
Chapter 2

Radiative transitions and photoprocesses

2.1 Transition probabilities, oscillator strengths and mean lifetimes

The relations between the transition probabilities and oscillator strengths are determined by

Eqs. (1.1 — 1.4). When only one of the values (transition probability) or (oscillator strength)

are given in the table under consideration the remain can be calculated via relations (1.2)-(1.3)

as soon as the type of the transition is known. Using the experimental energy differencies ∆e

in last mention relations is preferable (see discussion in Rudzikas et al. (1990)).

Neglecting the induced transitions the spontaneous transition probabilities Aki are connected

with the mean lifetimes of level k via relation:

τk =

⎛
⎝∑

i<k

Aki

⎞
⎠

−1

. (2.1)

The probability that an atom in the state k emits a line k → i is called the branching ratio

and it can be expressed by

Bki = τk Aki. (2.2)

Due to limited volume of our catalogue we must exclude large amount of transition probabilities

and oscillator strengths data. Such kind of data are given only for HI (Table 1) and HeI (Table 2).

The much more complete data for HI can be found in the review paper by Omidvar (1983) and

for He in paper by Theodosiou (1987). The references on the numerous transition probabilities

and oscillator strength compilations and tables can be found in the Appendix A and also may

be taken from the atomic data catalogue and banks described in the Appendix B.

The largest database for spectral lines of atoms and two-atomic molecules has been calculated

and composed by Kurucz. His current list includes data for more than 58 millions spectral lines,

more than 42 millions of them belonging to atoms and their ions (Kurucz (1992, 1995)). A
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somewhat smaller former set of data by Kurucz is available on CD-ROMs.

A large international action named ”Opacity Project” has been undertaken under the lead-

ership of Seaton. The results have been compiled as the TOPBASE atomic database. The exact

data for spectral lines and photoionization rates, including the autoionizational resonances have

been compiled for all ions of 14 elements, namely for H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar,

Ca and Fe. Some of the results have been published in a special issue of ”Revista Mexicana de

Astronomı́a y Astrof́ısika” Vol. 23, 1992, devoted to calculation of astrophysical opacities (see

Seaton et al. (1992), Cunto & Mendoza (1992) and other papers in the issue). A lot of data

concerning with absorbtion lines with λ > 912Å compiled by Morton (1991). Even more vast

list of the lines including those in the region λ > 228Å have been presented by Verner et al.

(1994).

For obtaining the values Aki and fik for hydrogenic ions with Z > 1 we can use the next

scaling relations (see., e.g., Rudzikas et al. (1990)):

AZ
ki = Z4 AHI

ki ,

and

fZ
ki = fHI

ki .

The last relation means that the oscillator strenghts are the same for all hydrogenic ions. These

relations are exact only in the framework of the non-relativistic approximation. For ions with

Z � 1 the relativistic corrections should be taken into account. Recent study of the problem

(see Rudzikas et al. (1990) for details) showed that the relativistic corrections are significant

only for higly stripped H-like ions (Z > 50) and for all astrophysically important hydrogenic

ions one can use the non-relativistic scaling relations.

2.2 Photoionization
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Photoionization is the main mechanism of ionization of atoms in low-density plasma. The

ions of type Xi absorb the photons having energies hν ≥ nν0(Xi), i.e. the energies which exceed

the threshold value of releasing the electrons which usually belong to the external shell

Xi(α nlLS) + hν → Xi+1(α L′S′) + e ,

where n is the main quantum number, l is the azimuthal quantum number of photoelectrons,

L and S are respectively the total orbital and spin moment of ion Xi and α is an unspecified

set of all other quantum numbers which fix the state of atomic residue. The number of acts of

photoionization in unit volume per unit time is

Ṅ = n(Xi)
∫ ∞

ν0(Xi)
σnc(ν,Xi) 4πJν

dν

hν
, (2.1)

where Jν is the mean intensity of the ionizing radiation (both the stellar and the diffuse one) in

the given point of the ionized medium and σnc is the effective cross-section of photoionization

of ion Xi from level n.

In the conditions of astrophysical low-density plasma (gaseous nebulae ) due to large ra-

diation dilution and low gas densities the electrons of atoms are mainly in the ground state.

Consequently, for computations primarily the photoionization cross-sections from the ground

state are needed. Formation of free electrons due to the photoionization processes takes place

from the outermost atomic layer. However, there are special cases, say, in modelling of radiative

transfer in the vicinity of quasars and active galactic nuclei which are the intensive X-ray sources,

where the photoionization from inner electron shells is important. This holds, for instance, for

NI, OIII and SII. Determination of the cross-sections of photoionization σnc for all atoms, the

lines of which are observed in nebular spectra, has been a topic for numerous experimental and

theoretical investigations. A detailed list of such studies has been given in papers by Davidson

& Netzer (1979), Mendoza (1983), Stasinska (1984) and Verner et al. (1993).
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At the present time the values of σ1c are known for most of atoms and ions, the lines of

which are observed in the spectra of nebulae. The values can usually be given with about 10%

accuracy (excluding the contribution of the resonances) by the following formula convenient for

the photoionization and recombination rate computations:

σ1c(Xi) = σ0

[
ax−s + bx−s−1 + cx−s−2

]
cm2, (2.2)

where a+b+c = 1. Here s is the approximation parameter in the law, describing the dependence

of σ1c on frequency ν or on the energy near the ionization threshold which is denoted by subindex

”0” and x = ν/ν0(Xi) = E/E0(Xi). The data on cross-sections of photoionization from the

ground and excited states, which have been compiled by us from different published papers, for

atoms and ions of elements from H to Si, for S and Ar are given in Table 3, where only the most

reliable data were used. The most complete lists of photoionization cross-sections for atoms and

ions having the nuclear charge number Z ≤ 30 are given in the paper by Reilman & Manson

(1979) and Verner et al. (1993), where are brought the values of σ1c, found in the Hartree-Slater

approximation for energies 5 eV ≤ E ≤5 keV. Unhappily in the first paper the dependence σ(ν)

has been given in the form of a table. Nevertheless, in Table 3 there are given the values of

approximation parameters, found based on the results by Reiman & Manson (1979) in the case

if in the other papers the corresponding data were lacking. Though the lines of Li, Be and B in

nebular spectra have not been detected yet, their inclusion in Table 3 can turn out to be useful.

References to the calculations of the photoionization cross sections for individual atoms and ions

can be found in Appendix A.

2.2.1 Photoionization from K and L shells

The common formulae have been derived for an idealized model picture for the photoioniza-

tion cross sections from K and L shells. These cross sections can be simply expressed using the
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functions

fn(ν) =
27πσT

α3 Z2

(
In

hν

)4

and

Φn(ν) =
exp[−4η2−n ctn−1(η/n)]

1− exp(−2πη)
,

where σT is the Thompson scattering cross section, η2 = In/(hν − In) and In is the ionization

energy from the shell with principal quantum number n. For the K-shell electrons we can write

(Lang (1974), Akhiezer & Berestetsky (1969))

σ1s = f1(ν) · Φ1(ν) ,

for the L-shell electrons in the 2s state

σ2s = 8 (1 + 3
I2

hν
) f2(ν) · Φ2(ν) ,

and in the 2p state by

σ2p = 16
I2

hν
(3 + 8

I2

hν
) f2(ν) · Φ2(ν) .

Daltabuit & Cox (1972) have represented the effective cross-sections of photoionization from

K-shell of H, He, C, N, O and Ne as a special case of (2.2) in the form

σ1c(Xi) = σ0

[
ax−s + (1− a)x−s−1

]
cm2. (2.3)

This approximation is applicable in the region of ionization threshold and at moderate ener-

gies. The values of approximation parameters for these atoms and some of their ions (in units

10−18cm2) are given in Table 4.

The photoionization cross section for the atoms of H and for the hydrogenic ions from the

states with the principal quantum number n can be written in the form

σn =
24 e2 I2

z

3
√

3mch2 n5 ν3
· gn(ν) (2.4)
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Here gn(ν) is the Gaunt correction factor to the Kramers approximation and Iz is the ionization

energy of ion with charge number Z from its ground state.

A simple approximation formula to the complicated exact formulae found by Karzas & Latter

(1961) and Goldwire (1968) for the Gaunt factor of H and hydrogenic ions has been found by

Sapar & Kuusik (1974). It has high precision (more than 1%) for wide energy range for all states

with n > 2 and only for n = 1 it reaches 3% in a narrow energy interval. The formula has the

form:

gn = gI
n/[1 + 0.02494 (2.4 − 0.014xy

1 + 0.01xy
)x5/6] , (2.5)

where gI
n is the Gaunt factor in the well-known first approximation found by Menzel & Pekeris

(1935)

gI
n = 1− 0.1728x1/3(

2
n2x
− 1).

In these formulae x = hν/Iz and

y = 0.43 + 0.6 log(x + 10).

At large energies σn is proportional to ν−3.5.

In determination of photoionization cross sections for different atoms it is necessary to take

into account not only the direct photoionization, but also ionization from intermediary autoion-

ization states. The autoionization states are dielectronic excited states with excitation energy

exceeding the ionization energy of outermost single electron from ground state of the atomic

particle. However, the energy of each excited electron is less than the ionization energy. From

the autoionization state an electron can transit to lower bound states with photon emission (this

process is called radiative stabilization) or there can take place autoionizational stabilization,

where one electron is deliberated from atom but the other goes to some bound state. Due to

presence of autoionization states there appear autoionizational resonances of photoionization
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cross sections. This circumstance must be taken into account in modelling of ionization state

and structure of gaseous nebulae and other low-density astrophysical objects. If we ignore the

autoionization phenomena then we can get the results but with 20–30% precision. The au-

toionizational resonances have been studied in detail in the framework of the above-mentioned

”Opacity Project” (see Seaton et al. (1992))

2.3 Photorecombination

Free electron can recombinate on a level of ion Xi+1 forming thus ion Xi. The process

of recombination can be the radiative, the dielectronic or the triple one. The last process is

usually negligible in conditions of low-density astrophysical plasma. Photorecombination rate

can be easily obtained using the condition of its detailed equilibrium (see, for example, Sobolev

(1985)) with the photoionization rates in the case of complete thermodynamical equilibrium. The

processes of radiative and dielectronic recombination and their inverse processes can be described

by the following schemes (see, for example, Nikitin et al. (1988)) for photorecombination

Xi+1(n0l0) + e ←→ Xi(n0l0nl) + hν (2.6)

and for dielectronic recombination

Xi+1(n0l0) + e ←→ Xi(n1l1n
′l′)←→

{
Xi(n0l0n

′l′) + hν ′

Xi(n1l1n
′′l′′) + hν ′′ (2.7)

where the quantum numbers of type nl specify the ion states. The electron capture by neutral

atoms leads to formation of negative ions. Such processes, however, are negligible for nebulae.

In photorecombination processes the electrons are captured on the discrete levels nl with

emission of photons having energies hνic = E + Ii where E is the energy of recombining electron

and Ii is the ionization potential of the level i = nlγ, where γ denotes the set of complimentary

to nl quantum numbers of the state i. The radiative cascade transitions between the discrete
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levels following recombination generate the recombinational spectral lines.

The most important quantity determining the ionization degree of the atom is the sum of

the recombination rates onto all atomic states (total recombination rate):

αrad = αA =
∞∑

n=1

αn(Te)

and the same value excluding the recombinations onto the ground state:

αB =
∞∑

n=2

αn(Te) = αrad − α1(Te).

Here αn(Te) is the recombination rate onto level n.

For hydrogen and hydrogenic ions about one half of all recombination acts proceed straight

into the ground state of ion Xi+1, and the rest of them recombine onto the excited states.

The total number of recombinations in unit volume per unit time is

Ṅr = n(Xi+1)ne αrad(Xi+1) , cm3/s . (2.8)

The total recombination rate is often approximated by the expression

αrad(Xi+1) = Arad [Te/104 K]χrad . (2.9)

The numerical values of recombination rates αrad for a large number of ions have been found by

Aldrovandi & Pequignot (1973, 1976), Woods et al. (1981) and Shull & Van Steenberg (1982).

The values of parameters Arad and χrad for all ions of elements from C to Ni taken from the

last mentioned paper are given in Table 5. The lacking numerical values of these parameters

for ions of Ar, Ca and Ni in the last paper have been found by interpolation of the values in

the corresponding isoelectronic sequences using the scaling relations as given in item 2.5. For

studying an ionization balance in cold low density plasma (T � 1e4K (for example HI regions

of interstellar medium) the values of radiative recombination rates for such temperatures are
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needed. In this temperature rang the slightly different from Eq.2.9 expression

αrad(Xi+1) = A100 [Te/100K]χrad (2.9)

can be in operation. Fit parameters A100 and χrad for radiative recombinations rates of some

singly ionized atoms with ionization potentials (< 13.6 eV) taken from Péquignot & Aldrovandi

(1986) are given in the next table.

Fit parameters for radiative recombinations rates of

singly ionized atoms with low ionization potentials

in the interval 10− 1000K
Atom A100 χrad Atom A100 χrad

C∗ 8.29-12 0.621 Cl∗ 8.10-12 0.607
Li∗ 9.60-12 0.606 K 5.54-12 0.683
Na 5.82-12 0.682 Ca 5.58-12 0.683
Mg 5.87-12 0.681 Ca+ 2.79-11 0.647
Al∗ 1.54-11 0.567 Ti 5.50-12 0.684
Si∗ 8.42-12 0.617 Mn 5.45-12 0.686
P 6.98-12 0.645 Fe 5.45-12 0.686
S ∗ 1.05-11 0.593 Ni 5.56-12 0.681

All fits are better than 3% in 20-500 K and than 6% in 10-1000K.

Fits better than2.5% in 10-1000 K are marked by an asterisk.

The recombination rates αrad for the hydrogenic ions have been approximated by Seaton

(1959) in the form

αrad(T e) = 5.197 · 10−14Zβ1/2 SA , (2.10)

where Z is the nuclear charge, β = I/kTe = 157890Z2/Te, where I is the atomic ionization

potential and SA = 0.4288+0.5 ln β +0.469β−1/3. The error of the approximation (2.10) do not

exceed about 3% if Te ≤ 106Z2 and do not exceed about 30% if Te ≤ 5 · 106Z2.

The approximate formulae for αrad and αB, for non-hydrogenic ions have been derived by
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Tarter (1971). They have the same form as the Eq.(2.10), but

SA = 0.431 + 0.501 ln β + 0.460β−1/3 , (2.11)

and for the recombination rate αB the expression SA must be replaced by

SB = −0.493 + 0.504 ln β + 0.857β−1/3 . (2.12)

The error of the fit formula, Eq.(2.10), for non-hydrogenic ions is estimated to be about 3%

at characteristic temperatures of gaseous nebulae. Similar calculations of photorecombination

rates for Fe ions have been carried out by Woods et al. (1981). The error of the numerical values

obtained by them has been estimated to be about 10%.

An extensive compilation of recombination rates on the levels of hydrogenic, He - like and

Li - like ions has been given in a paper by Arnaud & Rothenflug (1985) where the values of αrad

for some ions of these sequences have been improved and presented in the form Eq.(2.9).

Important significance for calculating the line emission intensities in the spectra of gaseous

nebulae have the recombination rates to the different levels of the most abundant species H+,

He0 and He+. In Table 6 the values of the recombination rates for lower states of He+ have

been given.

2.4 Photoheating and recombination cooling

This section is based on the paper by Oskinova and Kholtygin (1996). The data for hydro-

genic ions (HI and HeII) which provide the main energy gains and losses for the astrophysical

plasma are tabulated only here .

2.4.1 Photoheating rates
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The mean energy gained by electrons per 1 cm3 and per second due to photoionization of an

atom (ion) species from level i is specified by the mean intensity of ionizing radiation Jnu at

photon frequency ν and by photoionization cross section for this level σphi
i (ν):

ni Γic = ni

∫ ∞

ν0
i

σphi
i (ν) · 4πJν(T∗)

hν
· (hν − hν0

i )dν. (2.13)

Here Γic is the heating rate, index c is hold for designation of the continuum state, ni is the

level i occupation number, ν0
i is the treshold value of the frequency for ionization from level i.

Intensity of the ionizing radiation at given point is determined both by the frequency distri-

bution of the source of radiation and by the optical distances τν of the screening medium. As a

model we consider a point source of the ionizing radiation in the spherically-symmetric gaseous

envelope. This model is good both for the gaseous nebulae and for stellar envelopes. The Planck

function is usually a good approximation for radiation of the astrophysical sources. Taking into

account the dilution and extinction of radiation in the medium we have

Jν = Jν(T∗) = W Bν(T∗) e−τν , (2.14)

where W is the dilution coefficient and τν the optical distance in the frequency ν to the ionizing

source. The dilution coefficient

W =
1
2

⎛
⎝ 1−

√
(1 −

(
R∗
R

)2
⎞
⎠ . (2.15)

Here R is the distance to the ionizing source and R∗ is the radius of the ionizing source. The

optical distance τν is connnected with the value τ0
i of this quantify at the treshold frequency

ν = ν0
i via relation

τν = τ0
i

σphi
i (ν)
σ0

i

= τ0
i fi(ν), (2.16)

where σ0
i = σphi

i (ν0
i ) and

τ0
i =

∫ R

R∗
σ0

i ni(R) dR . (2.17)

24



The energy of photoelectron E can be expressed in dimensionless treshold units u = (hν −

Ii)/Ii = E/Ii, where hν is the photon energy, E = mv2/2 - the photoelectron energy and Ii

- the ionization potential from the level i. Frequency ν of ionizing photon can be written in

treshold units as ν = ν0
i (1 + u). Substituting expression (2.14) into Eq.(2.13) and using the

treshold units, one obtains

Γic = W · Gi c = W
1

8π2
· cα

3

a3
0

[
Ii

Ry

]3

· Ii · J (β∗
i , τ0

i ) . (2.18)

Here β∗
i = Ii/kT∗, and

J (β∗
i , τ0

i ) =
∫ ∞

0

u(1 + u)2σphi
i (ν) e−τ0

i fi(u)

eβ∗
i (u+1) − 1

du . (2.19)

Here α = 1/137.036 is the fine structurte constant, a0 = 5.2918 · 10−9 - the Bohr radius and c

is the velocity of light.

In the case of photoheating and recombination cooling processes the level splitting of hy-

drogenic ions onto nl sublevels is not essential, so one can use the cross sections averaged over

values l:

σn(ν) =
1
n2
·
∑

l

( 2l + 1)σn l(ν).

Confining in our expressions with the second order Gaunt correction terms, the averaged pho-

toionization cross sections from level n can be written in the form

σn(ν) = σ0
n

1
(1 + u)3

2∑
k=0

B
(n)
k

(1 + u)k
. (2.20)

Here σ0
n = n · Gn · 7.930 · 10−18/Z2cm2 is the threshold value of the cross section from level

n, where Z is the ion charge; B
(n)
k = g

(n)
k /Gn where the quantities g

(n)
k are the coefficients of

expansion of the Gaunt factor gn(ν) for level n onto the powers of 1/(1 + u), given by Johnson

(1972). The sum Gn = g
(n)
0 + g

(n)
1 + g

(n)
2 . Substituting the expansion (2.20) into the Eq.(2.19)
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we find

J (β∗
n, τ0

n) = σ0

2∑
k=0

B
(n)
k

[
Qf

k(β∗
n, τ0

n)−Qf
k+1(β

∗
n, τ0

n)
]

,

where

Qf
k(β∗, τ) =

∫ ∞

1

e−τf(x)

xk(eβ∗ x − 1)
dx,

where x = 1 + u and function f(x) describes the frecuency dependence of the photoionization

cross section, given by Eq. (2.16).

Fig. 2.1 illustrates the dependence of HI heating rates on the level number n. Similar

dependence holds for HeII. The calculated heating rates for the n=1–4 levels of HI and HeII at

τ = 0 are presented in Table 7.

For the case if τ 	= 0 we should take into account the dependence of the values Gnc on τ .

This dependence can be presented in the form

Gn c(τ) = e−kn τ0
nGn c(0) , (2.21)

where Gn c(0) is the heating rate at τ0
n = 0, and kn is a slowly varying function of τ .

Values of parameter k1(τ) for the ground (n=1) levels of HI and HeII are compiled in Table

8. Calculations by Kholtygin (1988) have demonstrated that the occupation numbers for n > 2

levels of HI and HeII are very small even for dense outflowing envelopes of the WR stars. As

a result, the corresponding total optical depths of the envelopes are also small (τ0
n < 0.01 for

n ≥ 2). These optical depths values are even smaller for envelopes (atmospheres) of other kinds

of stars and gaseous nebulae. This means that one can use the heating rates presented in Table

7 for all n > 2 levels of HI and HeII.
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2.4.2 Recombination cooling rates

Cooling by spontaneous recombinations

Mean energy lossed by electrons per 1 cm3 and per second due to spontaneous electron recombi-

nations with an ion X+ onto the level i of atom (or ion) X is determined by photorecombination

cross section onto level σphr
i (ν):

ne Li(Te) = ne

∫ ∞

0
σphr

i (v) v f(v)
mv2

2
dv . (2.22)

Here Li(Te) is the partial cooling rate for recombination onto level i. Adopting for the electron

velocity distribution the Maxwell function and using the threshold units, we can write:

Li(Te) =
c α3

2
√

π
· gi

g+

[
Ii

Ry

]3/2

β
3/2
i Ii L(βi) , (2.23)

where

L(βi) =
∫ ∞

0
u(1 + u)2 e−β uσphi

i (u)du.

Analytical presentation of the cross sections (2.20) gives

L(β) = σ0 e−β
∑
k

Bk [Ek(β) − Ek+1(β)] .

Here Eq(β) is the integral exponent (see for details Adramowitz & Stegun (1964)). The total

recombinational cooling rate L(Te) is the sum of the partial rates (2.23). The calculated rates

are tabulated in the Table 9.

Cooling by stimulated recombinations

For original Planck radiation, which is diluted and weakened by extinction (see Eq.(2.14)), the

cooling rate due to the stimulated recombination onto level i

Rst
ci = W · Lst

i = W · c α3

2
√

π
· gi

g+
·

[
Ii

Ry

]3/2

· β3/2
i Ii e

β
∑
k

Bk · H(βi, β
∗
i , τ0

i ) , (2.24)
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where

H(βi, β
∗
i , τ0

i ) =
∫ ∞

0

u (u + 1)2 σphi
i (u) e(−βiu+τ0

i fi(u) )

eβ∗
i (u+1) − 1

du.

Using the analytical expression of the photoionization cross sections (2.20) we have

H(β, β∗, τ0
i ) = σ0

i

2∑
k=0

B
(i)
k

(
Sk(β, β∗, τ0

i )− Sk+1(β, β∗, τ0
i )

)
,

where

Sk(β, β∗, τ) = eβ
∫ ∞

1

e−(βx+τf(x))

xk(eβ∗ x − 1)
dx.

The total stimulated photorecombination cooling rate Rst(Te, T∗) or Lst(Te, T∗) is the sum

of all partial rates Rst
ci or LSt

ci , respectively. Calculations (Oskinova and Kholtygin (1996)) show

that the total stimulated photorecombination cooling rates depend very weekly on the optical

depth of the ionized plasma.

The total recombination cooling rate

Total cooling rates is the sum of the spontaneous recombination and stimulated recombination

cooling rates given above, i.e.

Ltot(Te) = L(Te) + W · Lst(Te, T∗) .

Table 9 incorporates the total cooling rates for both spontaneous and stimulated photorecom-

binations. From the table one sees the evident circumstance that the contribution of stimulated

recombination into the total cooling rates is important only for regions close to the ionizing

source (W > 0.1).

2.5 Scaling relations for photoionization and photorecombination rates

Some important scaling properties for recombination and ionization rates as well as for

cooling and heating rates can be easily obtained for hydrogenic ions using the dependence of
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their photoionization cross sections and level energies on the nuclear charge Z (see, Oskinova

and Kholtygin (1996)). Then we have for photoionization rates

Bic = Bic(Z, Te, τ
0
i ) = Z4 ·Bic(1, Te/Z

2, τ0
i ) , (2.25)

and for photoheating rates

Gic = Gic(Z, Te, τ
0
i ) = Z6 ·Gic(1, Te/Z

2, τ0
i ) . (2.26)

Similar equalities hold also for photorecombination (spontaneous) rates

αi(Te) = αi(Z, Te) = Z · αi(1, Te/Z
2) , (2.27)

and for spontaneuos recombination cooling rates

Li(Te) = Li(Z, Te) = Z3 · Li(1, Te/Z
2) , (2.28)

for stimulated photorecombination

αst
i (Te, T∗) = αst

i (Z, Te) = Z · αst
i (1, Te/Z

2, T∗/Z2) , (2.29)

and for stimulated photorecombination cooling rates

Lst
i (Te, T∗) = Lst

i (Z, Te, T∗) = Z3 · Lst
i (1, Te/Z

2, T∗/Z2) , (2.30)

and taking into account Eqs. (2.27-2.30) similar equations hold for the total recombination and

cooling rates.
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