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Abstract

The project is aimed at calculation of the cross�sections and rates for electron impact exci�
tation for levels up to n��� for atoms and their ions with Z���� and preparing the diagnostic
tools for analysis of the spectra of the astrophysical sources using the obtained atomic param�
eters� As a main instrument of the calculations we plan to use some versions of the Distorted
Wave approximation� that we consider optimal� including e�ects of exchange and con	guration
interaction when necessary� The 	rst results obtained in the framework of the project � the
cross sections and e�ective collision strengths for electron impact excitation of considered ions
are presented� The impact of the excitations into the high�lying states on the intensity of the
C� N and O ion lines in the spectra of low�density plasma and the cooling rates for these ions
are demonstrated�

� Introduction

The electron�impact excitation of highly�lying atomic levels can give a great contribution to the
intensities of the UV� optical and IR lines observed in the spectra of various types of the astro�
physical sources� For modelling the spectra of these objects and obtaining their parameters from
comparison of observed and calculated lines and continuum intensities we need a lot of atomic
data� The main bulk of those parameters are the transition probabilities �oscillator strengths� and
electron impact excitation cross sections �rates of excitation by electron impact��

The majority of the atomic data which are presented in the literature� in the atomic data
catalogue and databases �see� for example� ��� ���� refer to the ground and low lying states� At
the same time� for calculating the spectra of the astrophysical sources the rates of radiative and
collision transitions between highly�lying atomic and ionic states are necessary�

Here we present the project HILYS �Highly Lying States� aimed at obtaining the atomic pa�
rameters of such states for atoms and their ions� The main purpose of the project is calculation
of the cross�sections and rates for electron impact excitation for levels up to n	�
 for atoms and
their ions with Z���� We also plan to construct the diagnostic tools for obtaining the parameters
of the emitting plasma from the observed line intensities in the spectra of astrophysical sources� In
this report we present the scope of the project and the �rst results� Some previous results can be
also found in our recent papers �� ���

� Methods of calculation

Today the methods are developed that permit to obtain probably all characteristics of the scattering
process with high accuracy� We have in mind the R�matrix ��� and Convergent Close Coupling
�CCC� ��� methods� that make use of big basis sets of pseudofunctions� But these methods require
so big computing resources that up to now calculations have been done only for e�ectively one�
and two�electron targets� As for our project we need a great number of cross sections for di�erent
atoms and ions� we have to use simpler theories� but try to understand clearly the area of their
validity�
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We have accepted as the main method the method of distorted waves �DW approximation��
which permits to asses reasonably the cross sections for many processes of excitation for atoms and
ions� More then that� For the integral excitation cross sections of neutral atoms we �nd it useful
even simple Born approximation �with modi�cation ��� for exchange�� as the DW approximation
for such problems is better then simple Born mostly for description of di�erential cross sections�

Below we remind general formulae and explain the notations in the �gures�

� Wave functions of the bound and free electrons

In our program the target wave functions are built as antisymmetrized combinations of one electron
functions� which in their turn are de�ned as eigenfunctions of one electron Schroedinger equation
with appropriate potential� or from the solution of Hartree�Fock equations�

In the �rst case it is easy to achieve the mutual orthogonality of the initial and �nal bound
wave functions� and� after calculating in the same potential the functions describing the incoming
and scattered electrons� to obtain also their orthogonality to the bound ones� This last property is
important for correct account of exchange e�ects at low energies�

In the second case the wave functions of initial and �nal states of the target are orthogonalized
and then considered as basis on which the energy operator of the target is diagonalized� Such
solutions are also mutually orthogonal and in this scheme con�guration interaction approximation
can be realized� But for free states arti�cial orthogonalization was applied�

� General Formulae
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��� First Born Distorted Wave Approximation �DWB��
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It can be substituted into ���� but much more consistent approximation ��� ��� can be obtained
rewriting ��� by the Gell�Mann and Goldberger �two�potential formula� what results in
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For the inelastic scattering matrix element with V� in direct part of the scattering amplitude is
zero because of orthogonality of atomic stats �a and �b�

For the exchange one this is so only when free states �k are either calculated in the same
potential as atomic wave functions� or arti�cially made orthogonal to them�

It seems very natural not to have contribution to the exchange part of the scattering amplitude
from the interaction with the core� This idea was advocated by Day et al� ���� but was not accepted
by the atomic collision community� may be because of the habit not to have functions with coulomb
asymptotic behavior for neutral targets�

But simple antisymmetrization led often to unrealistically big increase of the exchange ampli�
tude� So� forced orthogonalization became popular� It was mostly used only for f exchab and its
in�uence on the fdirab is not stressed� But the scattering amplitude is a single whole and such a
procedure cannot be regarded as a satisfactory solution�

Below on some simple examples of direct and exchange transitions in H and He we tried to
demonstrate the e�ects of �forced� and �natural� orthogonalization� We hope the results are not
widely recognized� But they should be investigated whenever one wants to use the DW approxi�
mation�

At the present stage of the project we have programs to calculate target and free wave functions�
Born and di�erent versions of DW integral and di�erential cross sections and collision rates� We





are in the stage of accumulating experience� comparing the results of our calculations with those
available in the literature� For this seminar we present several results demonstrating the role of
forced and natural orthogonalization which we believe are not clearly appreciated�

We also show the case of �s�S � �s�S transition in He for which also CCC �I�Bray� result is
given and an example of �rst order DW result for di�erential cross section for �s��s��p transition
in atomic hydrogen for which new experiment is available and compared with CCC and Madison
second order DW calculations ����

To �nish with let us explain �on example of H atom� notations in the �gures connected with
di�erent choices of distorting potential�
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AP� NN� AP� YN� AP� YY have the same meaning as for AP�� �rst letter N or Y means account
for orthogonalization� second � for exchange�

� Plasma diagnostics

The problem of the plasma diagnostics is a determination of the plasma parameters� atom and ion
density and temperature distribution over the all emitting volume� Here we consider the case of the
optically thin in the line frequencies �excluding in some case the line of the resonance transitions�
medium�

��� Diagnostic of the homogeneous plasma

For the sake of the simplicity we consider only the lines controlled by electron collisions and photo
and dielectronic recombinations� The total energy emitted by the studied object in a recombination
or collisionally excited line k � i of the ion X is
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Here 	ki is the frequency of the line� V is the total volume of the region emitting in the line�
nF 	 n�XF� is the number density of the ion XF� which is responsible for the formation of the line�
For collision lines XF � X� but for recombination ones XF � X�� The coe�cient re�ki is known as
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the e�ective line formation coe�cient �see ������ In the case of recombination lines� re�ki 	 ne 

e�
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where ne is the electron number density and 
e�ki is the e�ective recombination coe�cient of the
line� For collision lines� re�ki 	 ne q
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In the homogeneous case plasma diagnostics reduces to determination of mean electron tem�

perature and density and the partial ion abundances�
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where NF is the total number of the ions XF� The value of T� has been determined by ���� and �����
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More elaborately the methods of homogeneous plasma diagnostics are consider in ����� It
should be mention that the values of n�e and T �

e obtained from line intensities of di�erent ions
can be strongly di�erent� This di�erences are connected mainly with the temperature and density
�uctuations inside the emitting volume� The impact of such �uctuations on the line intensities and
plasma diagnostics is considered in the next subsection�

��� Diagnostic of the inhomogeneous plasma

Here we consider both the temperature and density �uctuations in the linear approximations�
Instead of the values of Te and ne we can use the dimensionless parameters
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Let us suppose that the values of the temperature and electron number density �uctuations are

small relatively to the values of Te and ne and determine the mean �for the considered ion� which
is responsible for the line formation� values of the parameters�
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In the linear approximation for small amplitude �uctuations of Te and ne� the total line intensity
can be presented in the form�
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Where E�
ki is described by expression ���� The parameters �tt� �ts and �ss are determined by the

following expressions�
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By using the parameter s instead of the value of ne we can describe the signi�cant �up to �
times� deviations on the mean electron number density in the linear approximation�

The dependencies of the parameters �tt� �ts and �ss on Te and ne for OIII lines are plotted in
the Figs� D� and D�� As this �gures shows the coe�cients �ts and �ss are well below the �tt�
Only for the high density nebulae �ne  �
�cm��� the contribution of the electron number density
variations in the total line intensities can be essential�

��� Determination of the plasma parameters

We use an empirical model of a emitting object �in this paper � planetary nebulae� to �nd the
plasma parameters from the observed line intensities� In this model the object is described by
its mean electron temperature T�� mean electron number density n�e and rms temperature and
electron number density �uctuations �� and �

� as well as the correlation parameter ��� The
relative element abundances are assumed to be constant in the whole volume of the nebula�

In general each ion Xn� has to be described by its own values of plasma parameters T��X
n���

s�Xn��� � ��Xn��� ���Xn�� and �
��Xn��� However� as numerous calculations have shown those

parameters for ions with the similar ionization potentials are very close� so we do not consider
these di�erences� Finally we list the parameters of the model� T�� s ������ �� and fN�X��Hg �
the relative abundances of elements�

The atomic data which are necessary for line intensities were taken from the catalogue ����
databases� cited in ���� or were calculated in the framework of the considered project� The con�
tribution of both the photo and dielectronic recombination into the total e�ective recombination
coe�cients has been taken into account� For �tting the calculated and observed line intensities we
use the procedure proposed in ��� �
�� This procedure is illustrated in Fig� D�
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� Cooling rates for inhomogeneous plasma

One of the most important parameters of the plasma is its cooling rate� This value � L is determined
as an energy� emitted by the unit volume in the unit time� We consider an optical thin plasma�
controlled by the collisions of atoms and ions with electrons� In this case the local cooling rate is
determined by local electron temperature and density of the medium� We can express the cooling
rate in term of the so named �cooling function� � 	 L�n�� where n is the total number density�
Using the partial ion abundances Xij determined by the equation �� we �nd�
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where �ij is the partial cooling function�
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��� Ionization equilibrium

For �nding the total cooling function we need the distributions of atom on their ionization states�
Those are determined by solving the equations of the ionization equilibrium�
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where 
ij is the total recombination rate for ion i of atom with number j and Cij is the collision
ionization rate for the same ion together with condition

ZX
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where Z 	 Z�j� is the atomic number of element j�
The typical dependencies of the relative ionic abundances are presented in Fig� D� for O ions�

The sources of the atomic data are described in the previous section�

��� Results

As an example� we have calculated the cooling functions both for homogeneous and inhomogeneous
plasma� The solar abundances of elements were taken from ���� In Fig� D� is presented the cooling
functions for H�He�O mixture both for solar abundances and for values of 
�� and �
�
 of them�
One can see that in the presence of temperature �uctuations the cooling function can strongly
exceed its value for homogeneous plasma� It means� that the cooling times for inhomogeneous
plasma are less then homogeneous one�
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Fig� �� Cross sections for electron impact excitation of transition �s��p HI�

�



Fig� �� The same as in Fig� �� but for ion He II�
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Fig� �� The same as in Fig� �� but for ion Be IV�
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Fig� �� The same as in Fig� �� but for ion Ne X�
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Fig� �� The same as in Fig� �� but for transition �s��p HI�
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Fig� 	� The same as in Fig� �� but for transition �s��p HI�
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Fig� 
� The same as in Fig� �� but for transition �s �S � �s �S HeI�
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Fig� �� The parameters �tt� �ts� and �ss for the 
OIII�� ���� line as a function of Te �upper panel� and
ne �lower panel��

��



Fig� �� The same as in Fig� � but for the 
OIII�� �m and � ���m lines�
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Fig� ��� Line 	tting for planetary nebula NGC����� Calculated line intensities �solid lines� are
normalized to the observed ones� The dashed line represents the probability distribution function normalized
to its maximal value� Upper panel� Te 	t� lower panel� ne 	t
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Fig� ��� The dependencies of the relative abundances of oxygen ions on electron temperature Te in
low�density plasma�

��



Fig� ��� Upper Panel� cooling function �eV s�� cm��� for H�He�O and �
� � ����� ����� ����� ����

���� �from bottom to top�� Lower Panel� the same as in upper panel� but for di�erent oxygen abundances
�Z�Zsun� relatively the solar value ���� ������

�



