν  (in particular, for 2=ν ) within which the parameters of a harmonic

component that is actually present in the time series cannot be recovered for any values of ϕ .

When the stricter accuracy criteria A and B (upper and middle rows of reliability plots in Fig. 2) are used, the region

where the reliability function ( )K , , ϕνR  equals zero is considerably larger.  Even in the case where observations are made
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without any gaps, for reliability criterion A (leftmost plot in the upper row of Fig. 2) there is a very large range of values

of ν  and ϕ  within which an harmonic component of the series is not recoverable in principle with a specified degree

of accuracy.

Figure 3 shows more detailed reliability plots for a harmonic signal with the parameters [ ],2 0∈ν  and [ ]π∈ϕ ,2 0 .

This figure shows clearly that for the choice of accuracy criterion A, recovery of components of a periodic signal

that is present in the analyzed time series on a temporal grid with large gaps is possible only for a very narrow region

of the parameters ν  and ϕ .

Fig. 2.  Plots of the reliability with which the parameters ν
and ϕ  are determined for accuracy criteria A (upper row), B
(middle), and C (lower).  In each of these rows, the leftmost
plot corresponds to a time sequence 1 (around-the-clock
observations for four days), the center plot, to sequence 2
(observations for 10 hours on each of nights), and the
rightmost plot, to sequence 4 (observations with the third
night omitted). 6=U .
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Going from accuracy criterion A to criterion B increases the region over which the parameters of the harmonic

components can be recovered reliably, but even in this case for most of the possible values of ν  and ϕ   an harmonic

component that is certainly present in the analyzed series cannot be recovered in principle.

5.  Search for regular components in the variation of lineshapes from the star λλλλλ Ori A

In order to test the method for optimal search for harmonic components in a signal discussed above, we have

analyzed the variations in the lineshapes in the spectrum of λ Ori A.  The observations of λ Ori A were made on three

nights over the period November 29- December 4, 2001, using the 1 m telescope at the SAO.

The observations were made using the CEGS Coude echelle-grating spectrometer on the 1 m telescope at the SAO.

A Wright Instruments CCD with a detector size of 1242×1152 pixels.  A spectral resolution R = 45000 (0.08 Å/pixel in

the Hα region) was obtained in the range λ = 4000-8000 Å for an entrance slit width of 2".

The procedure for processing the CCD images and obtaining the difference spectra is described elsewhere [6].  The

wavelength scales were determined taking into account the corrections for the earth’s rotation and for its revolution about

the sun.  A total of 75 spectra were obtained in 2001.  The Fourier spectra of the variations in the difference profiles in

the spectra of  λ Ori A obtained by the above described technique for Fourier analysis of nonuniform time series are shown

in Fig. 4.

Taking the results of the preceding analysis and using the reliability plots we have obtained, we can discern the

presence of harmonic components with frequencies 1
1 50 −≈ν d. , 1

2 750 −≈ν d. , and 1
3 31 −≈ν d.  in the lineshape

Fig. 3.  Plots of the reliability with which the parameters ν
and ϕ are determined for a real time sequence (sequence 5
of Fig. 1).  The plot on the left shows the values for reliability
criterion A, and on the right, for criterion B.
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variations for the spectrum of this star; however, we cannot precisely establish the localization of these components within

specific wavelength intervals (Doppler velocities), since the analysis of the preceding section shows that, for most phases

of a harmonic component, its parameters cannot be obtained for the given temporal grid.

Since the phase of a harmonic component of the variations in the lineshapes varies along the line profile itself

[11,12], we may assume that the harmonic components found here are present in other parts of the profile, as well.  Our

analysis shows that a larger number (200-300) of spectra of this star will be required to identify these components.

6.  Conclusions

The preceding analysis yields the following conclusions:

- For nonuniform temporal grids there is a set of frequencies which can be determined (for a given signal/noise

Fig. 4.  Fourier spectra of the variations in the difference profiles of the
HeII λ4686 Å, HeI λ4713 Å, CIII λ5696 Å, and Ha lines in the frequency

range 1
20

−−=ν d .  Only those amplitudes of the Fourier spectra
corresponding to a significance 1- q > 0.999 for the presence of the
given variable component are shown.  Darker values in these plots
correspond to higher amplitudes.
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ratio) based on a Fourier analysis of a time series on this grid.  Frequencies outside this set cannot be detected.

-  For a given temporal grid and a given signal/noise ratio for a harmonic component with a definite frequency

ν  there is an interval of phases within which the CLEAN algorithm (or modifications of it) can be used to find the

parameters A and ϕ  of the component ν  with a given accuracy.  Outside this phase interval, this problem cannot be

solved.

- There is a range of frequencies ν  and phases ϕ  within which the parameters A and ϕ  of the harmonic

components cannot be found with sufficiently high accuracy (criteria A and B) even for uniform time series.
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