Астрофизика, 43, 627- 640 (2000)

УДК 524.358:539.186

Излучение неоднородной плазмы: интенсивности линий и определение содержания элементов в газовых туманностях с флуктуациями T_e и n_e.

А.Ф. Холтыгин

Предложен метод определения содержания химических элементов в планетарных туманностях, основанный на учете реальных функций распределения ошибок измерения интенсивностей линий. В рамках предложенного метода учитываются как флуктуации температуры, так флуктуации плотности вещества туманности. Представлены результаты определения содержаний С и О и амплитуд флуктуаций температуры и плотности.

Emission of the inhomogeneous plasma: line intensities and element abundances in the gaseous nebulae with $T_{\rm e}$ and $n_{\rm e}$ fluctuations.

A.F.Kholtygin¹ ¹ Astron. Inst. of St.Petersburg University

Аннотация

We present the method how to find the optimal element abundances in the planetary nebulae (PNe) taking into account both the real probability distribution functions for the line intensities and the small-scale temperature and density fluctuations. Results of modelling the PNe spectra and CO abundance determinations are given.

Излучение неоднородной плазмы: интенсивности линий и определение содержаний элементов в газовых туманностях с флуктуациями T_e и n_e.

А.Ф. Холтыгин

1 Введение

Одним из наиболее хорошо известных классов объектов разреженной плазмы в нашей и других галактиках являются газовые туманности (планетарные и диффузные). Важнейшей задачей исследования этих объектов является их диагностика – определение параметров туманностей (электронной температуры и концентрации и т.д.) и содержаний в них химических элементов. Определения содержания элементов в ПТ могут быть использованы для проверки теорий эволюции звезд промежуточных масс 1 — 8 M_{\odot} [1, 2], а также для изучения химической эволюции Галактики (см., например, [3, 4, 5]).

Обычно содержание элементов (за исключением водорода и гелия) находится по интенсивностям линий, возбуждаемых электронным ударом. Как оказалось, интенсивности этих линий сильно зависят от амплитуды как крупномасштабных (сравнимых по размеру с самой туманностью), так и мелкомасштабных флуктуаций температуры в туманностях, (см., например [6, 7]). В работе [8] отмечено, что существенное влияние на интенсивности линий могут иметь и вариации электронной концентрации в туманностях. Из вышесказанного очевидно, что флуктуации как температуры, так и плотности (концентрации) газа туманностей должны приниматься во внимание при определении содержания элементов в туманностям по интенсивностям линий в их спектрах.

Важное значение при интерпретации спектров туманностей имеет учет ошибок измерения интенсивностей линий в спектрах туманностей. С уменьшением интенсивности линии относительная ошибка измеренной интенсивности увеличивается. Недавно было показано [9], что интенсивности линий с отношением сигнал/шум S/N ≤ 6 могут быть сильно переоценены (в 2-6 и более раз). В работе [10] продемонстрировано, что переоценка интенсивностей слабых линий в спектрах туманностей может быть одной из причин расхождения содержания элементов в туманностях, определяемых по интенсивностям рекомбинационных линий (рекомбинационного содержания) с одной стороны и линий, возбуждаемых электронным ударом (столкновительного содержания) с другой.

Целью настоящей работы является определение содержания атомов при учете как флуктуаций температуры и плотности газа в туманностях, так и различий функций распределения ошибок измерения интенсивностей линий. Методика настоящей работы является развитием методов, предложенных в работах [11, 12]. В отличие от указанных публикаций, в настоящей работе, производится одновременный учет флуктуаций температуры и электронной концентрации при расчете интенсивностей линий, а также более точно вычисляются интенсивности линий иона СІІІ.

Основные формулы для расчета интенсивностей линий в среде с флуктуациями температуры и плотности газа приводятся в параграфе 2. Следующий параграф посвящен описанию используемой модели туманности и статистической процедуры определения параметров туманностей из сравнения наблюдаемых и рассчитанных интенсивностей линий. В параграфе 4 приводятся найденные параметры для ряда туманностей и результаты определения содержания С и О в этих туманностях. В последнем параграфе представлены некоторые заключения и выводы.

2 Интенсивности линий в спектрах разреженной плазмы с флуктуациями температура и плотности

Мы будем рассматривать возбуждаемые электронным ударом интеркомбинационные и запрещенные линий ионов С, N и O (столкновительные линии), а также рекомбинационные линии ионов этих элементов в спектрах туманностей. Как известно, туманности прозрачны в таких линиях, поэтому полная энергия, излучаемая туманностью в какой-либо рекомбинационной или столкновительной линии иона Х:

$$E_{\rm ki} = E_{\rm ki} = h \,\nu_{\rm ki} \int\limits_{V} n_{\rm F} \, r_{\rm ki}^{\rm eff} \, dV \,. \tag{1}$$

Здесь ν_{ki} - центральная частота линии, V - полный объем газа, излучающий в данной линии, $n_{\rm F} = n({\rm X}_{\rm F})$ - концентрация иона ${\rm X}_{\rm F}$, ответственного за образование линии. Для столкновительных линий ${\rm X}_{\rm F} \equiv {\rm X}$, тогда как для рекомбинационных линий ${\rm X}_{\rm F} \equiv {\rm X}^+$. Величина $r_{\rm ki}^{\rm eff}$ определена Рудзикасом и др. (см., [13]) и носит название эффективный коэффициент образования линии. Эта величина является обобщением понятия эффективного коэффициента рекомбинации, введенного в работе [14].

Для рекомбинационных линий, $r_{ki}^{\text{eff}} = n_e \, \alpha_{ki}^{\text{eff}}$, где n_e – электронная концентрация, а α_{ki}^{eff} – эффективный коэффициент рекомбинации линии $k \to i$. Для линий, возбуждаемых электронным ударом, $r_{ki}^{\text{eff}} = n_e \, q_{ki}^{\text{eff}}$. Здесь q_{ki}^{eff} – эффективный коэффициент столкновительного возбуждения в линии $k \to i$, определенный таким образом, что величина $(4\pi)^{-1} n_e n(X) \, q_{ki}^{\text{eff}}$ равна коэффициенту излучения в линии.

Значения полных энергий, излучаемых туманностью в линиях могут быть использованы для нахождения отношений потоков в соответствующих линиях спектров туманностей (исправленных за межзвездное поглощение). В дальнейшем мы будем использовать отношения полных энергий E_{ki}/E_{mn} для определения теоретических отношений потоков излучения в этих линиях F_{ki}/F_{mn} . В том случае, когда регистрируется излучение в линиях, приходящее только от части туманности, отношения потоков могут отличаться от отношений соответствующих полных энергий из-за эффектов рассеяния излучения на пылинках в туманности. В настоящей статье мы ограничимся линиями ионов, формируемых в зонах ионизации СШ-V, NIII-IV и ОШ, в которых пылинки практически отсутствуют и указанным эффектом можно пренебречь.

В предположении, что коэффициент $r_{\rm ki}^{\rm eff}$ относительно мало меняется внутри объема, излучающего в рассматриваемой линии, он может быть заменен значением $r_{\rm ki}^{\rm eff}(T_0, n_{\rm e}^0)$, взятым при средних по излучающему объему значениях температуры и электронной концентрации в туманности:

$$E_{\rm ki} \approx E_{\rm ki}^{0} = h \,\nu_{\rm ki} \, r_{\rm ki}^{\rm eff}(T_{0}, n_{\rm e}^{0}) \int_{V} n_{\rm F} \, dV = h \,\nu_{\rm ki} \, r_{\rm ki}^{\rm eff}(T_{0}, n_{\rm e}^{0}) \, N_{\rm F}, \qquad (2)$$

где $N_{\rm F}$ - полное число ионов X_F. Величина T_0 определена в работах [15, 16]:

$$T_{0} = \int_{V} T_{e} n_{\rm F} \, dV / \int_{V} n_{e} \, n_{\rm F} \, dV \,. \tag{3}$$

Согласно [15] параметр t^2 , характеризующий амплитуду флуктуаций температуры, определяется соотношением:

$$t^{2} = \frac{\int (T_{e} - T_{o})^{2} n_{\rm F} n_{e} \, dV}{T_{o}^{2} \int n_{\rm F} n_{e} \, dV}.$$
(4)

В предположении $t^2 \ll 1$, полная энергия излучаемая туманностью в линии $k \to i$ может быть записана в виде:

$$E_{ki} = E_{ki}^0 \left(1 + \mu \, t^2 \right) \,, \tag{5}$$

где энергия E^0 , излучаемая однородной туманность с $T_e = T_o$ определяется выражением (2), а

$$\mu = \left[\frac{1}{2} \frac{\partial^2 r_{ki}^{\text{eff}}}{\partial T_{\text{e}}^2} (r_{ki}^{\text{eff}})^{-1} T_{\text{e}}^2\right]_{T_{\text{e}} = T_o} .$$
 (6)

Приближенные выражения для параметра μ даны в работах [15, 16, 17]. Очевидно, что применимость формулы (5) ограничивается предположением о малости величины t^2 про сравнению с единицей. Наши вычисления показали, что "малость" может в данном случае толковаться очень широко. Даже при значениях $t^2 \approx 0.25$, соответствующим отклонениям от средней температуры в туманности равным 50%, отличия полных энергий излучаемых туманностями в линиях видимой и УФ областей спектра, вычисленных непосредственно по формуле (1) и с помощью приближенного соотношения (5) не превышают 3-5%.

Величина изменения интенсивностей линий, как видно из формулы 5, определяется не самим параметром t^2 , а произведением μt^2 . Из формулы (6) видно, что абсолютные значения параметра μ малы для рекомбинационных линий в силу слабой зависимости эффективных коэффициентов рекомбинации от температуры. По этой причине интенсивности рекомбинационных линий слабо зависят от амплитуды флуктуаций T_e в туманности.

В то же время значения μ могут быть велики для линий, возбуждаемых электронным ударом, так как соответствующие эффективные коэффициенты образования линий экспоненциально быстро растут с ростом электронной температуры в области формирования линий (см., например, [17]), поэтому интенсивности столкновительных линий могут возрасти в 2 и более раз при переходе от однотемпературной туманности к туманности с той же средней температурой и умеренными значениями параметра $t^2 = 0.02 - 0.06$.

Полная амплитуда флуктуаций складывается как из крупномасштабных, связанных с зависимостью средней температуры от расстояния до центральной звезды туманности так и мелкомасштабных, с характерными размерами значительно меньшими размера самой туманности. Согласно расчетам [5] амплитуды крупномасштабных флуктуаций – $t_{-}^2 \leq 0.03$. В то же время для согласования наблюдаемых и теоретических интенсивностей линий спектров туманностей во многих случаях необходимо использовать значения $t^2 \approx 0.10 - 0.16$. Тем самым напрашивается вывод, что основной вклад в амплитуду температурных флуктуаций вносят мелкомасштабные флуктуации.

Следует отметить, что хотя механизм образования мелкомасштабных температурных флуктуаций в туманностях в настоящее время не вполне ясен (см., например, обсуждение этого вопроса в [16, 17]), само присутствие таких флуктуаций в туманностях подтверждается исследованиями структуры туманностей в видимой, ИК и радио областях спектра [18].

Очевидно, что образование в туманностях мелкомасштабных флуктуаций температуры сопровождается формированием мелкомасштабных флуктуаций плотности газа туманности и, в частности, флуктуаций электронной концентрации. Для более точного расчета интенсивностей линий необходимо учесть совместное влияние на интенсивности линий в туманностях как температурных флуктуаций, так и флуктуаций $n_{\rm e}$. Переходя к решению этой задачи, вместо самих значений $T_{\rm e}$ и $n_{\rm e}$ будем для удобства использовать следующие безразмерные параметры:

$$t = T_{\rm e}/10^4 K;$$
 $s = lg(n_{\rm e}) + \alpha.$ (7)

Для планетарных туманностей можно принять значения $\alpha = 0$, тогда как для менее плотных диффузных туманностей можно положить $\alpha = 2 - 3$.

Предположим, что амплитуды флуктуаций $T_{\rm e}$ и $n_{\rm e}$ малы по сравнению с самими значениями электронной температуры и концентрации. Определим средние по объему туманности, излучающему в рассматриваемых линиях, значения параметров t и s:

$$\langle t \rangle_{\rm F} = \overline{t} = \int_{V} t \, n_{\rm F} dV / \int_{V} n_{\rm F} \, dV = \int_{V} t \, n_{\rm F} dV / N_{\rm F} \tag{8}$$

И

$$\langle s \rangle_{\rm F} = \overline{s} = \int_{V} s \, n_{\rm F} dV \, / \int_{V} n_{\rm F} dV = \int_{V} s \, n_{\rm F} \, dV / N_{\rm F} \,. \tag{9}$$

Здесь усреднение производится по распределению иона X_F , ответственного за образование линии. Значение \bar{t} пропорционально средней электронной температуре в области формирования линий исследуемого иона: $\overline{T}_e = \bar{t} * 10^4 \text{ K}$. В то же время величина \bar{s} определяет только логарифмическое среднее n_e , поэтому равенство

$$\overline{n_{\rm e}} = \langle n_{\rm e} \rangle \approx 10^{\overline{s} - \alpha}$$

является лишь приближенным.

Определим следующие параметры, описывающие среднеквадратичные флуктуации T_e и n_e:

$$\boldsymbol{\tau}^{2} = \frac{\int (t-\overline{t})^{2} n_{\mathrm{F}} \, dV}{\overline{t}^{2} N_{\mathrm{F}}} \,, \tag{10}$$

$$\boldsymbol{\tau \sigma} = \frac{\int (t - \overline{t})(s - \overline{s}) n_{\mathrm{F}} \, dV}{\overline{t} \, \overline{s} N_{\mathrm{F}}} \,, \tag{11}$$

$$\boldsymbol{\sigma}^{2} = \frac{\int\limits_{V}^{V} (s-\overline{s})^{2} n_{\mathrm{F}} dV}{\overline{s}^{2} N_{\mathrm{F}}} \,. \tag{12}$$

В работе [11] показано, что параметр τ^2 должен быть близок к величине t^2 . При малых значениях параметров τ^2 , $\tau\sigma$ и σ^2 , полная энергия, излучаемая туманностью в линии $k \to i$ может быть записана аналогично соотношению (5):

$$E_{ki} = E_{ki}^0 \left(1 + \mu_{tt} \boldsymbol{\tau}^2 + \mu_{ts} \boldsymbol{\tau}\boldsymbol{\sigma} + \mu_{ss} \boldsymbol{\sigma}^2 \right)$$
(13)

Параметры μ_{tt}, μ_{ts} и μ_{ss} определяются следующими выражениями:

$$\mu_{tt} = \left[\frac{1}{2} \frac{\partial^2 r_{ki}^{\text{eff}}}{\partial t^2} (r_{ki}^{\text{eff}})^{-1} t^2\right]_{t=\overline{t}; s=\overline{s}},\tag{14}$$

$$\mu_{ts} = \left[\frac{\partial^2 r_{ki}^{\text{eff}}}{\partial t \partial s} \left(r_{ki}^{\text{eff}}\right)^{-1} t s\right]_{t=\overline{t}; s=\overline{s}},\tag{15}$$

$$\mu_{nn} = \left[\frac{1}{2} \frac{\partial^2 r_{ki}^{\text{eff}}}{\partial s^2} (r_{ki}^{\text{eff}})^{-1} s^2\right]_{t=\overline{t}; s=\overline{s}}.$$
(16)

Очевидно, что величина $\mu_{tt} = \mu$, где μ определено соотношением (6). Использование параметра *s* вместо величины n_e позволяет учесть значительные (до двух и более раз) отклонения от средней электронной концентрации в линейном приближении.

Зависимость параметров μ_{tt} , μ_{ts} и μ_{ss} от T_e и n_e для линий [OIII] $\lambda\lambda$ 4959+5007 представлена на Рис. 1 (**a**,**b**). Из рисунка ясно, что абсолютные значения коэффициентов μ_{ts} и μ_{ss} значительно меньше величины μ_{tt} . По этой причине только для туманностей высокой плотности

Рис. 1: Параметры μ_{tt} , μ_{ts} , и μ_{ss} для линии [OIII] λ 5007 в функции $T_{\rm e}$ (**a**) и $n_{\rm e}$ (**b**) и для ИК линии λ 52 мкм в зависимости от $T_{\rm e}$ (**c**) и $n_{\rm e}$ (**d**).

 $(n_{\rm e} > 10^6 cm^{-3})$ вклад флуктуаций $n_{\rm e}$ в интенсивности линий будет существенен. Более эффективно, как это ясно из Рис. 1 (c,d), использование для определение амплитуды флуктуаций $n_{\rm e}$ интенсивностей инфракрасных (ИК) линий переходов между уровнями тонкой структуры иона OIII.

Для иллюстрации возможности детектирования флуктуаций $n_{\rm e}$ приведем на Рис. 2 (**a** - **d**) зависимости отношения интенсивностей линий [OIII] 52 мкм/88 мкм от параметров τ^2 , $\tau\sigma$ и σ^2 . Зависимость этого отношения от параметра τ^2 пренебрежимо мала, как видно из Рис. 2 (**a**). В то же время зависимость указанного отношения от параметров $\tau\sigma$ и σ^2 , определяющих амплитуду флуктуаций электронной концентрации весьма заметна. Как видно из Рис. 2 (**d**), флуктуации $n_{\rm e}$ оказывают наибольшее влияние на отношение интенсивностей ИК линий [OIII] в спектрах низкотемпературных туманностей.

3 Модель туманности и процедура определения ее параметров

3.1 Модель

В настоящей работе мы используем эмпирическую модель туманности для вычисления интенсивностей линий ионов CII-CIV, NII-NIV, OII и OIII. В модели туманность описывается своей средней электронной температурой $\overline{T}_{\rm e}$ (параметром \overline{t}), средней электронной концентрацией $\overline{n}_{\rm e}$ (параметром \overline{s}) и параметрами τ^2 и σ^2 , описывающими среднеквадратичные амплитуды флуктуаций температуры и электронной концентрации в туманности, а также величиной корреляционного параметра $\tau\sigma$. Для расчета интенсивностей линий рассматриваемых ионов используется соотношение (13). В модели рассчитываются интенсивности как рекомбинационных линий, так и линий, возбуждаемых электронным ударом в ИК, видимой и УФ областях спектра. В модели рассматриваются как мультиплеты, так и отдельные линии. Под интенсивностью мультиплета

Рис. 2: Зависимости отношения интенсивностей ИК линий [OIII] 52 мкм/88 мкм от параметров τ^2 , $\tau\sigma$ и σ^2 .

мы понимаем сумму интенсивностей всех его компонентов. Относительные содержания углерода, азота и кислорода {C/H}, {N/H} и {O/H} предполагаются постоянными по всему объему туманности.

В общем случае каждый ион X^{n+} описывается собственными значениями параметров $\overline{T}_{e}(X^{n+})$, $\overline{s}(X^{n+})$, $\tau^{2}(X^{n+})$, $\tau\sigma(X^{n+})$ и $\sigma^{2}(X^{n+})$. Однако многочисленные вычисления (например, [19, 20]) показывают, что значения T_{e} и n_{e} , усредненные по распределению ионов СШІ, NIII и ОШ в туманности близки. Эти величины не отличаются более чем на 100-200 К. Близость указанных величин связана с подобием распределений указанных ионов в туманности. По этой причине и значения параметров τ^{2} , $\tau\sigma^{2}$ и σ^{2} для ионов СШІ, NIII и ОШ будут близки.

Значения параметров модели туманности для ионов CIV, NIV и CIV, формирующих рекомбинационные линии ионов CIII, NIII и CIV могут, в принципе, существеннее отличаться от значений этих параметров для областей ионизации CIII, NIII и OIII. Вероятно, все же, что эти отличия не слишком велики (см., в частности [20]), к тому же интенсивности рекомбинационных линий слабо зависят и от самих средних значений \overline{T}_{e} и от амплитуды флуктуаций T_{e} (см., [21]). В то же время, как показывают результаты наших расчетов, для описания интенсивностей линий однократно ионизованных ионов CII, NII и OII следует использовать свои значения параметров \overline{T}_{e} , \overline{s} , τ^{2} , $\tau\sigma$ и $\sigma^{2}(X^{n+})$. Таким образом мы используем следующий набор параметров модели туманности: \overline{T}_{e} , \overline{s} , τ^{2} , $\tau\sigma$, σ^{2} , {C/H}, {N/H} и {O/H}, где через {X/H} обозначено отношение содержаний N(X)/N(H).

Особым вопросом является выбор параметров \bar{t} и τ^2 для области HII. Объем этой области значительно превышает объем областей ионизации CIII, NIII и OIII, поэтому значение \bar{t} (HII) должно быть меньше, чем для указанных областей ионизации. В то же время эти различия не очень велики и не превышают 1000-1500 К (см., [20]), при этом интенсивности водородных линий (усредненные по всему объему области HII) меняются не более чем на 2-3%. По этой причине мы будем использовать для расчета интенсивностей линий HI значения параметров модели, принятые для зон ионизации CIII, NIII и OIII.

3.1.1 Ионизационные поправки

При определении полных содержаний ионов С, N и O по содержаниям отдельных ионов этих элементов необходимо вводить ионизационные поправочные факторы, учитывающие вклад ненаблюдаемых стадий ионизации. Содержание иона X^{m+} элемента X может быть получено из соотношения

$$N(\mathbf{X}^{m+}) = \mathrm{ICF}(\mathbf{X}^{m+}) \times N(X) \,. \tag{17}$$

где ICF(X^{m+}) - ионизационный поправочный фактор для иона X^{m+}. Обычно значения ICF получаются в результате построения ионизационных моделей туманностей. Проведенный нами анализ (см., [11]) показал, что значение ICF определяется главным образом классом возбуждения туманности E_x , определенным согласно [22]. Используя результаты многочисленных расчетов ионизационных моделей туманности, приведенные в работе [23], мы получили зависимости факторов ICF, усредненных по классам возбуждения туманности, от величин E_x (см. Рис. 2 статьи [11]). Эти зависимости были использованы нами для получения полных содержаний C, N, O. Найденные зависимости ICF от E_x для ионов углерода оказались близки к эмпирическим зависимостям, полученным в работе [24] на основании изучения рекомбинационных линий ионов углерода.

Следует отметить, что для рассматриваемых нами ионов и туманностей любых классов возбуждения сами величины ICF ≤ 2 . Проведенный нами анализ возможных ошибок в определении величин E_x приводят к заключению, что погрешности в определении полных содержаний C, N и O не превышают 20%.

3.1.2 Атомные данные и методика расчетов интенсивности линий

Атомные константы для ионов С, N и O были взяты из каталога [21]. Данные этого каталога использованы также для получения эффективных коэффициентов рекомбинации рекомбинационных линий HI, CII, CIII, CIV и NIII. При вычислении эффективных коэффициентов рекомбинации принимались во внимание вклады как фото, так и диэлектронной рекомбинации. Интенсивности запрещенных и интеркомбинационных линий рассчитывались в результате решения уравнений баланса населенностей уровней всех рассматривающих ионов по нашей собственной программе. Принимались во внимание переходы между уровнями тонкой структуры основного и всех метастабильных уровней.

3.2 Процедура сравнения наблюдаемых и рассчитанных интенсивностей линий

Обычный способ определения параметров туманности - итеративная процедура согласования наблюдаемых и рассчитанных интенсивностей линий. Результат такой процедуры очевидным образом зависит от принятого метода подгонки и от точности используемых данных.

Важно отметить, что интенсивности линий в спектрах туманностей измеряются с ошибкой, которая существенно зависит от интенсивности линий. Если ошибка измерения интенсивности сильных линий не превышает 5% (см., [25]), то ошибка в измерении интенсивностей слабых линий (интенсивность которых составляет меньше чем 0,01 интенсивности линии H_{β}) может составить 30-50% и более. Это обстоятельство обычно не принимается во внимание при определении небулярных параметров. Для учета различной точности измерения интенсивностей линий в работе [11] предложена процедура, основанная на принципе максимального правдоподобия (см., например, [26]). Такая же процедура использована и в настоящей работе. Определяемые согласно этой процедуре параметры туманности будем в дальнейшем называть *оптимальными*.

Следуя [11], предположим, что в большинстве случаев мы можем использовать нормальный

${T}_{ m e}=\!13312,\overline{n}_{ m e}\!=\!9.54{ m E}4$													
$m{ au^2}\!\!=\!\!0.036,m{ au\!\sigma}\!\!=\!\!0.04,m{\sigma^2}\!\!=\!\!0.028$													
O/H=5.01E-4, C/O=2.19, N/O=0.38													
Ион	λ, A	I^{obs}	\mathbf{I}^{calc}	$(\mathrm{I}^{obs} ext{-}\mathrm{I}^{calc})/\sigma(\mathrm{I}^{obs})$	$\sigma(\mathbf{I}^{obs})$								
CII	4267	0.54	0.34	0.61	0.32								
CIII	1907	1062.00	1061.41	0.01	19.20								
CIII	4650	0.75	1.49	1.95	0.38								
CIV	4658	0.32	0.70	1.54	0.25								
NIII	1750	32.00	32.92	0.12	7.44								
NIII	4640	1.40	0.61	1.53	0.52								
NIV	1486	52.00	51.99	0.00	9.48								
OIII	1663	49.00	51.33	0.25	9.20								
OIII	4363	27.50	30.43	1.27	2.30								
OIII	$4959 {+} 5007$	1920.00	1919.88	0.01	19.20								
OIII	$52 \mathrm{mkm}$	4.98	5.28	0.10	2.93								
OIII	$88 \mathrm{mkm}$	0.55	0.53	0.02	0.97								

Таблица 1: Интенсивности линий в спектре туманности NGC 7027

закон для функции распределения интенсивностей

$$P^{N}(I) = \frac{1}{\sqrt{2\pi}\sigma^{N}} \exp\left[-\frac{1}{2}\left(\frac{I^{obs}-I}{\sigma}\right)^{2}\right],\tag{18}$$

где для величины стандартного отклонения σ для линии с измеренной интенсивностью I^{obs} мы будем использовать данное в [10] выражение $\sigma^{N} = \gamma \cdot \sqrt{I^{obs} * I_{N1+N2}}$. Здесь I_{N1+N2} - суммарная интенсивность небулярных линий ОІІІ λ 4959+5007. Для величины коэффициента γ примем значение 0.01, основанное на анализе ошибок большого числа определений интенсивностей в спектрах туманностей (см. [10]). Результаты наших расчетов показывают, что изменение величины γ на порядок величины в ту или другую сторону практически не влияет на величину находимых параметров туманности.

Рис. 3 иллюстрирует процедуру нахождения оптимальных параметров модели туманности. В Табл. 1 представлен результат согласования наблюдаемых и рассчитанных интенсивности линий для туманности NGC 7027. Наблюдаемые интенсивности линий спектра туманности взяты из работ [27, 28] и [29].

Включение в список линий, используемых для определение параметров туманности, ИК линий OIII позволило оценить амплитуду флуктуаций $n_{\rm e}$ в туманности. Полученное нами значение σ^2 =0.028 соответствует отклонениям ±50% от среднего значения электронной концентрации в туманности. К сожалению сделать подобные оценки для других туманностей не представляется возможным в силу отсутствия надежных определений наблюдаемых интенсивностей ИК линий OIII.

В случае слабых линий для описания функции распределения интенсивностей линий вместо нормального распределения (18) может использоваться логарифм-нормальное распределение со смещением, предложенное в [9]. Результаты определения небулярных параметров с использованием этого распределения даны в работе [11]. Проведенный в данной работе анализ показывает,

Рис. 3: Отношения рассчитанных интенсивностей линий ионов СШ и ОШ и наблюдаемых в спектре туманности NGC 7027 от параметров модели туманности.

что использование логарифм-нормальное распределения не приводит к заметным изменениям определяемых параметров туманностей.

4 Параметры туманностей и содержания С и О

Описанная выше методика определения оптимальных содержаний использована нами в работах [11, 12] для нахождения содержания С и О более чем в восьмидесяти туманностях. В настоящей работе для ряда туманностей мы провели новые вычисления, основанные на использовании более точных атомных параметров и включении в модель иона СШ дополнительных уровней. В качестве источников интенсивностей линий мы использовали компиляцию интенсивностей, данную в работе [10], а также данные работ [23, 25, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38] Для туманности NGC 7027 мы использовали данные ИК наблюдений на спутнике ISO [28] для получения интенсивностей I(H_{β})=100 мы использовали относительный поток в линии H_{β}, данный в каталоге [39].

Полученные параметры туманностей и содержания С и О представлены в табл. 2. В колонках 1-2 таблицы даны название туманности и ее класс возбуждения. Параметры \overline{T}_{e} , τ^{2} и \overline{n}_{e} , а также содержания С и О приведены в колонках 3-7. Предсказанные потоки в ИК линиях ОІІІ даны в колонках 8-9 (в шкале I(H_β=100) и в колонках 10-11 (в единицах 10^{-20} Вт · см⁻²).

Анализ данных, представленных в Табл. 2 показывает, что ИК линии ОШ в спектрах многих ПТ вполне могут быть обнаружены при наблюдения с использованием современных приемниках ИК излучения.

	\mathbf{E}_x	$\overline{T}_{\mathrm{e}}$	$ au^2$	$\overline{n}_{ m e}$			ИК потоки			
Туманность					$\rm C/H$	O/H	$I(H_{\beta} = 100)$		10 ⁻²⁰ (Вт см ⁻²)	
					$\times 10^4$	$\times 10^4$	$52 \mu m$	$88\mu m$	$52\mu m$	$88\mu m$
$\mathrm{NGC}1535$	7	9103	0.009	2.03 E5	6.27	12.05	5.70	0.57	29.2	2.9
$\operatorname{NGC}2371-2$	9	7769	0.099	$2.63 \mathrm{E5}$	1.30	12.92	20.3	4.21	261	54.2
$\operatorname{NGC}2392$	8	14442	0.101	2.88E3	0.36	2.75	80.57	17.73	570	125.5
$\operatorname{NGC}2440$	9	12360	0.050	7.16E4	5.58	5.92	8.19	0.84	105	10.8
$\mathrm{NGC}2867$	7	10375	0.000	$6.39\mathrm{E4}$	12.5	7.48	12.6	1.30	91.3	9.4
$\operatorname{NGC}3242$	7	10080	0.069	$3.55\mathrm{E3}$	1.97	9.28	149	28.2	3333	631.9
$\operatorname{NGC}3918$	6	13066	0.021	4.61 E4	1.70	2.25	8.19	0.84	105	10.8
$\operatorname{NGC}4361$	10	23192	0.094	6.76E3	0.08	0.30	5.52	0.85	25.2	3.9
$\mathrm{NGC6210}$	5	7843	0.000	$2.55 \mathrm{E5}$	3.39	14.81	6.78	6.83	68	6.8
$\mathrm{NGC}6302$	9	16793	0.157	5.64E2	0.72	2.85	132	77.2	7491	4654
$\mathrm{NGC6572}$	6	8438	0.008	$9.53\mathrm{E4}$	5.83	10.67	13.6	.39	419.8	43.0
$\operatorname{NGC}6644$	7	10887	0.012	1.10 E5	4.29	7.20	7.36	0.74	0.3	0.03
$\operatorname{NGC}6720$	6	10300	0.048	$1.35\mathrm{E3}$	1.91	4.32	204	65.5	2238	717.7
$\operatorname{NGC}6741$	8	12439	0.098	7.76 E3	2.90	5.07	58.1	8.30	78.4	11.2
$\mathrm{NGC6818}$	9	11671	0.044	$2.51\mathrm{E4}$	6.47	7.59	8.52	0.89	178	18.6
$\operatorname{NGC}6826$	5	8789	0.010	3.16E3	1.67	4.79	132	26.1	1479	292.0
${ m NGC6853}$	$\overline{7}$	9910	0.045	4.37E3	3.07	5.41	92.6	16.0	3439	595.5
$\operatorname{NGC}6886$	8	11019	0.073	6.00 E3	6.54	7.99	104	16.1	613	94.8
$\operatorname{NGC}7027$	10	13272	0.026	$9.28\mathrm{E4}$	10.09	5.01	5.43	0.54	966	97.0
$\mathrm{IC}351$	$\overline{7}$	10273	0.101	$1.86\mathrm{E4}$	8.11	5.96	29.7	3.46	30	3.5
IC2003	8	10300	0.061	$2.95\mathrm{E}3$	3.04	6.31	130	27.1	211	43.9
IC2149	5	10328	0.030	$2.00\mathrm{E3}$	0.49	1.70	68.3	17.5	518	133
$\mathrm{IC}2165$	8	11815	0.032	$1.82 \mathrm{E5}$	9.23	4.72	2.80	0.28	19	1.9
$\operatorname{IC}3568$	5	10120	0.009	$8.80\mathrm{E4}$	1.73	3.33	5.46	0.56	12.5	1.3
$\mathrm{IC}4997$	5	13272	0.000	5.11E6	1.03	4.93	0.17	0.02	2	0.2
J 900	$\overline{7}$	12434	0.099	$6.56\mathrm{E2}$	6.19	3.30	157	80.6	507	261
${ m Me}2\text{-}1$	8	12300	0.049	$2.75\mathrm{E4}$	3.53	4.68	18.00	1.98	8	1.0

Таблица 2: Небулярные параметры, содержания С и О и предсказанные отношения потоков в линиях ОIII 52 μm и ОIII 88 μm

Примечание: для туманности ІС 4997 взяты наблюдения 1991 г.

5 Заключение

В работе исследовано влияние малых флуктуаций электронной температуры и концентрации на интенсивности линий спектров газовых туманностей. Рассмотрена методика одновременного определения параметров, определяющих амплитуды флуктуаций и содержания элементов в туманности. Рассчитаны интенсивности ИК линий [OIII] 52µm и 88µm. Сделаны следующие выводы:

1. Наблюдаемые интенсивности рекомбинационных и столкновительных линий ионов C, N и O могут быть представлены в рамках модели туманности с одним значением средней электронной температуры $\overline{T}_{\rm e}$ и средней электронной концентрации $\overline{n}_{\rm e}$, а также параметров, описывающих их флуктуации: : τ^2 , $\tau\sigma$ и σ^2 ,.

2. При определении небулярных параметров должны быть приняты во внимание как эффект флуктуаций T_e и n_e, так и функции распределения ошибок измерения.

3. Полученные небулярные параметры могут быть использованы для предсказания потоков излучения в ИК линиях переходов тонкой структуры, в частности, линий OIII 88 µm и OIII 52 µm

Работа поддержана грантом РФФИ 99-02-17207 и Федеральной программой Астрономия

Санкт-Петербургский государственный университет, Астрономический институт, Россия

Список литературы

- [1] Ю.Л. Францман, в сб. Химическая эволюция звезд и Галактики, М, Космоинформ, с. 34, 1992.
- [2] T.Blöcker, Astron. Astrophys., 297, 627, 1995.
- [3] С.В.Верещагин, А.Э.Пискунов, в сб. Химическая эволюция звезд и Галактики, М, Космоинформ, с. 5, 1992.
- [4] M.A.T.Groenewegen, L.B.van den Hoek, T.de Jong, Astron. Astrophys., 293, 381, 1995.
- [5] R. Gruenwlald, S. M. Viegas, Astron. Astrophys., 303, 535, 1995.
- [6] M.Peimbert, R.Costero, Bol. Obs. Tonatzintla y Tacubanya, 5, 3, 1969.
- [7] R.H.Rubin, Astroph. J., 155, 841, 1969.
- [8] R.H.Rubin, Astroph. J. Suppl. ser., 69, 897, 1989.
- [9] C.Rola, D.Pelat, Astron. Astrophys., 287, 677, 1994.
- [10] C. Rola, G.Stasinska, Astron. Astrophys., 282, 199 (RS), 1994.
- [11] A.F.Kholtygin, Astron. Astrophys., 329, 691, 1998.
- [12] A.F.Kholtygin, Astroph. Space Sci., 255, 513, 1998.
- [13] З.Б.Рудзикас, А.А.Никитин, А.Ф.Холтыгин, Теоретическая Атомная Спектроскопия, Изд. ЛГУ, Ленинград, 1990, 242с.
- [14] M.J.Seaton, Mon. Notis. Roy. Astron. Soc., 119, 90, 1959.
- [15] M.Peimbert, Astrophys. J., 150, 825, 1967.
- [16] M.Peimbert, S.Torres-Peimbert, V.Luridiana, Rev. Mex. Astron. Astrof., 31, 131, 1995.
- [17] A.F.Kholtygin, T.Feklistova, Baltic Astronomy, 1, 514, 1992.
- [18] M.Bryce et al., Mon. Notis. Roy. Astron. Soc., 284, 815, 1994.
- [19] R. Gruenwlald, private communication, 1997.
- [20] J.P.Harrington, M.J.Seaton, S.Adams, J.H.Lutz, Mon. Notis. Roy. Astron. Soc., 199, 517, 1982.
- [21] V.V.Golovatyi, A.Sapar, T.Feklistova, A.F.Kholtygin, Catalogue of atomic data for low-density astrophysical plasma, Astron. Astroph. Transac., 12, 85, 1997.
- [22] L.H.Aller, Gaseous Nebulae, Chapman-Hall, London, 1956
- [23] L.H.Aller, S.J. Czyzak, Astroph. J. Suppl. ser., 51, 211, 1983.
- [24] А.Ф.Холтыгин, Астрофизика, 20, 503, 1984.
- [25] W.A.Feibelman, S.Hyung, L.H.Aller, Mon. Notis. Roy. Astron. Soc., 278, 625, 1996.
- [26] В. Феллер, Введение в теорию вероятностей и ее приложения, М, Мир, 1967.
- [27] K.B.Kwitter, R.Henry, Astroph. J., 473, 304, 1996.

- [28] X.-W.Liu, M.J.Barlow, Nguen-Q-Rieu et al., Astron. Astrophys., 315, L257, 1996.
- [29] M.Perinotto, N.Panagia, P.Benvenuti, Astron. Astrophys., 85, 332, 1980.
- [30] L.H.Aller, S.J. Czyzak, Astroph. Space Sci., 62, 397, 1979.
- [31] R.B.C.Henry, K.B.Kwitter, J.W.Howard, Astroph. J., 458, 215, 1996.
- [32] S.Hyung, L.H.Aller, Astroph. J. Suppl. ser., 93, 465, 1994.
- [33] S.Hyung, C.D.Keyes, L.H.Aller, Mon. Notis. Roy. Astron. Soc., 272, 49, 1995.
- [34] S.Hyung, L.H.Aller, Mon. Notis. Roy. Astron. Soc., 278, 551, 1996.
- [35] J.B.Kaler, Astroph. J. Suppl. ser., **31**, 517, 1976.
- [36] K.B.Kwitter, R.B.C.Henry, Astroph. J., 493, 247, 1998.
- [37] X.-W.Liu, P.J.Storey, J.Daugtziger, M.Cohen, MNRAS, 312, 585, 2000.
- [38] R.H.Rubin, S.W.J.Colgan, M.R.Haas, S.D.Lord, J.P.Simpson, Astroph. J., 479, 332, 1989.
- [39] A.Acker, F.Ochenbein, B.Stenholm, R.Tylenda, Marcout J., Scholm C. Strasburg-ESO Catalogue of Galactic Planetary Nebulae, ESO, 1992.

ПОДПИСИ К РИСУНКАМ В СТАТЬЕ А.Ф. Холтыгина

Излучение неоднородной плазмы: интенсивности линий и определение содержаний элементов в газовых туманностях с флуктуациями $T_{\rm e}$ и $n_{\rm e}$.

Рис. 1. Параметры μ_{tt} , μ_{ts} , и μ_{ss} для линии [OIII] λ 5007 в функции $T_{\rm e}$ (**a**) и $n_{\rm e}$ (**b**) и для ИК линии λ 52 мкм в зависимости от $T_{\rm e}$ (**c**) и $n_{\rm e}$ (**d**).

Рис. 2. Зависимости отношения интенсивностей ИК линий [OIII] 52 мкм/88 мкм от параметров τ^2 , $\tau\sigma$ и σ^2 .

Рис. 3. Отношения рассчитанных интенсивностей линий ионов СШ и ОШ и наблюдаемых в спектре туманности NGC 7027 от параметров модели туманности.

Рис. 4: Параметры μ_{tt} , μ_{ts} , и μ_{ss} для линии [OIII] λ 5007 в функции $T_{\rm e}$ (**a**) и $n_{\rm e}$ (**b**) и для линии λ 88 μm в зависимости от $T_{\rm e}$ (**c**) и $n_{\rm e}$ (**d**).