
Chapter 3

Collision processes

3.1 Electron impact ionization

Collisions of atoms and ions with electrons, protons and other particles can also have effect

upon the gas ionization degree in nebulae. The collisional ionization rate increases rapidly

at higher values of gas temperature. In planetary nebulae the most effective are the electron

impacts in which an essential fraction of kinetic energy will be wasted for the atom ionization:

Xi(α nl) + e→ Xi+1(α) + e′ + e′′,

where e and e′ are the electron states before and after the ionizing collision with ions Xi. Here

e′′ is the removal electron, α is the quantum number set of the atomic remnant and nl is the

same for removal electron. For nebulae the rate of collisional ionization in atom impacts with

heavy particles is relatively small and can be neglected.

The number of collisional ionization acts resulting from the ion Xi impacts with electrons

per unit volume and unit time is given by

Ṅ = n(Xi)ne q1c(Te) ,

where q1c= 〈vσ1c〉 is the collisional ionization rate. The ionization cross-section σ1c and, conse-

quently, the ionization rate for different atoms have been determined by numerous authors. Most

often are used the approximation expressions for q1c found by Lotz (1967, 1968) for atoms from

H to Ca. Shull & Van Steenberg (1982) using the experimental and theoretical cross-sections of

collisional ionization have found simple approximation formula for collisional ionization of all

ionization stages of C, N, O, Ne, Mg, Si, Ar, Ca, Fe and Ni in the form

q1c(Te) =
A1c

√
T e β exp(−β)

α I
cm3/s, (3.1)
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where as in the previous chapter β = I/kTe = Tc/Te ; I = kTc is the ionization energy from the

ground state. For most cases a ≈ 0.1. The last value holds always if kTe > 1 eV. The values

of A1c and Tc are given in Table 5. The formula for the collisional ionization rates for atoms

and ions of isoelectronic series from H to Ni have been generalized in the paper by Arnaud &

Rothenflug (1985) and they gives the form

q1c(Te) =
6.69 · 10−7

(kTe)3/2

∑
j

F (βj)
exp(−βj)

βj
cm3/s, (3.2)

where βj = Ij/kTe and Ij is the ionization energy from level j and

F (βj) = Aj{1− βj · f1(βj)}+ Bj{1 + βj − βj(2 + βj) · f1(βj)}+

+Cj · f1(βj) + Dj · βj · f2(βj), (3.3)

f1(β) = eβ E1(β) , f2(β) = eβ
∫ ∞

1

e−tβ

t
ln t dt.

The numerical values of Ij, Aj , Bj, Cj and Dj are given in Table 10. Integral exponential

function E1(β) can be calculated by the usual manner (see, for example, Abramowitz & Stegun

(1964)). The function f2(β) can be expressed with error about 1% in the following form (Hummer

(1983)):

f2(β) = P (β)/(Q(β)β2) , (3.4)

where

P (β) =
13∑

j=0

β−j pj , Q(β) =
14∑

j=0

β−j qj

The values of parameters pj and qj in series expansion of f2(β) given in above cited paper.

Shevelko et al. (1983) using the cross sections of collisional ionization calculated in the

Coulomb-Born approximation found more simple analytical expression for the collisional ioniza-

tion rate q1c(Te) for the outermost shell (nl)q, namely

q1c(Te) =
10−8 q · [IH/I]3/2 exp (−β) · √β A

β + χ
, (3.5)
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where as former, β = I/kTe and I is the ionization energy (from the ground level) and the

quantities A and χ are the parameters, the values of which for some atomic shells are presented

in Table 11. The error estimation of this approximation for collision ionization rate is about

6% for 0.1< β <10. Eq.(3.5) is applicable for all elements, but at small values of Z the error

increases.

The rate of collisional ionization (in units cm3s−1) for complex ions can also be calculated

using the formula by Burgess & Chidichimo (1983)

q1c(Te) = 2.17 · 10−8 C
∑
j

qj(IH/Ij)3/2 · β
1/2
j E1(βj) · ω,

ω = [ln(I/Ij + β−1
j )]τ/((I+kTe)/Ij), (3.6)

τ = (1/4) · {[(100Z + 91)/(4Z + 3)]1/2 − 5}. (3.7)

In expression Eq.(3.6) qj is the number of electrons in shell j and Ij is the corresponding

ionization energy. Summation over all shells of the atomic configuration takes into account also

the electron excitation from internal shells and the processes of autoionization. The values of

parameters C, Ij and qj are given in Table 12. If the contribution of autoionization is negligible

then the letter ”a” has been added to the ion symbol and if it is essential then the letter ”b”.

Symbol (i) added to qj values denotes presence of strong resonances in ionization cross sections

for corresponding shells, but symbol (ii) denotes presence of large number of weak resonances.

For light ions with 2≤ Z ≤ 5 we can take C=2.30 (± 19%). This value is well consistent with

the value 2.2 found by Seaton (1964). If we incorporate approximately the contributions of

autoionization then C=2.70, which is close to the value 2.77 found by Lotz (1968). Comparison

of the collision ionization rates given by Arnaud & Rothenflug (1985) with corresponding data

by other authors showed that the discrepancy with the data by Summers (1974) and by Burgess
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& Chidichimo can reach from 1.2 to 2 times, but the consistency with reformulated results by

Lotz (1967, 1968) is good.

References to the many modern collision ionization data for astrophysically important ions

are given by Butler (1993), see also Appendix A.

3.2 The electron impact excitation

Excitation of atoms by electron impacts is the main mechanism of the formation the spectral

lines between low excited levels in the spectra of gaseous nebulae. The electron impact excitation

rates usually are expressed via the effective collision strengths γij:

qij =
8.6287 · 10−6

gi T
1/2
e

γij exp(−βij) . (3.8)

Here gi is the statistical weight of the lower state i. The coefficient of collisional deactivation

can be written in the form

qji =
8.6287 · 10−6

gi T
1/2
e

γij , (3.9)

and it is interrelated to the coefficient of collisional excitation by the relation

qij =
gj

gi
exp(−βij) , (3.10)

The quantity γij is determined by integrating the collision strength Ωij over the Maxwell

electron velocity distribution :

γij =
∫ ∞

o
Ωij exp(−βij u) d(βij u) . (3.11)

In the formulae (3.8 - 3.11) βij = Eij/kTe and u = E/Eij−1 is the energy E of removed electron

in the ionization threshold units.

Using the experimental and theoretical excitation cross sections for transitions between hy-

drogen states Giovanardi et al. (1987) have determined the effective collision strengths γij(Te)
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for 15 lower states. For 4 lowest levels the transitions between sublevels with different orbital

quantum numbers have been considered. The effective collision strengths were approximated by

expression

γij = a + bTe + cT 2
e + dT 3

e , (3.12)

The values of polynomial fit parameters a, b, c and d are given in Table 13. The effective

collision strengths for HeII have been found by Hummer and Storey (1987). These can be well

presented by the same polynomial fit for temperatures up to 105 K. The values of corresponding

coefficients are also given in Table 13.

The values of qij computed for HI by using the expressions (3.8) and (3.10) and data of Table

13 at different values of Te are given in Table 14, where are also given the total coefficients of

electron impact excitation summed over all levels j ≤ 15. This quantity is useful for calculating

the ionization state of HI atoms in the nebulae.

The coefficients of collisional excitation of complex ions have been given by Clark et al.

(1982). The collisional strengths for different atoms and ions of isoelectronic sequences of H,

He, Li, Be, B, Na, Mg have been presented by expression

Ω(Z,X) = [Z + b1 + d1/Z]−2 [c0 + c1/X + c2/X
2] + [Z + b2 + d2/Z]−2 (c3 ln(X) + c4), (3.13)

where X = E/Eij = u + 1, Z is the nuclear charge number and the values of parameters b1,

b2, c0, c1, c2, c3, d1 and d2 are given in Table 15. Integrating over the Maxwellian velocity

distribution of electrons the corresponding coefficient of collisional excitation can be written in

the form

qij(Te) = F1(Z)CE[
c0exp(−β)

β
+ c1E1(β) + c2E2(β)]+

+ F2(Z)CE[
c3E1(β)

β
+

c4exp(−β)
β

] cm3/s, (3.14)
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where β = Et/kTe, CE = 8.010 · 10−8 β/[(2L + 1)(2S + 1)T 1/2
e ], F1(Z) = [Z + b1 + d1/Z]−2,

F2(Z) = [Z + b2 + d2/Z]−2 and En(β) is the integro-exponential function of n th order:

En(β) =
∫ ∞

1

e−β t

tn
d t .

For different atoms and ions of the above mentioned sequences the energy Eij has been

expressed in the form

Eij = a0 + a1Z + a2Z
2 + a3Z

3 + a4Z
4 , (3.15)

Values of the parameters a0, a1, a2, a3 and a4 are also given in Table 15.

The values of the transition probabilities and γij for the large number of forbidden and

intercombination lines which are observed in the spectra of planetary nebula are given in Table

17. An explication of used designations for the levels and their energies is given in Table 16. Due

to limited space of the catalogue we present data only for ions od Be, B, O and Mg sequence

which are taken from Mendoza (1983). The modern data can be found in the original papers

cited in Appendix A.
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3.3 Excitation by collision with heavy particles

Process of the atom and ion excitation by heavy particle collisions differs essentially from
that by electon impacts. Large mass particles move much slower than electrons and pass nearby
the excited atom during a long time interval. If the energy of the transition ∆E in the target
atom or ion is comparable with the kinetical energy E of the colliding particle then the excitation
cross sections are very small due to the fast oscillation of the target wave function with the phase
∆E t/h. On the contrary, in the case if ∆E � E this phase is small and the total excitation
cross section by a heavy particle is not small and can exceed the appropriate cross section for
excitation by electron impacts. This means that the heavy particle collisions are the effective
ones for the excitation of the fine structure transitions or for the orbital moment redistribution
due to transitions between the high-excited Rydberg states.

Proton collisions are most effective for generating transitions if ∆E � E. For such
transitions the excitation rates of neutral targets by proton impacts are (Mp/me)1/2 times
larger than those by electron impacts (Seaton (1955); see, also, Dalgarno (1984)). The proton
collisions are effective for the fine structure levels excitation and for excitation of the transitions
between sublevels nl:

p + H(nl) ↔ p + H(nl
′
) .

Cross sections for this process have been calculated by Pengelly and Seaton (1964) in the frame-
work of the semiclassical pertubation theory. At large values of n the proton collisions lead to
the statistical equilibrium distribution of atoms on nl sublevels.

For large values of n and n
′
the proton impact excitations

p + H(n) ↔ p + H(n
′
) .

are also effective (Burgess & Summer (1976)).
In excitation of the positive ions by proton impacts the Coulomb interaction must be taken

into account. This interaction diminishes the proton-impact excitation rates and in turn in-
creases the excitation rates by electron impacts. The role of this effect is negligible if n	 1 at
typical in astrophysical objects values Te ≈ 104K.

Proton collisions are very effective for excitation of the fine structure levels of CI, OI, OII
and of many other ions. Numerous references in the field are presented in Appendix A. At low
temperatures (T ≤ 103K) the exitation by proton collisions can more than ten times exceed the
excitation bye electron impacts (Rouef and Le Bourlot (1990), see Table 18 and also Fig. 3.1).

Excitation by collision with HI are effective for the fine structure levels. Collisions with
more heavy particles are less effective than neutral hydrogen excitation due to their less
abundances. The references in the field can be found in Appendix A.
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3.4 Autoionization

The autoionization process comprises of collisional excitation of an atom or ion to autoion-
ization states followed by autoionization decay. Similarly to the photoionization processes,
autoionization by electron impacts generates the resonances in the cross sections. Autoioniza-
tion is usually essential at Te ≥ 105K for atoms and ions having more than two electrons. The
number of autoionization acts per unit volume and unit time is

Ṅα = n(X i)ne · qα(Te) , (3.16)

where qa(Te) is the autoionization rate.
The most complete compilation of analytical expressions and corresponding data for determi-

nation of qa is given in paper by Arnaud & Rothenflug (1985) the results of which we reproduce
here.

1. The formula for lithium isoelectronic series is

qα(Te) = 1.92 · 10−7 b exp(−β)G(β)
Z2

ef(kTe)1/2
cm3/s , (3.17)

where β = Iα/kTe,
G(β) = 2.22 f1(β) + 0.67[1 − β f1(β)] + 0.49β f1(β) + 1.2β[1 − β f1(β)] ,
b = [1 + 2 · 10−4 Z3]−1, Zef = (Z − 0.43) ,
Iα = 13.6{(Z − 0.835)2 − 0.25(Z − 1.62)2} eV , and function fi(β) is given by Eq.(3.3).
Formula (3.17) corresponds to the 1s− 2p transition corrected for the contribution of other

transitions by multiplying with coefficient 1.2. Comparison of the qa values, given by Eq.(3.17)
with existing measurements showed that the results can differ from them not more than about
two times.

2. For ions of sodium isoelectronic series

qα(Te) = 6.69 · 10−7 α · Iα

(kTe)1/2
exp (−β) {1 + Φ(β)} cm3/s . (3.18)

If 12 ≤ Z ≤ 16 then Φ(β) = −β f1(β), Iα = 26(Z − 10) eV and
α = 2.28 · 10−17(Z − 11)−0.7 cm2

If 18 ≤ Z ≤ 28 then
Φ(β) = −0.5[β − β2 + β3 f1(β)] , (3.19)

and Iα = 11(Z − 10)3/2 eV, α = 1.3 10−14(Z − 10)−3.73 cm2 .

3. For the ions of isoelectronic series set from the magnesium series to the sulphur series
(Z < 16) the expression for Φ(β) is given by Eq.(3.19) where

α = 4.0 · 10−13 Z−2 cm2 and
Iα = 10.3 (Z − 10)−1.52 eV for the Mg isoelectronic sequence,
Iα = 18.0 (Z − 11)−1.33 eV for the Al isoelectronic sequence,
Iα = 18.4 (Z − 12)−1.36 eV for the Si isoelectronic sequence,
Iα = 23.7 (Z − 13)−1.29 eV for the P isoelectronic sequence,
Iα = 40.1 (Z − 14)−1.10 eV for the S isoelectronic sequence.
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For ions of other series the contribution of autoionization to the total collision excitation
rate can be ignored.

3.5 Dielectronic recombination

The process of dielectronic recombination, described by scheme (2.7), proceeds in two stages.
At the first stage the electron is captured in an autoionization state γ belonging to ion Xi+1. At
the second stage there proceeds the radiative decay of the state γ with generation of a bound
state of ion Xi.

At high temperatures Te ≥ 105−106K the main contribution into the dielectronic recombina-
tion rate is given by the recombination processes to the autoionization states with large principal
quantum numbers n. These states decay easily in electron collisions and due to external radia-
tion field. Thus, the dielectronic recombination rate depends heavily on the physical conditions
in plasma. At high electron densities ne > 1013 − 1015 cm3 both the collisional ionization from
autoionization states and collisional population of them are essential.

The photons irradiated in the processes of dielectronic recombination due to transitions
between autoionization states are named as the dielectronic satellites.

The number of dielectronic recombination acts for ion Xi+1 per unit volume and unit time is

Ṅdi = n(Xi+1)ne αdi(Xi+1) , cm3/s , (3.20)

where αdi(Te) is the dielectronic recombination rate.
The semiempirical formulae for dielectronic recombination rates have been given by Burgess

(1965), Landini & Monsignori (1971), Jain & Narain (1976). The revised expression for αdi(Te)
with the modified values of excitation cross-sections of ions Xi+1 due to electron collisions has
been given by Alam & Ansari (1985). The differences of αdi(Te) values found by various authors
for many ion species reaches 1dec. This is caused by the difficulties in computing the reliable
values of excitation cross-sections, the main factor among these being the necessity to take into
account transitions from all autoionization states and cascade transitions from these states.

Usually the dielectronic recombination rate is computed in the Burgess (1965) approximation.
This approximation holds for most ions at high electron temperatures Te > 105K. A simple
approximation formula for αdi(Te) has been given in papers by Aldrovandi & Pequignot (1973,
1976) who modified the Burgess approximation to the form

αdi
H = Adi T

−3/2
e exp (−T0/Te) [1 + Bdi exp (−T1/Te)]. (3.21)

Here the index H marks the Burgess (High temperature) approximation. The same expression
has been proposed also by Shull & Van Steenberg (1982), who also used the semiempirical
formula by Burgess (1965) and improved the numerical values of approximation parameters Adi,
Bdi, T0 and T1 for all ions of chemical elements from C to Ni which are given in Table 5. The
same expression holds also for He+.

Arnaud & Rothenflug (1985) started from the expression of αdi
H given in the paper by Al-

drovandi & Pequignot (1973) and corrected by a factor proposed by Burgess & Tworkowski
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(1976). For Li - like ions they obtained the following formula:

αdi
H = 7.6 · 10−11 A(z) exp [−D(z)β] β3/2, cm3/s , (3.22)

where
β = I0/kTe, z = Z − 2.

A(z) = (z + 1)3/z2(z2 + 13.4)1/2 [1 + 0.16(z + 1) + 0.017(z + 1)2],

D(z) = 3.0
(z + 1)2

z2
/[1 + 0.015z3/(z + 1)2].

In these formulae I0 is the ionization potential for the ion studied and Z is its nuclear charge.
The values of coefficients αdi(Te) computed using Eq.(3.22) are smaller than the corresponding
values found by Shull & Van Steenberg (1982), being multiplied by coefficients 0.19, 0.44, 0.36
and 0.41 for ions of O, Mg, Ca and Fe, respectively. For high-charge ions we can use the αdi(Te)
values from paper by Shull & Van Steenberg (1982), multiplying the values by 0.30 for ions
of Ne and by 0.40 for ions of Si, S and Ar. The values of αdi(Te) also based on the Burgess
approximation for all ions of C – Ni and for some other isoelectronic sequences have been given
in papers by Jacobs et al. (1977a, 1977b, 1980), where the autoionization processes have also
been incorporated. The results of the last papers have been improved by Woods et al. (1981),
Shull & Van Steenberg (1982).

A simple approximation formula for the total dielectronic recombination rate has been given
by Romanik (1988) for ions of He, Li, Be and Ne sequences:

αdi
H = T−3/2

e

∑
i

ai exp (−Ti/Te) cm3/s . (3.23)

In this expression all important radiative and autoionization processes have been taken into
account. The numerical values of parameters Ti and ai are given in Table 19.

At large electron temperature the high excited levels are populated predominantly by the
dielectronic recombination which proceeds via electron capture into these states. For most ele-
ments at 105–106K the dielectronic recombination dominates over the radiative recombination.
At temperatures Te ≈ 104K the efficiency of captures into high excited states is low. For ions
of C, N, O, Ne, Al and Si the dielectronic recombination can proceed via captures into lower
autoionization states. Due to presence of such states the process of dielectronic recombination
is essential also at low temperatures Te = 5 000 – 20 000K which are dominant in nebulae. The
capture processes to lower autoionization states determine the rate of low-temperature dielec-
tronic recombination. Some of the ions of the above-mentioned elements have low metastable
states. The number of autoionization captures and thus the dielectronic recombination rate in
these cases depend on the population of corresponding metastable states and, consequently, on
the electron concentration and temperature of nebula. The dielectronic recombination at low
temperatures acts on the intensities of some emission lines observed in the spectra of nebulae.
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The dielectronic recombination rate at low temperatures (applied to the conditions of gaseous
nebulae) has been calculated by Storey (1981), Nussbaumer & Storey (1983, 1984, 1986, 1987).
Corresponding coefficient αdi

L (Te) has been expressed by the following approximation

αdi
L (Te) = (

a

t
+ b + ct + dt2) t−3/2 exp (−f/t) 10−12 cm3/s . (3.24)

This expression describes the dielectronic recombination on the ground or the metastable state.
In Table 20 are presented the values of parameters a, b, c, d and f and values tl and Y for

ions of C, N, O, Ne, Mg, Al and Si taken from the papers by Nussbaumer & Storey (1984, 1986,
1987). In the table the quantity E is the calculated excitation energy of the term, the value of
tl has been chosen such that the maximum error in the fit formula Eq.(3.24) were less than 20
% . The value Y is the rate αdi at Te = 104 K in units of 10−12 [cm3s−1]. For ions of Mg, Al,
Si and Ne also the values of total dielectronic recombination rates αdi(total) =

∑
αdi

ef(LS) have
been given in Table 20. In this formula the summation is carried out over both ground and
metastable states.

More exact calculations of the dielectronic recombination rates for ions CII, NIII and OIV
have been carried out in the paper by Badnell (1988). These quantities do not differ from the
results by Nussbaumer & Storey (1984, 1986, 1987) more than 10–20%. Necessity to take into
account the forbidden autoionization transitions in the calculation of dielectronic recombination
rate has been demonstrated by Beigman & Chichkov (1980).

The total recombination rate can be written in the form

α = αrad(Te) + αdi
H (Te) + αdi

L (Te). (3.25)

If Te ≤ 103K then this rate is dominantly the radiative recombination arad(Te) and at Te > 105K
dominates the dielectronic recombination via the captures to high excited autoionization states
αdi

H (Te), see Eq.(3.21). For intermediary temperatures Te=103 – 104K for many ion species
the dominating process is the dielectronic recombination via low excited autoionization states
(αdi

L (Te)). The contribution of individual recombination transitions to the total recombination
rate is visualized in Fig.10 of the monograph by Nikitin et al. (1988).

3.6 The charge transfer reactions

In charge transfer reactions an electron (usually the outermost one) is transported from atom
or ion X to ion X+:

X+ + Y ↔ X + Y+ ±∆E . (3.26)

The electron transition is realized via quasimolecular state X+Y or XY+. The energy defect
∆E equals to the difference of binding energies of atomic systems X+Y and XY +.

In the case of direct reaction an electron of atom Y is transferred to ion X+. Such charge
transfer is ionization of Y and recombination to X+. The opposite charge transfer is called the
inverse charge transfer. The rates of direct and inverse reactions are not equal and the ratio
depends on the gas temperature.
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For energies of colliding particles ∆E ≤ 100 eV the most important process is the electron
capture by the outermost shell. At large energies of colliding particles more effective are the
processes of electron capture by internal shells. For atoms of alkali metals the electron capture
by internal shells is essential already at E >20 eV.

The reactions of type
X+ + X0 ↔ X0 + X+ (3.27)

are named the reactions of resonance charge transfer, the role of such processes is minor for
gaseous nebulae.

Dominating in the conditions of gaseous nebulae are the reactions of charge transfer in
collision with neutral hydrogen and helium:

Xi+1 + H0 ↔ Xi + H+ (3.28)

and
Xi+1 + He0 ↔ Xi + He+. (3.29)

However, in some cases also other reactions of type (3.26) for element different from H and
He can be important. The number of direct (or recombination) charge transfer acts (Eq.(3.28)
and Eq.(3.29)) in the unit volume per unit time is

N
→

ch = n(Xi+1)n(Y0) k
→

(Xi,Y0) (3.30)

and the same number for inverse (or ionization) charge transfer (see also Eqs.(3.28-3.29)) is

N
←

ch = n(Xi)n(Y+) k
←

(Xi,Y+), (3.31)

where Y0 corresponds to H0 or He0 and Y+ to H+ or He+. The quantites k
→

and k
←

are the
corresponding charge transfer rates (cm3/s).

The values k
→

and k
←

for different ions, the lines of which are observed in the nebulae, are
summarized by Table 21. Before the charge transfer reaction the ion Xi+1 is predominantly in
the ground state, but in the result of the charge transfer reaction the excited states of ion Xi

can be populated.
The quantities k

→
and k
←

are interrelated by the following formula of statistical thermody-
namics:

k
→

= k
← · exp(−∆E/kTe). (3.32)

The main direct and inverse charge transfer reactions of the types Eq.(3.28) and Eq.(3.29) are
essential in the low-density astrophysical plasma conditions have been considered by Arnaud
& Rothenflug (1985). They found the following approximation formula for computation of the
charge transfer rates:

k
→

= A · (Te/104)B ·
{
1 + C exp [D(Te/104)]

}
cm3/s. (3.33)
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In this expression the dependence of corresponding coefficients on Te has been described
analytically. The values of parameters A, B, C and D are given in Table 22, where in the
column 2 the range of Te values has been given for which approximation formula (3.33) holds.

Some valuable data about charge transfer reactions are given by Suchkov & Shchekinov
(1983). They used for reactions with H0 and He0 the approximation C=0, i.e. in their formu-
lation

k
→

= k0T
α
e

The values of coefficients k0 and α are compiled in Table 23. The data for charge transfer rates
in impacts between atoms and ions of heavy elements are given by Pequignot & Aldrovandi
(1986). The values of k

→
for each pair of ions (upper value) and the values of ∆E (lower value)

are given in Table 24. The charge transfer reaction between the heavy elements can be essential
in the interstellar medium, in HI regions of nebulae and in the atmospheres of cool stars.

In the conditions of low-density astrophysical plasma, especially in gaseous nebulae, the
charge transfer reactions (e.g., O++H0 ↔ O0+H+) often determine the atom ionization state.
This fact was first demonstrated by Chamberlain (1956), who found that O+/ O0 � H+/ H0

in the most of the gaseous nebulae. This relation holds due to high rates of the corresponding
charge transfer reaction. The rates of this reaction have been computed by Field & Steigman
(1971). Steigman et al. (1971) have given the rates of reaction N++H0 ↔ N0+H+. More exact
values of charge transfer rates have been found by Fehsenfeld & Ferguson (1972) for reaction
O++H0↔ O0+H++0.22 eV, and by Butler & Dalgarno (1979) for reaction N++H0 ↔ N0+H++
0.95 eV (see Table 21).

Tarter et al. (1979) studied the effect of double charge transfer on the ionization state of
gas medium:

Xi+2 + He0 ↔ Xi + He++ ,

finding these to be negligible.
Unfortunately, the exactness of numerical values of charge transfer rates k for many reactions

is low and the results by different authors can differ to dex due to low quality of methods of
computation of charge transfer rates. Unknown are the reaction rate dependence on Te for
many reactions and the values of k for multiply ionized atoms. Probably the low precision of
charge transfer rates is one of factors for giving inexact results for calculated ionization degree
of elements in the gaseous nebulae.
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