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The review of Sobolev’s publications on the analytical radiative transfer
theory is presented. A short review is also given of the results published by his
disciples.

1 Introduction

The basic equations of the Radiative Transfer Theory (RTT) were formulated
at the turn of the 20th century. Initially transfer theory developed as a purely
analytical instrument since the calculation of radiation fields was problematic with
the computational facilities of that time. Between 1940 and 1980 the exact and
sufficiently accurate approximate solutions to the basic equations of the theory
were found, and for various limiting cases the asymptotic theory was developed.
The peculiarities and difficulties of the description and computation of multiple
scattering were thus revealed. By comparing numerical results with the analytical
solutions it became possible to evaluate the benefits and drawbacks of various
numerical methods and give estimates of their accuracy.

V.V. Sobolev made a definitive contribution to the creation of the analytical
RTT. In the 1940s he developed a method of calculating populations of atomic
levels in expanding non-planar dilute gaseous media, the method which is still
in use. This method is known now as the Sobolev theory. He also developed
an effective approximate method to solve problems of anisotroping multiple light
scattering. As early as in 1941, he formulated the approximation of Complete
Frequency Redistribution (CFR) in problems of radiative transfer in spectral
lines. In the 1950s he developed the method of exact solution of the basic integral
equations describing multiple light scattering, both monochromatic and with
CFR. He was also the first to investigate multiple scattering of polarized radiation
and non-stationary radiation fields. He applied his theoretical findings to the
interpretation of observations of many types of astrophysical objects. Dozens
of former Sobolev’s students form a team of theorists known as the Sobolev
astrophysical school. In what follows we present a brief review of the main results
found by V.V. Sobolev and his disciples.

We begin with the description of contributions to the analytical RTT by
V.A. Ambartsumian (who was Sobolev’s Ph.D. adviser).
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2 Contribution of V.A. Ambartsumian

V.A. Ambartsumian founded the chair of astrophysics (1934) in the St. Petersburg
(Leningrad) University. He published the first Russian manual on theoretical
astrophysics [1].

He studied the radiation regime in an infinite plane medium with sources
at the infinite depth, thus modeling deep layers of a semi-infinite medium with
anisotropic monochromatic scattering [2].

Ambartsumian revealed the important role of radiation pressure by spectral
line photons in the dynamics of planetary nebulae and stellar envelopes, parti-
cularly, the pressure exerted by the photons of the hydrogen Lα-line [3]. He
suggested a new method to describe the influence of absorption lines on the
temperature regime in stellar atmospheres [4].

Ambartsumian introduced innovative approaches to RTT problems known as
the invariance principles and the method of adding of layers [5]. Using these new
methods he expressed the reflection and transmission coefficients of a plane layer
which are functions of two angular variables in terms of auxiliary functions of one
variable [6]. For these functions he found nonlinear integral equations and studied
the asymptotic behavior of their solutions for the case of a layer of large optical
thickness [7, 8].

He expressed the mean number and the mean square of the number of
scattering events in terms of the radiation intensity [9].

He studied also the problem of light scattering in semi-infinite medium with
reflecting surface [10].

The main Ambartsumian’s publications on RTT are reprinted in the book [11].
The proceedings of the conference dedicated to the 40th anniversary of the
Invariance Principle are published in [12].

V.A. Ambartsumian studied many other astrophysical problems: the lifetimes
of stars, star clusters, stellar associations, the Milky Way brightness fluctuations,
formation of galaxies, variable stars, etc.

V.V. Sobolev continued studies of his teacher in RTT. He discovered new
branches and created new methods of RTT, formulated and solved a lot of new
problems.

3 Early Sobolev’s publications

V.V. Sobolev proposed a method of approximate solution to the problem of
anisotropic scattering of monochromatic radiation. According to this method
the first scattering is taken into account exactly, with the real phase function,
whereas higher order scatterings are treated approximately, with the two-term
phase function [13]. V.V. Sobolev applied the developed theory to terrestrial and
planetary atmospheres [14, 15]. Later, this approximate method was applied to
problems with spherical geometry: scattering in a homogeneous sphere with a
point source at its center [16] (a model of dust nebula) and in a spherical shell
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illuminated by a parallel radiation flux [17] (model of a planetary atmosphere,
coauthor I.N. Minin).

V.V. Sobolev showed that the idea of accelerated expansion of planetary
nebulae adopted at that time is incorrect because it was based on the assumption
that line radiation does not change its frequency when scattered. In fact, the
scattered photon reduce its frequency because a part of its momentum and energy
passes to the scattering atom. Therefore the full momentum of stellar radiation is
not transmitted to the nebula matter and does not accelerate it: radiation simply
leaves the nebula in the wings of the line [18]. In [19] V.V. Sobolev simplified the
calculation of the radiation regime in infinite plane medium.

The problems of radiative transfer in expanding media were studied in
Sobolev’s doctoral thesis and in his famous book [20]. The equations determining
the populations of atomic levels were derived and solved using the method of
local scattering. The method is known as the Sobolev approximation and is widely
used till now. The essence of the method is the following. If a medium expands
with a velocity gradient, the radiation in a line ceases to interact with atoms
when it propagates in places where gas velocity is substantially different from
the velocity at the site of its emission. As a result, the line radiation is not re-
absorbed and propagates freely. The scattering becomes local. Due to this effect,
in media moving with large gradient of gas velocity atomic excitation and degree
of ionization change drastically [21].

Later, for the special case of the two-level atom and a constant velo-
city gradient in plane media, the integral equation was formulated, with the
kernel depending on the absolute value of the difference of the arguments. The
approximate solution of the equation was found using “on the spot”
approximation [22].

In two papers [23] and [24] (with V.V. Ivanov) the intensities of hydrogen
lines and the Balmer decrement in the spectra of hot stars were calculated.
Lines are formed in their envelopes. By applying the approximation of local
scattering, the equations governing the populations of atomic levels were reduced
to algebraic ones.

4 Monochromatic scattering

4.1 Polarized radiation and non-stationary radiation fields

In [25] V.V. Sobolev formulated transfer equations for linearly polarized radiation
for the case of Rayleigh scattering. He found the behavior of two intensities and
the corresponding source functions in deep layers of semi-infinite medium. He
also found the degree of polarization of the radiation emerging from purely
electronic semi-infinite medium with the sources at infinite depth, thus modeling
a hot atmosphere of an early type star. The largest degree of polarization,
11.7%, is reached at the limb of the stellar disk. This is known as the Sobolev–
Chandrasekhar polarization limit.
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Later V.V. Sobolev published several papers on Rayleigh scattering (with
V.M. Loskutov). They calculated fields of polarized radiation in plane slabs for
several distributions of primary sources [26]. The results were used for the
interpretation of observed polarization of X-ray sources [27] and quasars [28].

For studying non-stationary radiation fields in stationary media V.V. Sobolev
introduced two characteristic times [29]: t1, the mean time a photon spends while
absorbed by an atom and t2, the mean time between two consecutive scatterings
of a photon. He derived the equations describing non-stationary radiation fields
in one-dimensional approximation and solved them for the case t2 = 0, both for
final and infinite optical thickness of the medium. The solutions thus found were
used to interpret peculiarities of radiation fields in the ejecta of novae (see [30]).

Later on V.V. Sobolev continued studying the non-stationary scattering with
his coauthor A.K. Kolesov [31, 32]. They presented the formulas and numerical
data for the solutions to the problem of a point source in an infinite and semi-
infinite one-dimensional media for alternative cases t2 � t1 and t1 � t2. The
results were applied to interpret the flares of UV Ceti stars.

4.2 Reflecting boundaries and inhomogeneous media

V.V. Sobolev derived the equations for radiation fields in a plane media with
a reflecting lower surface. Two particular cases were considered in more detail:
orthotropic and mirror reflection. In the former case the all quantities with the
reflecting surface were expressed by simple relations in terms that without it [33].
The results for the case of a mirror boundary were published in the book [30]
and applied to the scattering in a cloudy slab of large optical thickness above the
surface of the sea.

The problem of scattering in plane media if the probability of photon survival
λ depends on the depth τ was considered [34, 35]. The calculations of the albedo
and brightness coefficients were made for the cases:

1) λ is piecewise constant;

2) λ is an exponent of optical depth λ = λ0 e
−mτ or the sum of such exponents;

3) λ is a superposition (integral) of exponents.

Later the degree of polarization of the radiation emergent from the semi-infinite
medium was calculated for the case 2) [36] (coauthor V.M. Loskutov).

4.3 New methods of calculation of radiation fields

V.V. Sobolev formulated the concept of photon escape probability from a medium:
the product 2πp (τ, η) dη denotes the probability for a photon absorbed at a
depth τ in isotropically scattering semi-infinite atmosphere to escape from this
medium at an angle arccos η within a solid angle of 2π dη after an arbitrary number
of scatterings. It is easy to obtain the equations and relations for the escape
probability from simple considerations. If this function is found, it is possible
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with the known power of primary sources to calculate the intensity of emergent
radiation by direct integration [30]. Apart from this, the majority of the functions
and equations of RTT got the probability interpretation. The concept of the escape
probability was applied to many problems of RTT for deducing the equations and
solving them.

Another method which was applied by V.V. Sobolev is transformation from
equations with integrals on optical depth τ to linear equations with integrals
on angular variables which is equivalent to application of the Laplace transform.
Such equations were derived for brightness coefficients, functions of one variable
in terms of which these coefficients were expressed and other functions. It was
such type equations that were used for the calculations of polarization fields with
the Rayleigh scattering and were mentioned above.

4.4 Asymptotic theory of monochromatic scattering

The complete asymptotics of the source function and of the intensity in deep layers
of a semi-infinite medium for the reflection problem were obtained by V.V. Sobolev
(see [37]) using the relations between characteristics of anisotropic scattering
in infinite and semi-infinite media which were found with the summation of layers
method. Using these results and with the same method V.V. Sobolev deduced
asymptotics for the brightness coefficients and other functions when the optical
thickness of a slab τ0 was large [38].

Another domain for which the asymptotic formulas were found is a nearly
pure scattering when the survival probability is very close to unity: 1 − λ� 1.
Expansions of various functions on the power of

√
1− λ (the first or second) were

obtained. The results are given in the book [39].

5 Scattering in lines and the resolvent method

5.1 Frequency redistribution

V.V. Sobolev directed essential efforts to the study of scattering in spectral lines.

The laws describing the transformation of photon frequency in single scattering
were deduced but they were too complicate and did not allow to solve the problem
of line formation. Several authors (T. Holstein, L.M. Biberman, V.V. Sobolev,
and others) proposed the approximation of complete redistribution in frequency
(CFR), which implied that the photon frequencies before and after scattering
do not correlate. In other words, the absorption and emission coefficients depend
on frequency equally. The following additional approximations were accepted:
atoms of the same kind have only two discrete levels (the two-level approximation)
and continuum constant within the line; both radiative and collisional transitions
are possible between these levels; the induced radiation was not taken into
account because it leads to nonlinear equations, which do not permit analytical
investigation.
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To begin V.V. Sobolev derived some frequency redistribution laws and
accepted as the approximation the CFR. Then he considered scattering in a one-
dimensional medium and obtained differential equations for the intensity and
integral equation for the source function. He solved them for homogeneous
distribution of the sources and found the emissivity, the density and flux of energy,
the light pressure and the emission profiles of emergent radiation. The results were
close for various redistribution laws and strongly differed from the monochromatic
scattering.

Then various equations were obtained for the probability p(τ, x1, x2) of
photon escape from the medium of optical thickness τ0 in line from the
depth τ (x1 and x2 are dimensionless frequencies of the emitted and escaping
photons). Also the equations were derived for the two introduced functions ϕ(x, τ0)
and ψ(x, τ0). After that V.V. Sobolev found the equation for the brightness
coefficients. The equations were solved for CFR and the profiles of the forming
absorption lines were calculated. Better agreement with the observable ones than
for monochromatic scattering were achieved. All these results are in his book [30].

The integro-differential and integral equations, describing the process of
multiple photon scattering in spectral line in a plane layer on the assumption
of CFR, were derived by V.V. Sobolev in [40]. The approximate solution of the
integral equation based on the principle of local scattering was found. It is usually
known as on the spot approximation. Later V.V. Sobolev developed the exact
theory of multiple scattering known as resolvent method. At first it was done for
isotropic monochromatic scattering [41, 42] and then for scattering in line with
CFR [43, 44].

5.2 Resolvent method

This method is applicable to equations of the following form:

S(τ) = S0(τ) +
λ

2

τ0∫
τ∗

K(|τ − τ ′|)S(τ ′) dτ ′. (1)

This equation is the basic integral equation of RTT. Here S0(τ) is a given,
and S(τ) is the sought-for source function, λ is photon survival probability per
scattering. The limits of integration τ∗ and τ0 are the “depths” of the lower and
upper boundaries of a plane medium. If −τ∗ = τ0 = ∞, the medium is infinite;
if τ∗ > −∞ and τ0 =∞, the medium is semi-infinite; if τ0 <∞, it is a finite plane
slab. In the last two cases it can be assumed that τ∗ = 0. The kernel function K(τ)
for both monochromatic and CFR scattering can be represented as a superposition
(integral) of exponentials.

The resolvent is defined as a function that allows one to find the solution of
Eq. (1) for arbitrary given S0(τ)

S(τ) = S0(τ) +

τ0∫
τ∗

Γ(τ, τ ′)S0(τ
′) dτ ′. (2)
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The notations of resolvents are as follows: for an infinite medium it is Γ∞(τ, τ1),
for a semi-infinite medium Γ(τ, τ1) = Γ(τ, τ1,∞), and for a finite slab Γ(τ, τ1, τ0).

For an infinite medium the following obvious relation holds: Γ∞(τ, τ1) =
Γ∞(|τ − τ1|, 0) ≡ Φ∞(|τ − τ1|). V.V. Sobolev has shown that the resolvent of
the equation (1) can be expressed in terms of a function of one variable, namely,
the particular value of the resolvent with one of its arguments set equal to 0.
This function is called the resolvent function: Φ(τ, τ0) ≡ Γ(τ, 0, τ0). If τ∗ = 0, the
explicit expression of Γ in terms of Φ is rather complicated

Γ(τ, τ1, τ0) = Φ(|τ − τ1|, τ0) +

min(τ,τ1)∫
0

[
Φ(τ−t, τ0)Φ(τ1−t, τ0)

− Φ(τ0−τ+t, τ0)Φ(τ0−τ1+t, τ0)
]
dt.

(3)

For semi-infinite medium one has to set τ0 =∞ and Φ(∞,∞) = 0.

For the kernel functions representable as a superposition of exponentials
V.V. Sobolev derived linear and nonlinear equations for the Laplace transforms
of the resolvents and the resolvent functions as well as equations for resolvent
functions themselves of type (1) (with S0(τ) = (λ/2)K(τ)) and of Volterra
type. Some of these equations are generalizations of Ambartsumian’s equations.
For a finite slab alternative equations were derived, with the derivatives with
respect to τ0.

For isotropic monochromatic scattering V.V. Sobolev found the asymptotic
form of Φ(τ, τ0) for τ � 1[45]. It is expressed in terms of the resolvent function
of semi-infinite medium. For the latter the exact explicit expression is known.

V.V. Sobolev encouraged his pupils for further development of the theory
of line formation with CFR.

5.3 Inhomogeneous, infinite and spherical media

The scattering theory in inhomogeneous media was extended to the scattering
in a spectral line with CFR [46] taking into account continuous absorption.
In [47] V.V. Sobolev and E.G. Yanovitsky applied the resolvent method to the
case of scattering with variable λ(τ). In [48] the results for the variable λ were
summarized.

In [49] it was shown that three problems of monochromatic isotropic scattering
in three media, namely: in a semi-infinite medium with an ideally reflecting mirror
boundary; in a stationary spherical shell geometrically thin but optically thick
with the central source and also in an infinite medium with a point source,
are reduced to scattering in infinite medium.

In [50] the case of a smoothly reflecting boundary was reduced to two integral
equations and with two resolvent functions. In [51] along with the fact that
the smooth reflection from the boundary is not ideal, the changing direction
of radiation when crossing it was taken into account because the refraction
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indexes differ on its two sides. For the problem of diffuse reflection the equations
were obtained for the azimuthal harmonics of the reflection coefficient by assuming
that such harmonics calculated without reflection from the boundary are known.
Also, the equations were deduced for characteristics of emergent radiation in the
Milne problem and of the regime of the radiation field in deep layers. These
problems are to model the light scattering at sea.

Several papers were devoted to monochromatic scattering in a homogeneous
sphere and in a spherical envelope. In [52] the problem of scattering in the
sphere with spherically symmetric sources was reduced to the problem of a plane
slab of double optical thickness. In [53] the asymptotic formulas were obtained
for the intensity of emergent radiation I(η, τ0) when there is a point source
in the center of the sphere or in the center of a thin spherical envelope and when
the optical thicknesses of the sphere and the envelope τ0 are large. V.V. Sobolev
and A.K. Kolesov found more exact asymptotics of I(η, τ0) for illuminating
a sphere both by a radiation flux [54] and by a point source in the center [55].
The summary of these researches was presented in [56].

5.4 The resolvent method for anisotropic scattering

The equations governing anisotropic scattering with an arbitrary phase function
contain integrals over three variables τ , η and φ. It is possible to expand
characteristics of scattering in the Fourier series (or finite sum) on azimuth φ,
to separate azimuth harmonics and to deduce separate equations with double
integrals for each of the harmonics.

The intensity of the emergent radiation in the problem of reflection and
transmission may be expressed in terms of functions ϕmi (η, τ0) and ψmi (η, τ0).
If the number of terms in the expansion of the phase function in the Legendre
polynomials equals n+1, to get the harmonic with number m (i = m, m+1, . . . , n)
one has to find 2(n − m + 1) such functions. For semi-infinite medium the
functions ψmi (η,∞) = 0. For semi-infinite medium V.V. Sobolev expressed all
the functions ϕmi (η) for each of the harmonics in terms of one function Hm(η).
The functions ϕmi (η, τ0) and ψmi (η, τ0) were expressed in terms of two functions,
Xm(η, τ0) and Y m(η, τ0). The polynomials depending on η and λ entered these
expressions as factors. They are given by recurrent relations. The resolvent for
each of the harmonics is expressed in terms of one resolvent function Φm(τ, τ0).
These results are summarized in Sobolev’s book [39].

6 Other Sobolev’s works on RTT

6.1 Number of scatterings; strongly peaked phase function

In four of V.V. Sobolev’s papers [57] the numbers of scatterings were expressed
through the functions introduced in other works. In the fourth paper for the case
of scattering in the spectral line with CFR in finite slab were obtained sufficiently
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narrow upper and lower estimations of the number of scatterings for large optical
thickness.

In the case of strongly elongated forward phase function V.V. Sobolev
expanded the intensity according the Taylor formula of the second order in the
powers of the difference between the polar angles of the scattered and the incident
radiation, and replaced the integral over angles with the differential operator. With
the help of the obtained equation he found the light regime in deep layers [58].

6.2 Scattering in planetary atmospheres

Twenty years after publishing [14] V.V. Sobolev resumed the study of scattering
characteristics in the Venus atmosphere. In the first paper [59] he calculated the
reflection coefficient for a two-term phase function with the terms proportional
to
√

1− λ. In the second paper two models of the atmosphere were adopted:
the homogeneous one consisting of molecules and large-grained particles; and
the two-layer one in which a molecular slab is placed above a cloudy slab. The
dependencies of the degree of polarization on the phase and wavelength were
found.

In two papers [60, 61] (coauthors I.N. Minin) the radiation of planetary
atmosphere was described for isotropic scattering. The atmosphere was assumed
to be plane (with the dependence λ(τ)), but the incident angles of solar radiation
on the plane were chosen to be the same as those of a parallel flux on spherical
atmosphere. The effect of orthotropic reflection from the surface was taken
into account.

In [62] the formulas for the profile rν and equivalent width W of a line in
a certain place of the planetary disk and from the whole disk were derived as
functions of phase. In [63] a two-layer atmosphere was constructed of a semi-
infinite medium and an optically thin slab above it with different optical properties
(i.e. their phase functions and photon survival probabilities differed). The same
formulas were obtained.

6.3 Emission of supernovae and electron scattering

In three papers [64, 65, 66] V.V. Sobolev (in the third coauthor A.K. Kolesov)
calculated the continuous spectra, light curves, optical thickness of envelopes and
spectrophotometric temperatures of supernovae on the early stages of expansion
of the ejecta. It was adopted that the radiation of envelope was under strong effect
of electron scattering.

The effect of electron scattering on the spectra of stationary hot stars was
studied in [67, 68], which continued the study in [35]. The emergent flux and
specrophotometric temperature were calculated using as a tool linear integral
equations with the integrals on angular variable.
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6.4 Global absorption and emission

V.V. Sobolev devoted several papers specially to determination of relation between
two parts of radiation energy that enters into a scattering and absorbing medium.
One part of this energy undergoes true absorption and transfers to other types
of energy. The other part abandons the medium. In the most general form
the problem was considered in [69]. The law of redistribution in frequency and
direction as the fraction of reemitted photons could be different in different points
of the medium of arbitrary form (in [70] scattering was supposed to be isotropic).
The amount of energy absorbed from the flux illuminating the medium was shown
to be connected with the amount of irradiated energy if the distribution of internal
sources was uniform. Analogous relations were obtained for Rayleigh scattering
of polarized radiation [71].

The usefulness of the obtained relation was demonstrated for isotropic
monochromatic scattering as well as for scattering in a line with CFR in a semi-
infinite medium, in a plane slab and in a homogeneous sphere [72]. V.V. Sobolev
deduced the integral relations for the intensities of internal and emerging from
a plane slab radiation in [73].

7 Contributions of Sobolev’s disciples

Here we present a list of the main achievements made by Sobolev’s students and
disciples. More detailed reviews of their works and the works of other authors are
presented in the symposiums proceedings [12, 74, 75, 76].

7.1 I.N. Minin

The papers published with V.V. Sobolev as a coauthor are [17, 60, 61].

I.N. Minin deduced the equation and proposed the method to calculate the
radiation transfer in a medium with refraction [77, 78] and obtained the exact
expression for the resolvent function for monochromatic isotropic scattering
in semi-infinite medium [79].

I.N. Minin used the Laplace transforms on time for solving the non-stationary
radiation transfer in a medium with monochromatic scattering and studied
it in detail [80, 81]. He showed that in three particular cases when t2 = 0, t1 = 0
and t1 = t2 the solutions for λ < 1 can be expressed through the solutions for
λ = 1. The exact and asymptotic formulas for characteristics of the radiation
emerging from a finite one-dimensional medium were obtained in three mentioned
cases [82].

In [83] many characteristics of radiation field in a semi-infinite medium with
arbitrary values of t1 and t2 were expressed in terms of one function. The equation
determining this function was derived. Time-dependent problems were also solved
for non-stationary one-dimensional (τ(t) = τ(0)e−αt) [84] and inhomogeneous [85]
media.
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Anisotropic scattering in semi-infinite medium [86] and in the layer of finite
optical thickness [87] was investigated. If the number of terms in the expansion of
phase function in the Legendre polynomials is equal to n+1, then for azimuthal
harmonic number m I.N. Minin introduced (n+1−m)2 resolvent functions and
derived equations for them. His results are in his reviews [88, 89] and book [90].

7.2 V.V. Ivanov

The derivation of various asymptotics that characterize scattering in a spectral
line with CFR directly from the equations [91, 92].

The wide use of the concept of thermalization length τt (depending on λ).
Its value separates two regions. In the first one (depths τ < τt) the scattering
in line can be considered as conservative while in the second one (τ > τt) photons
are thermalized, i.e. the source function becomes proportional to the Planck
function [93]. Asymptotic formulas for the resolvent functions Φ∞(τ) and Φ(τ)
for τ � 1 depend not τ and λ separately but in the essential parts only on τ/τt.

Time-variations of the degree of excitation for two-level atoms and of the line
profile formed in an infinite homogeneous medium with CFR and t1 = 0 if initially
the atoms are completely excited [94]. The leading terms of the asymptotics
at large time intervals coincide with those obtained for a more exact law of
redistribution.

The detailed description of the asymptotic theory of conservative scat-
tering [95, 96] was made for the Milne problem with isotropic monochromatic
scattering as well as for CFR scattering with the absorption coefficient decreasing
in the line wings as a power of frequency. The asymptotics of X and Y -functions
were expressed in terms of the Bessel functions. For the Doppler profile it was
performed earlier [97]. It was the very first result of what is now known as the
large-scale description.

The concept of the “mean length of a photon path” T , i.e. path from the place
of photon emission to the place where it is finally absorbed (i.e. thermalized) was
introduced and the formulas determining T were derived [98].

The formulation of a high accuracy approximate solution [99] to the basic
CFR integral equation of RTT, both for half-space and for plane layer of finite
thickness.

The description of multiple scattering of spectral line photons as a stochastic
process of the Lévy random walks was given. It was used to obtain various
asymptotics of CFR RRT (with Sh.A. Sabashvili) [100].

The solution was found to the problem of diffuse reflection and transmission
of radiation if t1 = 0, t2 = 1 and the boundary of anisotropically scattering layer
of finite optical thickness τ0 is illuminated by an instant light flash [101] (with
S.D. Gutshabash). The asymptotic behavior of the brightness wave escaping the
layer was found assuming the thickness of the layer τ0 � 1.

The process of frequency relaxation to CFR due to multiple scatterings with
non-CFR redistribution functions was studied [102] (with A.B. Schneeweis).
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Generalizations of the invariance principles for a semi-infinite medium with
scalar anisotropic scattering [103] and for scattering of polarized radiation were
formulated [104] (with H. Domke). The asymptotic forms of the basic functions
were found explicitly.

New concepts for treating analytically the so called blanketing effect were
introduced: the “partial intensity” , i.e. the contribution to the intensity by
photons classified both by the value of the absorption coefficient and by the
frequency, and the so-called “gray in the average” atmosphere, in which the
opacity probability distribution function (OPDF) is the same along the whole
spectrum. The equations describing the radiation transfer in such an atmosphere
were given [105] (with A.G. Kheinlo).

Molecular and Rayleigh scattering of polarized radiation was studied in detail
using the concept of matrix transfer equation (with V.M. Loskutov, S.I. Grachev,
and T. Viik). In particular, the so called

√
ε law of the scalar theory was

generalized to incorporate polarization [106, 107, 108].

V.V. Ivanov with coauthors investigated scattering polarization of radiation
in resonance lines under the assumption that angular and CFR frequency re-
distributions are not correlated [109].

The albedo shifting method when the kernel of the integral equation is changed
to another one in order to accelerate the convergence of iterations was developed
(with coauthors) [110, 111, 112].

Ivanov’s results are published also in books [113, 114] and in review [115].

7.3 A.K. Kolesov

Articles with V.V. Sobolev [31, 32, 54, 55, 66].

In three papers [116, 117, 118] calculations were made for the Henyey–Green-
stein phase function.

In the series of papers [119, 120, 121, 122] the radiation fields in two-layer
and multilayer media with anisotropic scattering in the layers were studied. In
the most general case the layers differed in the values of λ, phase functions and
refraction indexes.

The expansions in the elementary solutions of the radiation transfer equation
(the Case method) were applied for radiation fields in non-plane media with
anisotropic scattering. In [123] the problem of scattering in a homogeneous sphere
was reduced to the plane one. The same procedure was made for a point source
in an infinite medium [124]. In [125] the expression for the Green function of the
point source and in [126] the asymptotics of this function were obtained, and
in [127] the intensity of radiation far from the point source in the infinite medium
was expanded in the reversed powers of τ . The case of small true absorption
was considered separately. In [128] and [129] the Case modes were found and
the relations of their orthogonality were formulated for spherical and cylindrical
symmetries.

Review [130].
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7.4 E.G. Yanovitskij

With V.V. Sobolev [47].
Detailed investigation of anisotropic scattering in inhomogeneous [131] and

multilayer media [132, 133, 134] (the first and the third papers with Zh.M.Dlugach).
Some formulas for the pure scattering were shown to coincide for an arbitrary

scattering phase function [135].
For a semi-infinite medium [136] and a plane layer [137] the equations were

formulated, which have the form of the transfer equation in the so-called pseudo
problems of anisotropic scattering. These equations determine the intensity of
radiation, which would correspond to the source functions equal to the resolvent
functions Φm(τ) and Φm(τ, τ0) that were introduced by V.V. Sobolev.

A new form of the radiation transfer equation (called Q-form) was deduced,
where the intensity was represented as the derivative on the optical depth of some
linear integral operator of the same intensity [138].

The results of Yanovitskij and his coauthors can be found in his book [139].

7.5 D.I. Nagirner

Using the methods of the theory of complex variables the exact explicit solutions
and their asymptotic forms were obtained for stationary [140, 141] and non-
stationary (t2 = 0) [142] multiple scattering with CFR in infinite and semi-infinite
media. Large-scale and uniform asymptotics of the resolvent and other functions
describing scattering in a plane layer [143] and sphere [144] of large optical
thickness and radius were found, in particular, the mean number of scatterings
and dispersion.

The exact and asymptotic formulas describing the process of damping of the
atomic excitation in a homogeneous infinite medium, the excitation being created
instantly at the initial moment [145]. The scattering in a line with CFR and the
Lorentz absorption profile with an arbitrary ratio of t1 and t2 parameters was
assumed.

The method was proposed to calculate the eigenvalues and eigenfunctions of
the basic integral equation (continuous λ(u) = 1/V (u) for a semi-infinite medium
and discrete λn(τ0) = 1/V (un(τ0)) for a layer of finite thickness). The asymptotics
(on n and τ0 � 1) of the eigenvalues were found for an optically thick layer [146].

The resolvent function, its asymptotic behavior and the asymptotics of the
spectrum of the basic integral equation for a cylinder were obtained [147].

The method to calculate the scattering in a plane layer of finite optical
thickness was proposed [148].

Reviews [149, 150, 151, 152, 153] and books [154, 155].

7.6 V.M. Loskutov

With V.V. Sobolev [26, 27, 28, 36] and V.V. Ivanov [108, 109].
With a given value of the characteristic number k the value of λ is found by

the expansion in a chain fraction for the Henyey–Greenstein phase function [156].
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The full phase matrix for the Rayleigh scattering is represented by the
product A(η, φ)AT(η′, φ′), where A(η, φ) is a matrix of the size 3 × 6. This
representation separates the angular variables of the incident (η′, φ′) and scattered
(η, φ) radiation. For the six-term vector of the source functions the system
of integral equations was obtained. Within the same approximation, in which
redistribution depends on frequency and on angles independently as in [109], the
matrix equation for the basic matrix was derived. The polarization degree of
reflected radiation was calculated [157].

For the Lorentz absorption profile the polarization characteristics of radiation
in a line emergent from a semi-infinite medium were calculated. It was noted that
the polarization degree as a function of the absorption profile value (rather than
the frequency) depends only slightly on the type of this profile (Lorentz, Doppler
or rectangular) [158] (with V.V. Ivanov).

Review [159].

7.7 V.P. Grinin

The non-stationary radiation fields in a semi-infinite medium with anisotropic
scattering and illuminated by a parallel external flux or a point source were
studied [160]. The full radiation and the dependence of the radiation density on
the distance from the source were found. The solutions were expressed through
the function introduced by I.N. Minin [83].

The methods to calculate the radiation fields in expanding media were
proposed [161].

The concept of non-local (large-scale) radiative interaction was introduced
and the equations describing the interaction were deduced [162] (coauthor
S.I. Grachev) and [163].

The radiation pressure in moving media with axial symmetry was studied [164].

Reviews [165, 166].

7.8 H. Domke

With V.V. Ivanov [104].

The radiative transfer theory in spectral lines was expanded to the presence
of a weak magnetic field in [167].

The problem of conservative Rayleigh scattering of polarized radiation in
a semi-infinite medium was reduced to searching for several source functions
depending only on the optical depth and determined by the integral equations.
For the Milne and the reflection problems the number of these functions is equal
to two [168]. The results were transferred to a finite layer.

The general scattering matrix was expanded to the generalized spherical
functions. The corresponding radiation fields were separated into the azimuthal
harmonics [169].
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The singular solutions to the equation of the polarized radiation transfer were
determinated and the solutions to the multiple scattering problems were expanded
in elementary modes [170, 171].

The methods to calculate the transfer of polarized radiation were proposed:
the doubling method [172], the application of the invariance principles [173] and
of the transfer equation in the Q-form [138] expanded to polarized radiation [174]
(coauthor E.G. Yanovitskij).

The transformation of the equation for H-function in order to accelerate the
convergence of iterations [175], which was followed by the albedo shifting method.

Book [176].

7.9 S.I. Grachev

With V.V. Ivanov [109] and with V.P. Grinin [162].

The characteristic lengths of radiation transfer in a one-dimensional infinite
medium expanding with a constant velocity gradient (the thermalization length,
the thickness of the boundary layer, the diffusion length) were determinated. The
asymptotic behavior of the solutions were obtained by the factoring method for
the rectangular, the Doppler and the power absorption profiles [177].

The asymptotics for the resolvent functions and the source functions
for particular source distributions (uniform, exponential, point source) with
scattering in an infinite medium isotropically expanding with a constant (small)
velocity gradient were deduced. The scattering is considered to be conservative
with the Doppler or power absorption profiles [178].

The asymptotic self-similar representations of the kernel and resolvent func-
tions, which characterize the radiation fields in a three-dimensional infinite and
semi-infinite media expanding with the velocity gradient were obtained [179].

The explicit expression of the resolvent function was deduced for the problem
of the non-stationary line radiation field in a semi-infinite medium for scattering
with CFR and t2 = 0 [180] in terms of the eigenfunctions of the basic integral
equation (1) found in [146].

The polarization in a spectral line was investigated. In [181] it was shown that
the asymptotic expansion for the matrix of the source functions in the problem of
the line scattering with CFR and the Doppler profile could be obtained directly
from the matrix equation defining it. Some particular cases of the true absorption
and the depolarization values were considered. In [182] the problem of calculating
the line radiation fields in the medium with uniform distribution of sources was
reduced to two nonlinear equations for the matrices of the dimension 6 × 6.
For scattering with CFR (even with the Hanle effect) the two equations were
replaced by one. In [183] the asymptotic and numerical solutions to this equation
were obtained. Finally, in [184] the Hanle matrix was factorized and the matrix
generalization of the so-called

√
ε law (ε = 1− λ) was deduced.

Review [185].
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8 Conclusion

Thus, V.V. Sobolev and his disciples have succeeded in building the analytical
radiative transfer theory for monochromatic scattering as well as for scattering
in spectral lines, including the scattering of polarized and non-stationary
radiation. Their calculations demonstrated characteristic features of various
types of scattering and are in qualitative agreement with the observational data
for a variety of astrophysical objects.

Certainly several other groups have been studying the same problems. Their
works are described in the reviews mentioned in the text. These groups exchanged
the information and results as well as cited the works by each other. In this review
we summarize only the main works by V.V. Sobolev and his school.
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On Transforming Conservative Multiple
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The F - and K-integrals are used to transform the zeroth azimuthal
Fourier component of the radiative transfer equation for conservative
multiple scattering of polarized light in vertically inhomogeneous plane
atmospheres into an equivalent transfer equation with a modified phase
matrix corresponding to non-conservative pseudo-scattering. As an example,
the transformation to non-conservative multiple pseudo-scattering is applied
to express the surface Green’s function matrix for conservative scattering
in terms of the surface Green’s function matrix for non-conservative pseudo-
scattering.

1 Introduction

The exclusive property of the transfer equation for conservative multiple
scattering, which permits to determine the first and second angular moments of
the intensity of the radiation field, the so called F - and K-integrals, a priori,
up to two constant parameters, has been pointed out by Chandrasekhar [1]
as well as by Sobolev [2] and partly employed by them on treating radiative
transfer problems in vertically homogeneous conservative plane media. Here, it is
shown, that even for vertically inhomogeneous conservative media, the F - and
K-integrals allow us to transform the conservative radiative transfer equation
into an equivalent transfer equation of the same form corresponding to non-
conservative pseudo-scattering.

2 The transfer equation

Let us consider the transfer of polarized radiation in a vertically inhomogeneous
and source-free plane atmosphere with local conservative scattering properties
assumed to be macroscopically isotropic and mirror symmetric. It is well known
(c.f. [3]) that, after azimuthal Fourier decomposition, the only conservative
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transfer equation emerges for the two-component vector of the azimuthally
averaged Stokes parameters I and Q

u
∂

∂τ
I(τ, u) = −I(τ, u) +

1

2

∫ +1

−1
dvWIQ(τ ;u, v) I(τ, v), (1)

where Ĩ(τ, u) = (I(τ, u), Q(τ, u)). Here, the tilde denotes transposition of the
vector, τ is the optical depth in the atmosphere, and u is the cosine of the polar
angle with respect to the inner normal at the top τ = 0 of the atmosphere. The
matrix WIQ(τ ;u, v) is the azimuthally averaged I,Q-component of the complete
phase matrix. Local macroscopic mirror symmetry and reciprocity imply [3]

WIQ(τ ;u, v) = WIQ(τ ;−u,−v) = W̃IQ(τ ; v, u), (2)

respectively. For conservative scattering, there hold the integral relations

1

2

∫ +1

−1
dvWIQ(τ ;u, v) i0 = i0,

1

2

∫ +1

−1
dvWIQ(τ ;u, v)v i0 =

u

3
β1(τ) i0, (3)

where ĩ0 = (1, 0). By means of Eq. (1) in conjunction with Eqs. (2), and (3), we
find that the flux of radiative energy will be constant, i.e.,

F (τ) =
1

2

∫ +1

−1
duu ĩ0 I(τ, u) = F = const, (4)

and the K-integral is found to be

K(τ) =
1

2

∫ +1

−1
duu2 ĩ0I(τ, u) = K(0)−

(
1− β̄1(τ)

3

)
τF. (5)

Here, β̄1(τ) is defined as β̄1(τ) = 1
τ

∫ τ
0 dtβ̄1(t). Finally, two eigensolutions to the

transfer equation (1) can be found

i0(τ, u) = i0, i1(τ, u) =

[(
1− β̄1(τ)

3

)
τ − u

]
i0. (6)

3 The equivalent transfer equation

On defining a modified phase matrix

Wc(τ ;u, v) = WIQ(τ ;u, v)−
[
c1(τ)u2 i0 ĩ0 v

2 + c2(τ)u i0 ĩ0 v
]
, (7)

and replacing the phase matrix in Eq. (1) by means of Eq. (7), and using also
Eqs. (4) and (5), we rewrite the conservative transfer equation (1) in the form

u
∂

∂τ
I(τ, u) = −I(τ, u) +

1

2

∫ +1

−1
dvWc(τ ;u, v) I(τ, v)

+ c1(τ)u2 i0

[
K(0)−

(
1− β̄1(τ)

3

)
τF

]
+ c2(τ)u i0F.

(8)
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Obviously, the new transfer equation (8) describes non-conservative multiple
pseudo-scattering, with some primary (pseudo-) source terms on the r.h.s.
linearly dependent on two constants F and K(0), which can be determined
a posteriori. We note that a particular solution to the transfer equation (8) can
be found in terms of the eigensolutions (6) of the original conservative transfer
equation (1)

Ip(τ, u) = 3 [i0K(0)− i1(τ, u)F ] . (9)

4 Semi-infinite medium surface Green’s function
matrix

The semi-infinite medium surface Green’s function matrix G(τ, u; 0, µ0), with
−1 ≤ u ≤ +1, 0 ≤ µ0 ≤ 1, and 0 < τ < ∞, is defined as the finite solution
to the transfer equation

u
∂

∂τ
G(τ, u; 0, µ0) = −G(τ, u; 0, µ0) +

1

2

∫ +1

−1
dvW(τ ;u, v)G(τ, v; 0, µ0), (10)

subject to the half-range boundary condition

G(+0, µ; 0, µ0) =
1

µ
δ(µ− µ0)E, µ, µ0 ∈ [0, 1], (11)

at the top, where E = diag(1, 1). In terms of the surface Green’s function, the
matrix of diffuse reflection is given by

R(µ, µ0) =
1

2
G(+0,−µ; 0, µ0), µ, µ0 ∈ [0, 1], (12)

where µo denotes the direction of incidence. Reciprocity implies R(µ, µ0) =
R̃(µ0, µ) (c.f. [3]). There is no net flux of radiative energy for finite radiation fields
in a semi-infinite conservatively scattering atmosphere without internal primary
sources. Thus, the F -integral of the corresponding surface Green’s function matrix
GIQ(τ, u; 0, µ0) becomes zero,

F̃IQ(τ ; 0, µ0) = F̃IQ(τ ; 0, µ0) =
1

2

∫ +1

−1
duu ĩ0GIQ(τ, u; 0, µ0) = 0. (13)

Instead of seeking the surface Green’s function matrix GIQ(τ, u; 0, µ0) as
the solution to the conservative transfer equation (10) with W(τ ;u, v) =
WIQ(τ ;u, v), we apply the equivalent transfer equation (8) corresponding to non-
conservative pseudo-scattering, where I(τ, u) is replaced by the function matrix
GIQ(τ, u; 0, µ0), while F = 0, and K(0) is replaced by the transposed vector

K̃IQ(+0; 0, µ0) =
1

2

∫ +1

−1
duu2 ĩ0GIQ(+0, u; 0, µ0). (14)



32 H. Domke

On taking into account the particular solution (9), we use the surface Green’s
function matrix Gc(τ, u; 0, µ0) for non-conservative pseudo-scattering to get, after
some algebra, the surface Green’s function matrix for conservative scattering as

GIQ(τ, u; 0, µ0) = Gc(τ, u; 0, µ0) +
3

D

[
i0 −

∫ 1

0
dηGc(τ, u; 0, η)η i0

]
K̃c(+0; 0, µ0)

(15)
with

K̃c(+0; 0, µ0) =
1

2

[
µ0 ĩ0 + 2

∫ 1

0
dµµ2 ĩ0Rc(µ, µ0)

]
, (16)

and D = 3
∫ 1
0 dη K̃c(+0; 0, η) η i0, while K̃c(+0; 0, µ0) = D K̃IQ(+0; 0, µ0). It is

easy to verify that GIQ(τ, u; 0, µ0) as given by Eq. (15) satisfies the correct transfer
equation (8) as well as the boundary condition (11). When specified with τ = +0
and u = −µ, Eq. (15) provides a simple formula for retrieving the reflection matrix
RIQ(µ, µ0) for conservative scattering by means of the reflection matrix Rc(µ, µ0)
for non-conservative pseudo-scattering

RIQ(µ, µ0) = Rc(µ, µ0) +
3 (1−D)

D2γ
Kc(+0; 0, µ) K̃c(+0; 0, µ0), (17)

where the constant γ = 3
∫ 1
0 dη η

2 ĩ0KIQ(+0; 0, η) = 3
D

∫ 1
0 dη η

2 ĩ0Kc(+0; 0, η) is
the so called extrapolation length well known in radiative transfer theory.

For practical methods to calculate reflection matrices for inhomogeneous
semi-infinite atmospheres, which are applicable also to compute Rc(µ, µ0) for
non-conservative pseudo-scattering, we refer to the textbook of Yanovitsky [4]
and references therein. Finally, we note that for homogeneous atmospheres the
transformation to equivalent pseudo-scattering with reduced effective albedo of
single scattering can be performed also for non-conservative scattering. This has
been described in an earlier paper [5].
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We suggest here a method for construction of a bilinear expansion for
an angle-averaged redistribution function. An eigenvalues and eigenvectors
determination problem is formulated and the required matrices are found
analytically, and numerical procedures for their computations are elaborated.
A simple method for the accuracy evaluation of the numerical calculations is
suggested. It is shown that a group of redistribution functions describing the
light scattering process within the spectral line frequencies can be constructed
if the eigenvalue problem is solved for the considered function. It becomes
possible if various combinations of eigenvalues and eigenvectors with the basic
functions are used.

1 The redistribution function rII(x
′, x)

Let us first redefine the redistribution function r(x′, x) which has a rather
simple physical meaning: the quantity r(x′, x)dx represents the probability that
a photon with the dimensionless frequency x′ will be absorbed by an atom and re-
emitted then in the frequency interval (x;x+ dx). The introduced dimensionless
frequencies show the distance of photon’s frequency ν(ν ′) from the line center
frequency ν0 in Doppler half widths

(
x = ν−ν0

∆νD

)
. This redistribution function

differs from one defined by Hummer [1] by the constant factor
(
π

1
4U(0, σ)

)−1
,

where the function

U(x, σ) =
σ

π

∫ ∞
−∞

exp(−t2)

(x− t)2 + σ2
dt (1)

is the well known Voigt function and σ = ∆νT
∆νD

, where ∆νT is the total half-width
of the line caused by all the broadening mechanisms taken into account.

The redistribution function describing the photon scattering within the line
frequencies of the model two-level atom the upper level of which is broadened due
to radiation damping has been independently derived by Henyey [2], Unno [3] and
Sobolev [4] assuming that in the atom’s reference frame the scattering is coherent.

1 V. Ambartsumian Byurakan Astrophysical Observatory, Armenia
2 LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, France
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Then, using also Hummer’s [1] designation, one can represent it in the following
form:

rII(x
′, x) =

1

πU(0, σ)

∫ ∞
|x−x|

2

exp(−t2)

[
arctan

x+ t

σ
− arctan

x− t
σ

]
dt. (2)

In the expression (2) we used the following denotations: x = sup(x′, x) and
x = inf(x′, x).

It is noteworthy that there has been known bilinear expansion for two out
of four redistribution functions described in Hummer’s paper [1], namely, rI(x

′, x)
and rIII(x

′, x) before their classification by him. This fact was rather important
for solving the light scattering problems applying the Principle of Invariance (PI).
However, up to nowadays no any “natural” bilinear expansion has been revealed
for the function rII(x

′, x). Therefore, one might try to create such a bilinear
expansion using some artificial procedures.

In order to construct numerically such an expansion, let us first introduce here
another representation of rII(x

′, x) derived by Nikoghossian [5] (see also Heinzel’s
paper [6])

rII(x
′, x) =

σ

πU(0, σ)

∫ ∞
−∞

rI(x
′ + t, x+ t)

t2 + σ2
dt. (3)

From Eq. (3) one finds easily that the function rII(x
′, x) transforms into the

rI(x
′, x) when σ = 0.

On the other hand, the function rI(x
′, x) allows the following bilinear

expansion first derived by Unno [7]:

rI(x
′, x) =

∫ ∞
|x|

exp(−t2)dt =

∞∑
k=0

α2k(x
′)α2k(x)

2k + 1
, (4)

where

αk(x) = (2kπ
1
2k!)−

1
2 Hk(x) exp(−x2) (5)

and Hk(x) are the Hermit polynomials.

The obvious connection between functions rII(x
′, x) and rI(x

′, x) expressed by
relation (3) allows suggesting the functions (5) as basic ones for constructing the
eigenfunctions of rII(x

′, x). Taking into account this connection, one can search
for the bilinear expansion of rII(x

′, x) in the following form:

rII(x
′, x) =

∞∑
k=0

ω2k(x
′, σ)ω2k(x, σ)

ζk(σ)
, (6)

where

ω2k(x, σ) =
∞∑
m=0

γkm(σ)α2k(x). (7)
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The vector ζk(σ) and matrix [γkm(σ)] are, respectively, the eigenvalues and
eigenfunctions of the following problem (see, for example, [8, 9]):

∞∑
m=0

[γkm(amn − ζk(σ)bmn)] = 0, (8)

where

amn =

∫ ∞
−∞

α2m(x)α2n(x)dx, (9)

and

bmn =

∫ ∞
−∞

α2m(x)dx

∫ ∞
−∞

rII(x
′, x)α2n(x′)dx′. (10)

It is evident that calculating the matrices [amn] and [bmn] and solving the
eigenvalue problem (8) one can numerically construct the bilinear expansion (6).

2 Calculation of the relevant matrices

Using the integral forms for the Hermit polynomials, one can easily find the
following presentation for the introduced above basic functions [10]:

αk(x) = (2kπ
1
2k!)−

1
2

2√
π

Re(−2i)k
∫ ∞

0
tk exp(−t2 + 2ixt)dt. (11)

Then, using the following expression for the δ function:

1

2π

∫ ∞
−∞

exp(ixt)dt = δ(t), (12)

one finds directly

amn = (−1)m+n (2m+ 2n− 1)!!

2m+n+ 1
2

√
(2m)!(2n)!

. (13)

For calculations of the matrix [bmn], one can suggest two different ways. One is
the direct calculation of the threefold iterated integral (10) which is fraught with
huge numerical difficulties arising due to the complicated behavior of the basic
functions. Therefore, some simplifying analytical calculations before starting the
numerical procedures would sufficiently facilitate the numerical procedures. One
can find from Eq. (10) substituting Eq. (4) for the redistribution function rI(x

′, x)
in the relation (3)

bmn =
σ

πU(0, σ)

∞∑
k=0

1

2k + 1

∫ ∞
−∞

gkm(t) gkn(t)

t2 + σ2
dt, (14)

where

gkm(t) =

∫ ∞
−∞

α2k(x+ t)α2m(x)dx = Nkm αkm

(
t√
2

)
, (15)
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and

Nkm =
π

1
4

2k+m+ 1
2

√
(2k + 2m)!

(2k)!(2m)!
. (16)

Thus, one finds finally

bmn =
1

U(0, σ)

∞∑
k=0

NkmNkn

2k + 1
ck+m,k+n, (17)

where

cmn =
σ

π

∫ ∞
−∞

α2m

(
t√
2

)
α2n

(
t√
2

)
t2 + σ2

dt. (18)

As a matter of fact, the threefold iterated integral is given now by an infinite
series where only a single integration appears. However, the integrand is again
a vastly oscillating function making the direct numerical computation extremely
inefficient especially for greater values of indexes. Also it is not difficult to realize
that for the smaller damping parameters the computing error gets larger. But at
the same time in the limiting case when σ = 0, the integral (18) can be taken
analytically to find

cmn|σ=0 = α2m(0)α2n(0). (19)

In order to calculate the integral (18) for the values σ > 0, let us use the
formulae (5) and the Hermit polynomials definition (see, for example, [10])

H2k(x) = (2k)!

k∑
l=0

(−1)l

(l)!(2k − 2l)!
(2x)2k−2l, (20)

to obtain

α2n

(
t√
2

)
= exp

(
− t

2

2

) √
(2n)!

π
1
4

n∑
k=0

(−1)kt2n−2k

2kk!(2n− 2k)!
. (21)

Then, taking into account that

t2k =
(2m)!

22m

m∑
j=0

H2j(t)

(2j)! (m− j)!
, (22)

one can finally find

cmn =

√
(2m)!(2n)!

π
1
4 22m+2n

m∑
k=0

(−2)k

k! (2m− 2k)!

n∑
l=0

(−2)l

l! (2n− 2l)!

× (2m+ 2n− 2k − 2l)!

m+n−k−l∑
q=0

2qα2q(0, σ)

(m+ n− k − l − q)!
√

(2q)!
, (23)
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where the following notation is introduced:

α2q(0, σ) =
(−1)q

π
1
4

√
(2q)!

∞∑
p=0

2pσ2p

(2p)!

[
(2q + 2p− 1)!!− σ√

π

2

2p+ 1
(2q + 2p)!!

]
. (24)

The expression (23) obtained for description of elements of the required matrix,
though explicit, is again rather complicated for direct numerical calculations.
Therefore, any numerical procedure based on the ordinary accuracy of the used
computer calculations cannot provide the required accuracy of the final results.
These difficulties can be overcome only using methods of calculations based on the
usage of a higher number of significant digits. For example, about one hundred
twenty or more significant digits are needed to provide 15 correct digits for all the
elements of the 100× 100 matrix.

Nevertheless, it is possible to obtain a much simpler expression if one of the
indexes of the matrix [cmn] is equal to zero (the first row or the first column).
Then one out of the three sums disappears immediately and one obtains after
some transformations

c0,n =
(−1)n

√
(2n)!

π
1
4 22n

n∑
q=0

(−2)q α2q(0, σ)

(n− q)!
√

(2q)!
= cn,0. (25)

On the other hand, taking into account the relation of recurrence for the
Hermit polynomials

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (26)

one can derive the following recurrence relation for the required elements of the
matrix [cmn]:

cmn =

√
2n+ 1

2m
dm−1,n+1 +

√
n

m
dm−1,n−1 −

√
2m− 1

2m
cm−1,n, (27)

where
dmn = cm+ 1

2
,n+ 1

2
. (28)

Further, in terms of the physical meaning of the redistribution function one
might conclude that its integral over one of the arguments should give the profile
of the absorption coefficient∫ ∞

−∞
rII(x

′, x)dx′ = α(x, σ) =
U(x, σ)

U(0, σ)
, (29)

and bearing in mind (5)–(7), one finds

∞∑
k=0

γk,0
ζk

ω2k(x, σ) =
U(x, σ)

U(0, σ)
. (30)
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Here the following normalization relation is used:∫ ∞
−∞

αm(x)αn(x)dx = δmn, (31)

where δmn is the Kronecker symbol. Integrating Eq. (34) over all frequencies, one
obtains finally ∫ ∞

−∞
dx

∫ ∞
−∞

rII(x
′, x)dx′ =

∞∑
k=0

γk0
2

ζk
=
√
π, (32)

which can be used for the normalization purposes.

Now let us briefly consider the physical situation when both energetic levels
are broadened. Heinzel [6] has shown that the redistribution function derived
by Hummer [1] for description of this process is not correct and obtained a new
expression allowing the following notation:

rV (x′, x) =
σi

2

π2

∫ ∞
−∞

dt

t2 + σi2

∫ ∞
−∞

rII(x
′ + t, x+ u)

u2 + σi2
du. (33)

Then, using Eq. (6), one will find a bilinear expansion for this function as well.
Putting Eq. (6) into Eq. (33), one obtains

rV (x′, x) =
∞∑
k=0

ω2k(x
′, σi, σj)ω2k(x, σi, σj)

ζk(σj)
, (34)

where the functions

ω2k(x, σi, σj) =
∞∑
m=0

γkm(σj)α2m(x, σi) (35)

depend on damping parameters of both energetic levels. The functions α2k(x, σ)
are defined by the relation

αk(x, σ) = (2kπ
1
2k!)−

1
2

2√
π

Re(−2i)k
∫ ∞

0
tk exp(−t2 − 2σt+ 2ixt)dt. (36)

Thus, constructing a bilinear expansion for the function rII(x
′, x) as described

above, one arrives at a conclusion that this method provides a tool for constructing
similar expansions for all the applicable redistribution functions. It can be done
immediately, if one obtains the eigenfunctions γkm(σ) and eigenvalues ζk(σ) and
also uses an appropriate numerical procedure for computing the functions αk(x, σ).
Then the corresponding redistribution functions could be constructed by the same
procedure using the various values of the parameters σi and σj . It is easy to see
that rV (x′, x) = rIII(x

′, x), if σj = 0, rV (x′, x) = rII(x
′, x) for σi = 0 and, at last,

rV (x′, x) = rI(x
′, x), if both damping parameters are equal to zero – σj = σi = 0.
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3 The auxiliary functions αk(x, σ)

Obviously, besides the eigenvalue problem (8) one should overcome the second
key computational difficulties for the eventual construction of the redistribution
functions. That is the problem of the numerical evaluation of the corresponding
auxiliary functions. The functions α2m(x, σ) defined by Eq. (36) have been
introduced and studied by Hummer [1], and a rather effective method for their
calculation was suggested by him in the same paper. In order to simplify the
initial expression (36), the exponent exp(−2σt) is replaced by its power series.
Then one should compute several terms of that series to provide the required
accuracy of auxiliary functions. Following the Hummer’s procedure in general,
Harutyunian [11] has separated from each other the even and odd functions
appearing in the derived series to obtain the following relation:

αk(x, σ) = (2kπ
1
2k!)−

1
2

∞∑
m=0

(iσ)m

(2m)!

[
Mk+2m(x) +

σ

2m+ 1
Nk+2m+1(x)

]
, (37)

where

Mk(x) =
2√
π

Re(−2i)k
∫ ∞

0
tk exp(−t2 + 2ixt)dt (38)

and

Nk(x) =
2√
π

Im(−2i)k
∫ ∞

0
tk exp(−t2 + 2ixt)dt (39)

are the Hermit functions of the first and second kinds [10].
From Eqs. (38) and (39) one can easily find the following recurrent formulas

well known from the mathematical textbooks (see, for example, [10]):

Mk+1(x) = 2xMk(x)− 2kMk−1(x) (40)

for the first kind functions and similarly

Nk+1(x) = 2xNk(x)− 2kNk−1(x) (41)

for the second kind functions. The first functions to be used for recurrent relations
are defined as follows:

M0(x) = exp(−x2), M1(x) = 2xM0(x), (42)

N0(x) =
2√
π
, N1(x) = 2xN0(x)− 2√

π
. (43)

Here

F (x) =

∫ ∞
0

exp(−t2) sin 2xt dt = exp(−x2)

∫ x

0
exp(t2)dt (44)
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is the Dawson function connected with the error function of an imaginary argu-
ment and represents the solution of the following Cauchy problem:

F ′(x) = 1− 2xF (x) (45)

with the initial condition F (0) = 0.

Numerical procedures for calculation of the Dawson function are considered
in Hummer’s paper [12]. Some earlier references could be found in the mentioned
above review by Hummer [1]. Among the relatively recent studies one might refer
to the papers [13–14]. The most efficient procedure for calculation of the Dawson
function can be carried out using the power series [10]

F (x) =

∞∑
n=0

(−1)n 2n

(2n+ 1)!!
x2n+1, (46)

which converges for all values of the argument. However, one should take care for
the accuracy issues when applying the relation (46) for numerical computations.
Obviously, for the smaller values of the argument (x ≤ 1) the series (46) converges
rather rapidly and no big difficulties can arise. However, for the larger values of the
argument, the need in much higher digit numbers for calculations grows up very
rapidly. For instance, for x = 12 one can easily provide around 35 correct digits
of the Dawson function if uses 120 significant digits for calculations. Nonetheless,
the usage of the same number of significant digits provides only 12 correct
digits in the final result if the argument reaches to the value x = 15. Many
correct significant digits are very important not only for computing the Dawson
function itself. The point is that the recurrent formula themselves are a perilous
source of the error accumulation and therefore one needs to calculate the Dawson
function with a bigger number of correct significant digits. Actually, the problem
is absolutely the same that we encountered considering the matrix [cmn] in the
previous paragraph.

Of course, on the other hand, one can find an asymptotic series for the larger
arguments of the Dawson function which can be rather useful for the practical
applications [10]

F (x) ≈
∞∑
n=0

(2n)!

22n+1 n!x2n+1
. (47)

This asymptotic relation, as opposed to the series (46), is a diverging one.
Nevertheless, a few first terms of this series will provide an applicable accuracy for
various asymptotic estimates. Indeed, starting with the relations (42)–(43) and
using the relation (47), one obtains for x→∞ the following asymptotic form:

Nk(x) ≈ (−1)k√
πxk+1

∞∑
n=0

(2n+ k)!

22n n!x2n
, (48)
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which can be used in the series (37). It is easy to see that due to the exponentially
decreasing behavior of the first kind Hermit functions for larger values of the
argument they are falling much faster than the second kind functions. Therefore,
one finds the asymptotic relation

αk(x, σ) =
σ

xk+2
√
π

(2kπ
1
2k!)−

1
2

∞∑
n=0

(2n+ k + 1)!

x2n

n∑
m=0

(−1)mσ2m

22(n−m)(2m+ 1)!(n−m)!
,

(49)

which turns into the known asymptotic expression for the Voigt function [15]

U(x, σ) =
σ

x2
√
π

∞∑
n=0

(2n+ 1)!

x2n

n∑
m=0

(−1)mσ2m

22(n−m)(2m+ 1)!(n−m)!
. (50)

These asymptotic forms coupled with the exact formulas derived above
provide one with all the necessary tools for building the bilinear expansions
of redistribution functions and their usage for the practical purposes.

Preliminary calculations show that these numerical procedures easily can be
performed on modern PC. Elaborated specially for these purposes software
package HAHMATH allows one to perform computations with the needed number
of significant digits when high accuracy calculations are required. However,
extraordinary accuracies are needed only when the matrix [cmn] or Dawson
function and its derivatives are calculated. Once calculated the matrix [cmn] can be
used for building the matrix [bmn] and to continue all other computations with
the ordinary accuracy of computers. There is no need for using the extremely long
numbers when solving the corresponding eigenvalue problem. Calculated once the
eigenvalues and eigenfunctions for the given damping factor might be used for
further calculations.
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About the Development of the Asymptotic

Theory of Non-Stationary Radiative Transfer

A.K.Kolesov1

E-mail: natakr4@gmail.com

A brief review of the development of the asymptotic non-stationary
radiative transfer theory is presented. In particular, the accuracy of the
diffusion approximation is studied. It is shown that the replacement of the
non-stationary transfer equation by the heat conductive equation should give
satisfactory results when the single scattering albedo λ is close to the unity.
But this approximation can lead to significant errors when λ < 1.

Studying time-dependent processes in various non-stationary objects is
an important problem of modern astrophysics. The illumination of the dust nebula
under the influence of radiation of a new star can be considered as an example
of such process.

Sobolev initiated the systematic development of the theory of non-stationary
radiation fields in the article [1] published in 1952. Fundamentals of this theory
were presented in his book [2].

Non-stationary radiation fields are characterized by the finite speed of light c
and a definite duration of the light scattering process.

Let t1 be the mean time of the stay of a photon in the absorbed state. It is
usually assumed that the probability of emission of a photon being in the absorbed
state in the time interval from t to t + dt depends on t by the exponential law,

i.e., it is proportional to e
− t
t1
dt
t1

.
The probability of the photon absorption while travelling after his radiation

during an interval of time from t to t + dt depends on t also exponentially, e.g.,

it is proportional to e
− t
t2
dt
t2

, where t2 = 1
αc is the mean time of stay of a photon

on the path between two consecutive scatterings. Here α is the volume absorption
coefficient of the medium.

The values of t1 and t2 are usually very different from each other. Therefore,
Sobolev has proposed to allocate the consideration of two limiting cases, i.e., the
case A, when t1 � t2, and the case B, when t2 � t1.

The simplest model of non-stationary radiative transfer is a model based on
the consideration of the one-dimensional homogeneous infinite medium with an
energy source depending on time. Let us assume that the medium is illuminated by
a momentary point source of luminosity L flashing at some initial moment of time.
We note that an actual flash duration and a dependence of the luminosity L(t)

1 St. Petersburg State University, Russia

V.Grinin et al. (eds) Radiation mechanisms of astrophysical objects. Yerevan: Edit Print, 2017, pp. 43–49.
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on the time t can be taken into account by integrating over time the expressions
for light field characteristics found in the case of a point source multiplied by the
value of the luminosity L(t).

Let I1(r, t) and I2(r, t) be intensities of the radiation spreading on distance r
from the source at time t in the direction of increasing and decreasing values of
the coordinate r, respectively. Instead of the geometric distances r, the physical
time t and values t1 and t2, we use the corresponding dimensionless quantities

τ = αr, u =
t

t1 + t2
, β1 =

t1
t1 + t2

, β2 =
t2

t1 + t2
. (1)

Then the radiative transfer equation takes the following form:

∂I1(τ, u)

∂τ
+ β2

∂I1(τ, u)

∂u
= −I1(τ, u) +B(τ, u), (2)

−∂I2(τ, u)

∂τ
+ β2

∂I2(τ, u)

∂u
= −I2(τ, u) +B(τ, u). (3)

HereB(τ, u) is the source function defined by the equation of radiative equilibrium

B(τ, u) =
λ

2

∫ u

0

[
I1
(
τ, u′

)
+ I2(τ, u

′)
]
e
−u−u

′
β1

du′

β1
, (4)

where λ is the single scattering albedo. These equations are supplemented with the
initial condition which takes into account the momentary point source of energy.
The mean radiation intensity J(τ, u) and the radiation flux H(τ, u) are defined
by the expressions

J(τ, u) =
1

2
[I1(τ, u) + I2(τ, u)] , (5)

H(τ, u) = I1(τ, u)− I2(τ, u). (6)

Minin [3] obtained the exact solution of this problem by means of the Laplace
transform.

Simple asymptotic expressions for characteristics of the non-stationary
radiation field are obtained in the case when points of the medium are located
at large optical distances from energy sources (τ � 1) and scattering of light is
close to conservative (1− λ� 1). In this case Minin [4] proposed to use a simple
technique for inverting the Laplace transform. As it is known from the theory of
the Laplace transform, the value of the original at large values of the argument
(u � 1) is determined using the expansion of the image in powers of the small
parameter s. This expansion corresponds to the expansion of solutions of the
stationary radiative transfer equation in powers of the small values of 1−λ. As a
result of the Laplace transform in time, the non-stationary equation is converted
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into the stationary one but the value of λ is replaced by the value λ
(1+β1s)(1+β2s)

.
Therefore, taking into account the fact that β1 + β2 = 1, we obtain 1 − λ = s
with accuracy to members of the higher degrees of the parameter s. Hence,
when receiving the asymptotic image, it is necessary to replace the small values
of 1 − λ by s in the equation solution for the stationary case, and then to apply
the inverse Laplace transform.

In the case of one-dimensional infinite medium illuminated by a momentary
point source, we obtain for J(τ, u, λ) and H(τ, u, λ) the following expressions (for
λ = 1, τ � 1, u > τ):

JD (τ, u, 1) =
L

4
√
πu

e−
τ2

4u , (7)

HD (τ, u, 1) =
L

4
√
πu

τ

u
e−

τ2

4u . (8)

The same expressions for these quantities are obtained in the diffusion appro-
ximation in the case of λ = 1. This approximation is based on using the heat
conductivity equation

∂2J(τ, u, λ)

∂τ2
=
∂J(τ, u, λ)

∂u
+ (1− λ) J(τ, u, λ) (9)

instead of the non-stationary radiation transfer equation. The solution of the
equation (9) leads to the following expressions for the functions J(τ, u, λ) and
H(τ, u, λ):

JD (τ, u, λ) = e−(1−λ)uJD (τ, u, 1) , (10)

HD (τ, u, λ) = e−(1−λ)uHD (τ, u, 1) , (11)

where JD (τ, u, 1) and HD (τ, u, 1) are given by the expressions (7) and (8).

The diffusion approximation was proposed by Compton [5] in 1923. However,
in 1926 Milne [6] showed that the usage of this approximation for the calculation
of non-stationary fields of radiation can lead to physically unreasonable results.

Kolesov and Sobolev [7] studied the accuracy of the diffusion approximation
in the cases A and B.

Exact expressions for J(τ, u, λ) and H(τ, u, λ) in the case A have the form

JA (τ, u, λ) =
L

2π

∫ ∞
0

e
−
(
1− λ

1+x2

)
u cosxτ

1 + x2
dx, (12)

HA (τ, u, λ) =
L

π

∫ ∞
0

e
−
(
1− λ

1+x2

)
u x sinxτ

1 + x2
dx. (13)
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When λu� 1, we have the following asymptotic expressions:

JasA (τ, u, λ) ≈ L

4
√
πλu

e−(1−λ)u−
τ2

4λu , (14)

Has
A (τ, u, λ) ≈ L

4
√
πλu

τ

λu
e−(1−λ)u−

τ2

4λu . (15)

In the absence of true absorption, when λ = 1, these expressions coincide with
the expressions (7) and (8) of the diffusion approximation.

In the case B for τ ≥ 0 and u > τ , the exact expressions for these quantities
are given by the expressions

JB (τ, u, λ) =
λL

8

[
I0

(
λ

2

√
u2 − τ2

)
+

u√
u2 − τ2

I1

(
λ

2

√
u2 − τ2

)]
e−(1−λ2 )u,

(16)

HB (τ, u, λ) =
λL

4

τ√
u2 − τ2

I1

(
λ

2

√
u2 − τ2

)
e−(1−λ2 )u, (17)

where I0 (z) and I1 (z) are the modified Bessel functions. The asymptotic expres-

sions for u� τ have the form

JasB (τ, u, λ) ≈ L

4

√
λ

πu
e−(1−λ)u−

λτ2

4u , (18)

Has
B (τ, u, λ) ≈ Lτ

4u

√
λ

πu
e−(1−λ)u−

λτ2

4u . (19)

When λ = 1, these expressions also coincide with the expressions (7) and (8)
of the diffusion approximation.

First of all, let us consider the case A. When λ = 1, the exact and appro-
ximate values of J(τ, u, λ) and H(τ, u, λ) are pretty close to each other, and
the asymptotic expressions for these quantities coincide with the expressions for
JD(τ, u, 1) and HD(τ, u, 1) in the diffusion approximation. The ratios JasA /JD and
Has
A /HD are shown in Table 1.

A different situation occurs when λ < 1. A comparison of the exact values
JA(τ, u, λ) and HA(τ, u, λ) with the approximate values of these quantities shows
that they can significantly differ from each other. The asymptotic expressions
differs from the corresponding expressions in the diffusion approximation. Their
ratio is equal to

JasA (τ, u, λ)

JD(τ, u, λ)
=
Has
A (τ, u, λ)

HD(τ, u, λ)
≈ 1√

λ
e−

τ2

4u ( 1
λ
−1). (20)

Since λ is included in the exponent, these ratios may differ significantly from the

unity.
Let us consider now the case B. We note that due to the finite speed of light

J(τ, u, λ) = 0 and H(τ, u, λ) = 0 if u < τ but in the diffusion approximation
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Table 1: Ratios of Jas
A /JD and Has

A /HD for λ = 1

τ = 1 τ = 10

u JasA /JD Has
A /HD JasA /JD Has

A /HD

I 0.801 0.98 5.30× 107 8.57× 106

2 0.916 1.57 7.78× 102 2.24× 102

3 0.977 1.76 2.92× 101 1.15× 101

4 0.995 1.77 6.92 3.33

5 1.018 1.69 3.27 1.82

6 1.022 1.59 2.12 1.32

7 1.024 1.50 1.63 1.104

8 1.023 1.43 1.38 0.997

9 1.022 1.36 1.23 0.942

10 1.021 1.32 1.14 0.914

15 1.015 1.19 0.993 0.906

20 1.012 1.13 0.971 0.939

30 1.008 1.083 0.977 0.983

40 1.006 1.060 0.985 1.001

50 1.005 1.047 0.990 1.009

60 1.004 1.039 0.993 1.012

80 1.003 1.029 0.996 1.014

100 1.002 1.023 0.998 1.014

JD(τ, u, λ) 6= 0 and HD(τ, u, λ) 6= 0 under this condition as the finite speed
of light is not taken into account in this approximation. A comparison of the
exact and asymptotic expressions gives approximately the same results, as in
the case of A, i.e. JasB (τ, u, 1) = JD(τ, u, 1) and Has

B (τ, u, 1) = HD(τ, u, 1), but
when λ < 1, JasB (τ, u, λ) and Has

B (τ, u, λ) are significantly different from JD(τ, u, λ)
and HD(τ, u, λ), as

JasB (τ, u, λ)

JD (τ, u, λ)
=
Has
B (τ, u, λ)

HD (τ, u, λ)
≈
√
λ e

τ2

4u
(1−λ), (21)

i.e., these ratios depend strongly on λ (see Tables 2 and 3).

From the above it follows that the replacement of the non-stationary radiation
transfer equation by the heat conductive equation should give satisfactory results
when λ ≈ 1 and can lead to significant errors when λ < 1.

This conclusion is also valid in the cases of non-stationary radiative transfer
in infinite three-dimensional media illuminated by planar or point sources. Let us
give the expressions of the mean intensity and radiation flux in these cases (if one
uses the Eddington approximation).

Let us consider an infinite medium illuminated by a momentary isotropic
planar source which can be represented in the form of multiple isotropic point
sources of luminosity L uniformly distributed on the plane τ = 0 with a surface
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Table 2: Values of JA(τ, u), JD(τ, u), JB(τ, u) for λ = 0.5

τ = 1 τ = 10

u JA(τ, u) JD(τ, u) JB(τ, u) JA(τ, u) JD(τ, u) JB(τ, u)

I 5.50× 10−2 6.66× 10−2 3.32× 10−2 2.84× 10−5 1.19× 10−12 0

2 3.24× 10−2 3.24× 10−2 1.82× 10−2 3.82× 10−5 1.37× 10−7 0

3 1.88× 10−2 1.67× 10−2 1.01× 10−2 4.11× 10−5 4.37× 10−6 0

4 1.09× 10−2 8.96× 10−3 5.63× 10−3 3.91× 10−5 1.84× 10−5 0

5 6.30× 10−3 4.92× 10−3 3.18× 10−3 3.43× 10−5 3.49× 10−5 0

6 3.64× 10−3 2.75× 10−3 1.82× 10−3 2.84× 10−5 4.44× 10−5 0

7 2.11× 10−3 1.55× 10−3 1.04× 10−3 2.25× 10−5 4.53× 10−5 0

8 1.22× 10−3 8.85× 10−4 5.94× 10−4 1.73× 10−5 4.01× 10−5 0

9 7.08× 10−4 5.08× 10−4 3.43× 10−4 1.29× 10−5 3.25× 10−5 0

10 4.11× 10−4 2.93× 10−4 1.99× 10−4 9.37× 10−6 2.47× 10−5 7.78× 10−5

15 2.82× 10−5 1.98× 10−5 1.36× 10−5 1.51× 10−6 3.80× 10−6 6.95× 10−6

20 2.02× 10−6 1.41× 10−6 9.81× 10−7 1.90× 10−7 4.10× 10−7 5.79× 10−7

30 1.11× 10−8 7.81× 10−9 5.46× 10−9 2.09× 10−9 3.42× 10−9 3.78× 10−9

40 6.50× 10−11 4.57× 10−11 3.20× 10−11 1.81× 10−11 2.46× 10−11 2.41× 10−11

50 3.92× 10−13 2.76× 10−13 1.93× 10−13 1.40× 10−13 1.68× 10−13 1.54× 10−13

60 2.41× 10−15 1.70× 10−15 1.19× 10−15 1.02× 10−15 1.12× 10−15 9.82× 10−16

80 9.47× 10−20 6.68× 10−20 4.70× 10−20 4.99× 10−20 4.90× 10−20 4.06× 10−20

100 3.85× 10−24 2.71× 10−24 1.91× 10−24 2.32× 10−24 2.12× 10−24 1.70× 10−24

density of l and flashing at the initial moment of time (u = 0). Then, using the
diffusion approximation, we have

JD(τ, u) =
lL

8π
√
π

√
3− x1√
u

exp

(
−(3− x1) τ2

4u

)
, (22)

HD(τ, u) =
lL

4
√
π

√
3− x1
u
√
u
|τ | exp

(
−(3− x1) τ2

4u

)
, (23)

when τ � 1, 1− λ� 1, u >
√

3− x1β2τ .

In the case of an infinite medium illuminated by a momentary point source
of luminosity L we have

JD(τ, u) =
Lα2

32π2
√
π

(3− x1)
3
2

u
√
u

exp

(
−(3− x1) τ2

4u

)
, (24)

HD(τ, u) =
Lα2

16π
√
π

(3− x1)
3
2

u2
√
u

τ exp

(
−(3− x1) τ2

4u

)
, (25)

when τ � 1, 1− λ� 1, u >
√

3− x1β2τ .
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Table 3: Values of HA(τ, u), HD(τ, u), HB(τ, u) for λ = 0.5

τ = 1 τ = 10

u HA(τ, u) HD(τ, u) HB(τ, u) HA(τ, u) HD(τ, u) HB(τ, u)

I 8.69× 10−2 6.66× 10−2 7.38× 10−3 4.96× 10−5 1.19× 10−11 0

2 4.12× 10−2 1.62× 10−2 3.57× 10−3 6.18× 10−5 6.84× 10−7 0

3 1.96× 10−2 5.57× 10−3 1.75× 10−3 6.26× 10−5 1.46× 10−5 0

4 9.38× 10−3 2.24× 10−3 8.73× 10−4 5.64× 10−5 4.61× 10−5 0

5 4.52× 10−3 9.85× 10−4 4.41× 10−4 4.71× 10−5 6.98× 10−5 0

6 2.20× 10−3 4.58× 10−4 2.26× 10−4 3.73× 10−5 7.41× 10−5 0

7 1.08× 10−3 2.22× 10−4 1.17× 10−4 2.83× 10−5 6.47× 10−5 0

8 5.37× 10−4 1.11× 10−4 6.12× 10−5 2.08× 10−5 5.02× 10−5 0

9 2.69× 10−4 5.64× 10−5 3.24× 10−5 1.49× 10−5 3.61× 10−5 0

10 1.37× 10−4 2.93× 10−5 1.73× 10−5 1.04× 10−5 2.47× 10−5 8.64× 10−5

15 5.37× 10−6 1.32× 10−6 8.39× 10−7 1.41× 10−6 2.54× 10−6 4.78× 10−6

20 2.60× 10−7 7.07× 10−8 4.63× 10−8 1.52× 10−7 2.05× 10−7 2.91× 10−7

30 8.66× 10−10 2.60× 10−10 1.75× 10−10 1.27× 10−9 1.14× 10−9 1.25× 10−9

40 3.63× 10−12 1.14× 10−12 7.79× 10−13 8.74× 10−12 6.15× 10−12 5.60× 10−12

50 1.71× 10−14 5.51× 10−15 3.79× 10−15 5.57× 10−14 3.36× 10−14 3.04× 10−14

60 8.62× 10−17 2.83× 10−17 1.95× 10−17 3.43× 10−16 1.87× 10−16 1.62× 10−19

80 2.50× 10−21 8.35× 10−22 5.80× 10−22 1.27× 10−20 6.13× 10−21 5.04× 10−21

100 8.02× 10−26 2.71× 10−26 1.89× 10−26 4.71× 10−25 2.12× 10−25 1.63× 10−25
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of the Radiative Transfer Theory
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It is shown that the problems of radiation transfer in homogeneous
plane-parallel atmospheres admit a variational formulation, the equation of
transfer then being the Euler–Lagrange equation and the known quadratic
and bilinear relations being the conservation law due to form-invariance of
the suitable Lagrangian. A group of transfer problems is revealed which
are reducible to the source-free problem. We present a group-theoretical
description of radiation transfer in inhomogeneous and multi-component
atmospheres with plane-parallel geometry. The concept of composition
groups is introduced for the media with different optical and physical
properties. The group representations are derived for two possible cases of
illumination of a composite finite atmosphere from outside. An algorithm for
determining the global optical characteristics (reflectance and transmittance)
of inhomogeneous and multi-component atmospheres is given. The group
theory approach is also applied to determine the field of radiation inside
the inhomogeneous atmosphere. The concept of a group of optical depth
translations is introduced. The developed theory is illustrated with the
problem of radiation diffusion with partial frequency distribution for the
case where the inhomogeneity of the medium is due to the depth-variation of
the scattering coefficient. It is shown that once reflectance and transmittance
of a medium is determined, the internal field of radiation in the source-free
atmosphere is found without solving any new equations.

1 Introduction

The research on the theory of radiative transfer carried out in recent two decades
in Byurakan observatory develops Ambartsumian’s ideas concerning the laws
of addition of layers [1, 2] and the principle of invariance [2, 3, 4]. Being of
importance for analytical theory itself, new results allow elaborating efficient
computational schemes for various astrophysical applications involving radiation
transfer in inhomogeneous absorbing and scattering atmospheres. In this context
there is a need to define their place and importance in the modern transfer
theory.

The report considers results obtained in two directions, the first of which
concerns the variational formulation of radiation transfer problems in a plane-
parallel homogeneous atmosphere.

1 Byurakan Astrophysical Observatory, Armenia

V.Grinin et al. (eds) Radiation mechanisms of astrophysical objects. Yerevan: Edit Print, 2017, pp. 51–63.
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2 Lagrangian formalism

Before turning to immediate description of the variational or Lagrangian approach
to radiative transfer problems we will briefly dwell on premises of this research.
The fact is that although Ambartsumian’s principle of invariance has been known
for a long time, but its physical meaning remained obscure. In particular, it was
unclear what are the limits of applicability and efficiency of the principle. The
second point concerns Rybicki’s work [5], where some quadratic integrals of
the transfer equation were derived referred by him to as Q- and R-integrals.
He supposed that these integrals are possibly related with the principle of
invariance. In some problems they lead to non-linear relations linking to each
other some characteristics of the radiation field in the atmosphere. Further
generalization of Rybicki’s results for monochromatic and isotropic scattering
in a plane-parallel medium was given in [6, 7], where new sorts of relations were
obtained referred to as bilinear and two-point bilinear relations, which couple the
radiation fields at different depths of a given atmosphere as well as the radiation
fields in different atmospheres.

In frameworks of variational formalism we developed the equations of transfer
are proved to be none the other than the Euler-Lagrange equations and the non-
linear Q-relations are the conservation laws due to form-invariance of the suitable
Lagrangian. In fact, a single functional comprises all the information on features
of the problem and allows a systematic connection between symmetries and
conservation laws. Being the first integrals of the Euler–Lagrange equation, this
laws may facilitate the solution of the problem under consideration and contribute
to its interpretation.

To demonstrate the approach, we write the transfer equations in terms of
the function Y having the following probabilistic meaning: it characterizes the
probability of the photon exit from atmosphere in the direction µ, if originally
it was moving at depth τ with the directional cosine η.

We have

±dY (τ,±η, µ)

dτ
= −Y (τ,±η, µ) +

λ

2

∫ 1

−1
Y (τ,±η′, µ)dη′, (1)

where λ is the scattering coefficient. The Lagrangian density L corresponding to
Eq. (1) was obtained in [8]

L(Φ,Φ′, τ, η, µ) = Φ2 + (ηΦ′)2 − 2ΦU, (2)

where we introduced notations

Φ(τ, η, µ) = Y (τ, η, µ) + Y (τ,−η, µ), U(τ, µ) =
λ

2

∫ 1

0
Φ(τ, η′, µ)dη′. (3)

In accordance with the results of [8], the Euler–Lagrange equation has a form

∂L

∂Φ
− d

dτ

∂L

∂Φ′
+ λ

∫ 1

0

∂L

∂U
dη′ = 0. (4)
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One will make sure that insertion of the Lagrangian (2) into Eq. (4) yields the
transfer equation (1). It is important that both the transfer equation (1) and
the Lagrangian density (2) do not depend explicitly on τ , or stated differently,
they are form-invariant under infinitesimal transformation of the optical depth.

This implies that the transformation (or translation) of the optical depth is
the symmetry transformation for the system (1). The derivation of conservation
laws from direct study of the variational integral is based on Noether’s
theorem (see, for instance, [9]), which was generalized in [10] to encompass the
integro-differential equations. For the problem under consideration, it suggests
a conservation law as follows:

∫ 1

0

[
L− ∂L

∂Φ
Φ′
]
dη = const, (5)

which, in view of Eq. (2), takes a form

∫ 1

0
Y (τ, ζ, µ)Y (τ,−ζ, µ)dζ =

λ

4

(∫ 1

−1
Y (τ, ζ, µ)dζ

)2

+ const. (6)

This relation is, in essence, a prototype of the Q-integral obtained by
Rybicki [5]. The above considerations imply that by its content the integral (6)
is an analog of the momentum conservation law in mechanics and is due to the
axes translation transformation. It holds everywhere where λ does not vary with
depth.

The variational formalism allows one not only to elucidate the physical
meaning of invariance principle but enables to derive along with many known
results a great number of new relations of great importance for the theory and
applications. It allows one also to find out some statistical characteristics of the
diffusion process in the atmosphere [7, 11]. Some of the known non-linear relations
possess a fairly obvious physical or/and probabilistic meaning and can be written
immediately on the base of simple arguments.

This approach reveals a group of common radiation transfer problems of
astrophysical interest which admit quadratic and bilinear integrals. All of them
can be reduced to the source-free problem. This group of problems referred
to as RSF-problems includes Milne’s problem, the problem of diffuse reflection
(and transmission in the case of the atmosphere of finite optical thickness)
as well as problems with exponential and polynomial laws for the distribution
of internal energy sources. The group problems are characterized at least by three
features. First of all, the invariance principle implies bilinear relations connecting
the solutions of the listed problems. It was shown in [12] that the group of the RSF-
problems admits a class of integrals involving quadratic and bilinear moments of
the intensity of arbitrarily high orders. Secondly, if the problem can be formulated
for finite atmosphere then the principle allows connecting its solution with that
of the proper problem for a semi-infinite atmosphere. Finally, knowledge of the
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Ambartsumian ϕ-function reduces their solutions to the Volterra-type equations
for the source function with the kernel-function

L(τ) =
λ

2

∫ 1

0
ϕ(ζ)e

− τ
ζ
dϕ

ζ
. (7)

While the variational approach is widely used in various branches of theoretical
physics, it was not the case in the field of the radiative transfer theory, with the
only exception being the paper of Anderson [8] who established the conservation
law suitable for the case of non-isotropic scattering. We used the results of the
rigorous mathematical theory in applying the Lagrangian formalism to the one-
dimensional transfer problem [13].

3 Group-theoretical description of radiative transfer
in inhomogeneous atmospheres

The next topic of the report concerns application of the group theory to solve
the radiative transfer problems in inhomogeneous atmospheres under general
assumptions on the frequency-angle distribution of the radiation field, the
elementary event of scattering and properties of the medium. As we shall see, the
theory we put forward can be regarded as a further extension of the layers adding
method proposed first by Ambartsumian [1, 2] for one-dimensional homogeneous
media and generalized by Nikoghossian [14, 15] over the case of inhomogeneous
media. We remind that the method establishes summation laws for global optical
properties of absorbing and scattering media (reflectance and transmittance),
which express these properties of the combined medium through similar properties
of its components. Of special interest is the particular limiting case of this method
when optical thickness of one of the added components tends to zero. This
allows one to find the global optical characteristics of a medium simultaneously
for a family of the media of different thicknesses. This branch of the theory
was developed by Bellman and his co-authors (see, e.g., [16, 17]) and is known
as “invariant imbedding”.

3.1 Composition groups

We start with considering the amalgamation procedure of the plane-parallel
absorbing and scattering inhomogeneous media. It is assumed that the added
components do not contain primary energy sources and are allowed to differ
one from the other not only by optical thicknesses, but also by the nature
of inhomogeneity. By inhomogeneity we mean that each of the physical parameters
specifying the elementary event of scattering or physical state of the medium
may vary with depth. Of them we note the profile of the absorption coefficient,
the quantum scattering (or destruction) coefficient, Voigt’s parameter, the phase
function, the frequency redistribution function, the Stokes parameters in the
case of polarized radiation, the correlation length for turbulent media, and
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so on. However, in illustrating the approach, we restrict ourselves by treating
the 1D transfer problem for the case of partial redistribution over frequencies by
assuming that the only variable parameter is the scattering coefficient.

Now we introduce the concept of composition or transformation of scattering
and absorbing inhomogeneous media, which refers to the addition of a new
medium to the initial one. The transformations induced in this way form a group
if under the group product (binary operation) one takes the resultant of two
successive transformations. It is remarkable that this definition does not specify
the nature of inhomogeneity of added media. It is easily seen that all the required
conditions for forming a group are satisfied. In particular, the role of the unit
element is played by the identity transformation, which leaves the initial medium
unchanged, and the inverse element is the transformation which reverses the effect
of the already performed transformation. The associativity of the group product
is obvious. We refer to this group of transformations as the GN(2,C) group, which,
evidently, is not commutative. As a result of the described compositions, one can
construct different atmospheres composed of inhomogeneous components.

Of special interest is one of subgroups of the introduced group which
describes the case when the added media are homogeneous. The components
of such a composite atmosphere may differ from each other not only by optical
thicknesses but also by any characteristics of the radiation diffusion in them. Such
groups, referred nominally to as GNH(2,C), are two-, three- and multi-parameter
dependent on the number of parameters changing in passing from one component
to another. The groups of these types are infinite and non-commutative. They
can serve as archetypes for a number of real radiating media of astrophysical
importance. Finally, of independent interest is the narrower subgroup of the
introduced two groups which involves compositions of homogeneous media with
identical physical properties but, in general, of different optical thicknesses.
These compositions obviously yield homogeneous medium. This one-parameter
group, we call it GH(2,C), is infinite and commutative, i.e., Abelian [18].
It becomes continuous when the only parameter, optical thickness, varies
continuously.

3.2 The group representations

In order to find the representations of introduced groups, consider a composite
atmosphere consisted of two layers, which generally differ in both the optical
thickness and functional behavior of parameters specifying the elementary event
of scattering (Fig. 1). This means that both components are inhomogeneous and
possess the property of polarity [14]. The scattering in the media is supposed
occurring with redistribution over directions and frequencies so that the optical
characteristics of media may be presented in the operator-matrix form with the
matrix elements possessing probabilistic meaning (throughout the paper we use
the probability language). They describe the angle and/or frequency dependent
probabilities of a single event of reflection and transmission. Having in mind
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1 2Q1∪2 R1∪2

1 2 Q∗1∪2R̄1∪2

Figure 1: Reflection and transmission by inhomogeneous atmosphere.

in mind the polarity property of inhomogeneous media, we introduce the notations
Ri, Qi and R̄i, Q̄i (i = 1, 2) for the reflection and transmission coefficients of
the components of a composite medium illuminated correspondingly from the right
and left. In accordance with the principle of reversibility of optical phenomena,
Q̄i=Q∗i , where the transposed matrix is supplied by asterisk. Everywhere below
we follow the designation Q∗i . An important role in this research belongs
to the inverse of the transmittance matrix P=Q−1 and the other three combined
matrices S = RP, S̄ = PR̄, M=Q∗−SR̄. These four matrices provide a complete
description of the optical properties of a inhomogeneous absorbing and scattering
medium independent of that what of its boundaries is illuminated from outside.

Let us treat now the transfer of radiation through composite medium when
a photon falls on its right boundary (top drawing in Fig. 1). Taking account of
possibility of multiple reflections between components of the medium, one can
derive the following two relations (see [19]):

P1∪2 = P2P1 − S̄2S1, (8)

S1∪2 = S2P1 + M2S1, (9)

where the quantities pertaining to composite medium are indexing with 1
⋃

2.

Taking together, relations (8) and (9) can be presented in the more convenient
compact form (

P1∪2

S1∪2

)
=

(
P2 −S̄2

S2 M2

)(
P1

S1

)
, (10)

where we used the concepts of supervector and supermatrix [18, 20, 21].
The supermatrix entering in Eq. (10) is denoted by Ã (hereafter the supermatrices
are supplied by tilde)

Ã =

(
P −S̄
S M

)
. (11)

The set of matrices Ã is the first of representations of the group of compositions
GN(2,C) which also is a group (we denote it by g) and provides a one-to-one
mapping of GN(2,C) to supervector space, i.e., the group product of two
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the polarity property of inhomogeneous media, we introduce the notations Ri,
Qi and R̄i, Q̄i (i = 1, 2) for the reflection and transmission coefficients of the
components of a composite medium illuminated correspondingly from the right
and left. In accordance with the principle of reversibility of optical phenomena,
Q̄i = Q∗i , where the transposed matrix is supplied by asterisk. Everywhere below
we follow the designation Q∗i . An important role in this research belongs to the
inverse of the transmittance matrix P = Q−1 and the other three combined
matrices S = RP, S̄ = PR̄, M = Q∗ − SR̄. These four matrices provide
a complete description of the optical properties of an inhomogeneous absorbing
and scattering medium independent of that what of its boundaries is illuminated
from outside.

Let us treat now the transfer of radiation through composite medium when
a photon falls on its right boundary (top drawing in Fig. 1). Taking account of
possibility of multiple reflections between components of the medium, one can
derive the following two relations (see [19]):

P1∪2 = P2P1 − S̄2S1, (8)

S1∪2 = S2P1 + M2S1, (9)

where the quantities pertaining to composite medium are indexing with 1 ∪ 2.

Taking together, relations (8) and (9) can be presented in the more convenient
compact form (

P1∪2

S1∪2

)
=

(
P2 −S̄2

S2 M2

)(
P1

S1

)
, (10)

where we used the concepts of supervector and supermatrix [18, 20, 21]. The
supermatrix entering in Eq. (10) is denoted by Ã (hereafter the supermatrices are
supplied by tilde)

Ã =

(
P −S̄
S M

)
. (11)

The set of matrices Ã is the first of representations of the group of compositions
GN(2,C) which also is a group (we denote it by g) and provides a one-to-
one mapping of GN(2,C) to supervector space, i.e., the group product of two
transformations g1

⊗
g2, corresponds to Ã1∪2 = Ã1Ã2, or for representations

=(g1
⊗
g2) = =(g1)=(g2) (isomorphism). On the hand, the supermatrix Ã

can be regarded as an operator mapping one supervector space to another one.
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It is natural to refer nominally to this supermatrix as “composer”. It plays
an important role in the developed theory.

It is easy to see that the transformation realizing by Ã provides determination
of optical properties of the composed medium partially, namely, only those for
the right-hand side illumination. For complete description of optical properties
of the composite medium, we need the matrices S̄ and M which obey the following
transformations [19]:

S̄1∪2 = P2S̄1 + S̄2M1, M1∪2 = M2M1 − S2S̄1. (12)

Note that these relations could be derived directly.
In the matrix-operator form they read

(
M1∪2

S1∪2

)
=

(
M2 −S2

S̄2 P2

)(
M1

S̄1

)
. (13)

Thus, we are led to an alternative group of representations given by the
supermatrix

B̃ =

(
M −S
S̄ P

)
, (14)

which we denote by =̄(g). It is evident that this group also is isomorphic to
the group of compositions GN(2,C) and together with =(g) gives a complete
description of optical properties of the composite atmosphere illuminated from
the right. In both cases the identity transformation is given by the supermatrix

Ẽ =

(
I 0
0 I

)
, (15)

where I is the unit matrix. The supermatrices Ã, B̃ are non-degenerate, and
two-sided inverse matrices exist with superdeterminant [21, 22, 23] equaled to one
(see [19]).

By introducing the four-dimensional supervector Ỹ with the components
(P,S,M, S̄), the group representations =(g), =̄(g) can be joined and presented
as a reducible representation

Ỹ1∪2 = Ψ̃2Ỹ1, (16)

where

Ψ̃ =




P −S̄ 0 0
S M 0 0
0 0 M −S
0 0 S̄ P


 . (17)

We conclude that, given the optical properties of the component layers, the
common matrix multiplications allow one to determine these properties for the
compound atmosphere. If the atmosphere is homogeneous one can restrict oneself
by transformation Eq. (10). Arguments analogous to those above in deriving
Eq. (17) allow one to derive adding laws for the case when the composite
atmosphere is illuminated from the side of the left boundary (bottom drawing
in Fig. 1) [19].
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3.3 The 1D source-free problem for partial redistribution
over frequencies

Consider a subgroup of the composition group GNH(2,C) subjected to the
only condition that the optical thickness of the medium obtained as a result
of compositions must not exceed some presetting value of τ0. When the optical
thickness varies continuously, this infinite group is obviously continuous. Then this
group together with its representation =(g) are one-dimensional Lie groups [21,
22, 23]. With help of compositions of this groups one can construct a multi-
component atmosphere with components which generally can differ one from the
other by their physical characteristics.

As an example, let us treat the matrix problem of radiation diffusion in a one-
dimensional inhomogeneous atmosphere illuminated from the boundary τ = τ0

when the scattering obeys the angle averaged law of partial redistribution over
frequencies. Suppose that the atmosphere consists of components of equal and
sufficiently small thickness characterized by some constant values of the scattering
coefficient λ, so that in the limit of the components thicknesses tending to zero
it might be regarded as a continuous function of the optical depth.

The infinitesimal operator of this group of compositions at τ0 can be re-
presented in the form

Ξ̃(τ0) = lim
∆τ0→0

Ã(τ0 + ∆τ0)− Ã(τ0)

∆τ0
=

(
m(τ0) −n(τ0)
n(τ0) −m(τ0)

)
, (18)

where

m(τ0) = α− n(τ0), n(τ0) =
λ(τ0)

2
Γ. (19)

Here α and Γ are the discrete analogs correspondingly of the profile of the
absorption coefficient and the law of the frequency redistribution [24]. For the
sake of simplicity, they are supposed to be independent of depth. Evidently, Γ is
a symmetric matrix and α is a diagonal matrix with the elements αi = α(xi).

Transformation (8) implies [25]

dP

dτ0
= m(τ0) P(τ0)− n(τ0) S(τ0), (20)

dS

dτ0
= n(τ0) P(τ0)−m(τ0) S(τ0), (21)

with the initial conditions P(0) = I, S(0) = 0, where 0 is the null matrix.
Inversion of the matrix P(τ0) found from the set of equations (20) and

(21) allows one to determine the requisite values of the medium reflectance and
transmittance. Analogously, by using the infinitesimal operator of the supermatrix
B̃ and Eq. (14), we are led to a new set of the matrix differential equations

dM

dτ0
= −m(τ0) M(τ0)− n(τ0) S̄(τ0), (22)



Some New Directions of Development of the Radiative Transfer Theory 59

dS̄

dτ0
= n(τ0) M(τ0) + m(τ0) S̄(τ0), (23)

with the initial conditions M(0) = I, S̄(0) = 0.

In the case of homogeneous atmosphere one can restrict oneself to solving the
set of equations (20)–(21). Its solution can be presented in the form of the matrix
exponential [25]. Note that from the sets of equations (20)–(23) one can derive
separate matrix differential equations of the second order for unknown matrix-
functions as it is the case in the scalar case [25].

Equations obtained with the group approach exhibit intimate connection
between the group approach and the method of invariant imbedding [16, 17].
As a matter of fact, the invariant imbedding technique is equivalent to action
of infinitesimal operators of the proper group representations introduced in the
paper. For homogeneous atmosphere, the obtained equations admit invariants or
conservation laws, the continual analogs of which were obtained in the mentioned
papers [7, 8, 25, 26].

The efficiency of the developed theory becomes especially discernible when
solving radiative transfer problems for atmospheres with a complex multi-layer
structure. In applying any of the introduced composers, one needs to predetermine
the global optical properties of each of the layers added to the boundary
τ = τ0, namely, the matrices P, S = RP, S̄ = PR̄ and M = Q∗ − SR̄ =
Q∗ − RS̄, i.e., the triad of matrices R, R̄, Q. The problem is simpler when
the components are homogeneous. Particularly, in the scalar problems these
quantities are determined analytically. In the general case of inhomogeneous
components, we can turn to solutions of the systems of equations (20)–(23) with
subsequent inversion of the matrix P. This route is preferable in finding the
field of radiation inside the medium to be discussed below. However, there exists
an alternative way of determining the required optical properties by solving basic
differential equations obtained in [12, 27], which are easily realizable initial-value
problems.

Thus, the algorithm of solution of the transfer problem in the most general
case of multi-component atmosphere is as follows. One starts with finding the
reflectance and transmittance of the layers to be added by using one of the
routes described above. Further, the compositions transformations are continued
until the optical thickness of the composite atmosphere specified by the problem
formulation is attained. Inversion of the matrix P(τ0) allows one to find Q(τ0)
what, in its turn, determines other properties of the composite atmosphere. We
shall see below that the obtained quantities are sufficient to find the field of
radiation inside the medium.

In the special case when the supplemented layers are homogeneous and possess
similar properties, we deal with the cyclic group and the composition process
reduces to the action of powers of corresponding operators (Ãn, for instance).
This naturally reduces the volume of computations to a great extent.



60 A.G.Nikoghossian

3.4 Radiation field inside the medium

The goal we pursue in this section is to extend the group theory approach
over the field of radiation inside inhomogeneous media. Consider a plane-parallel
inhomogeneous atmosphere of optical thickness τ0, the boundary τ = τ0 of which is
illuminated from outside (Fig. 2). Light scattering is generally assumed occurring
with the angle and frequency redistribution. The internal field of radiation we
assign by the matrices U(τ, τ0) and V(τ, τ0), which specify the probabilities
that the quantum with the angle-frequency characteristics (η, x) falling on the
boundary τ = τ0, will be found, as a result of diffusion in the medium, at the
depth τ moving correspondingly to the boundaries τ = 0, and τ = τ0, generally
with some other characteristics (η′, x′).64 A.G.Nikoghossian

0 τ τ0

U(τ, τ0) V(τ, τ0)

Q(τ0) R(τ0)

0 τ τ0

V̄(τ, τ0) Ū(τ, τ0)

Q∗(τ0)R̄(τ0)

Figure 2: Description of the radiation field inside the inhomogeneous atmosphere.
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This naturally reduces the volume of computations to a great extent.

3.4 Radiation field inside the medium

The goal we pursue in this section is to extend the group theory approach over
the field of radiation inside inhomogeneous media. Consider a plane-parallel
inhomogeneous atmosphere of optical thickness τ0, the boundary τ = τ0 of
which is illuminated from outside (Fig. 2). Light scattering is generally assumed
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(η, x) falling on the boundary τ = τ0, will be found, as a result of diffusion
in the medium, at the depth τ moving correspondingly to the boundaries τ = 0,
and τ = τ0, generally with some other characteristics (η′, x′).

Let us treat now the procedure of transition from one optical depth to another
one by supplementing a new layer. The infinite set of such transitions obviously
composes a group if the group product is defined as the result of two subsequent
transitions. One can easily check that all the group postulates are satisfied.
In accordance with the physics of the problem, the resulting value of the optical
depth should not exceed the optical thickness of the medium τ ≤ τ0. This group
is a subgroup of the group GN(2,C) and is equivalent to the similar subgroup
considered in the preceding sections for composition of different media.

Taking into account the probability meaning of matrices U(τ, τ0) and V(τ, τ0),
one can write

Q(τ0) = Q(τ)U(τ, τ0),V(τ, τ0) = R(τ)U(τ, τ0), (24)

Figure 2: Description of the radiation field inside the inhomogeneous atmosphere.

Let us treat now the procedure of transition from one optical depth to another
one by supplementing a new layer. The infinite set of such transitions obviously
composes a group if the group product is defined as the result of two subsequent
transitions. One can easily check that all the group postulates are satisfied.
In accordance with the physics of the problem, the resulting value of the optical
depth should not exceed the optical thickness of the medium τ ≤ τ0. This group
is a subgroup of the group GN(2,C) and is equivalent to the similar subgroup
considered in the preceding sections for composition of different media.

Taking into account the probability meaning of matrices U(τ, τ0) and V(τ, τ0),
one can write

Q(τ0) = Q(τ) U(τ, τ0), V(τ, τ0) = R(τ) U(τ, τ0), (24)

hence

U(τ, τ0) = P(τ) Q(τ0), V(τ, τ0) = S(τ) Q(τ0). (25)

The fact of separation of arguments in U(τ, τ0) and V(τ, τ0) is one of
advantages of the applied approach. Equations (24) imply that the subgroup
of representation =(g) relevant to the media compositions group may be now
regarded as representation of the depth-translation group.

Indeed, on the base of Eq. (10), one may write

(
U(τ + δτ, τ0)
V(τ + δτ, τ0)

)
=

(
Pτ (δτ) −S̄τ (δτ)
Sτ (δτ) Mτ (δτ)

)(
U(τ, τ0)
V(τ, τ0)

)
, (26)
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where δτ is an increment to the optical depth τ . The subscript τ indicates that
the internal physical properties of supplemented layer are relevant to (or vary in)
the interval (τ, τ + δτ).

Thus, the supermatrix Ã plays an important role not only in adding the
media of different optical thicknesses but also in translating optical depths
inside inhomogeneous atmosphere. Stating differently, it serves at the same time
as “composer” of inhomogeneous atmospheres and as “translator” in transitions
between optical depths inside the atmosphere. It is noteworthy that in the latter
case only the global optical properties of the incremented layer provide the
transformations. The internal physical characteristics do not take an immediate
part in these transformations, so that the nature of inhomogeneity in different
media or layers are allowed to be different.

To illustrate the obtained results, let us return to the matrix case of the
transfer problem treated in Section 3.3, where we confined ourselves to the global
optical characteristics of the medium. Our immediate objective now is to find the
field of radiation inside the medium, where, again, the only parameter varying
with depth is the scattering coefficient λ. In light of that said in Sect. 3.3, we
conclude that the depth-translation group together with its representation are the
Lie groups of the one-dimension.

Given the supermatrix (18), the transformation (26) leads to the customary
differential equations of radiation transfer for the operator-functions U and V

dU

dτ0
= m(τ) U(τ, τ0)− n(τ) V(τ, τ0), (27)

dV

dτ0
= n(τ) U(τ, τ0)−m(τ) V(τ, τ0). (28)

In place of the usual boundary conditions, one can now adopt the conditions
at τ = τ0, U(0, τ0) = Q(τ0), V(0, τ0) = 0, then reducing the problem to that
with initial conditions. Derivation of the transfer equations (27)–(28) on the base
of physical reasoning is straightforward, what is usually doing in the classical
astrophysical literature. As it was shown, the operator-functions P(τ) and S(τ)
satisfy the same set of equations (20)–(21) with the initial conditions P(0) = I,
S(0) = 0. By comparing the initial conditions of these two sets of equations, we
are led to relations (24) written above on the base of probabilistic reasoning [26].

Bearing in mind the computations described in Section 3.4 for the composite
inhomogeneous atmosphere as well as the equivalence of the medium-composition
and the depth-translation subgroups of GNH(2,C), we arrive at an important
conclusion that the internal field of radiation now can be found without solving
any new equations. Indeed, it is sufficient to this end to multiply the obtained
value of Q(τ0) by P and S found above in intermediate calculations in constructing
the atmosphere under study.

The far reaching analogy between media composition and depths translation
groups makes it possible to transfer different results obtained for global optical



62 A.G.Nikoghossian

properties of an atmosphere to quantities determining the internal field of
radiation. For instance, if the atmosphere is homogeneous, one can derive
conservation laws in terms of U and V, as it was done above for the matrices P
and S. We do not deal with it here but refer the interested reader after continual
analogs of these laws to [7, 26].

4 Conclusions

We discussed two directions of further development of the radiation transfer theory
which, in our opinion, are promising from both the analytical and computational
points of view. They generalize Ambartsumian’s ideas concerning the principle
of invariance and the layers adding laws. The variational approach allows one to
reveal the physical nature and the scope of applicability of invariance principle.
It is important that the solutions of some standard problems of astrophysical
interest mathematically are reducible to the Volterra type integral equations.

The second direction concerns the group theory which is applied to
solve the problems of radiative transfer in inhomogeneous absorbing and
scattering atmospheres. The media composition groups and their representations
introduced in the paper generalize the layers adding approach, which now covers
inhomogeneous, particularly multi-component, atmospheres with allowance of the
angle and frequency distribution of the radiation field. The group representations
being expressed in terms of some combined discrete quantities allow one to find
the most general summation laws for reflectance and transmittance of the plane-
parallel media.

Employment of infinitesimal operators of the introduced groups makes
it possible to establish the close connection of the introduced groups with the
classical transfer equations and the equations ensuing from invariant imbedding.
In fact, the first of them are connected with the depth translation groups, while
the second – with composition groups for the media of different optical thicknesses.

An important result in considering the internal field of radiation is the
separation of variables of the optical depth and thickness in the expression
of quantities describing the optical properties. This implies that the introduced
group of the optical depths translations is a subgroup of the group of the media
compositions. In its turn, this means that after finding the reflectance and
transmittance of an atmosphere, there is no need to solve any new equations
to determine the internal field of radiation in the source-free atmosphere.

The theory we put forward is of sufficiently great generality since it does not
depend on the nature of inhomogeneity of the media as well as on the angle and
frequency distribution of the radiation field.
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On the Linear Properties of the Nonlinear

Problem of Radiative Transfer
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We address the nonlinear problem of reflection/transmission of radiation
from an anisotropic scattering/absorbing one-dimensional medium of finite
geometrical thickness, when both of its boundaries are illuminated by intense
monochromatic radiative beams. The new conceptual element of so-called
“linear images” is noteworthy, which admits a probabilistic interpretation.
The solution of nonlinear problem of reflection/transmission of radiation
is reduced to a linear combination of linear images. They describe the
reflectivity and transmittance of the medium for a single photon or their
beam of unit intensity, incident on one of the boundaries of the layer, when
the medium in real regime is still under the bilateral illumination by external
exciting radiation of arbitrary intensity. To determine the linear images,
we exploit three well known methods: (i) adding of layers, (ii) its limiting
form described by differential equations of invariant imbedding, and (iii)
a transition to the so-called functional equations of Ambartsumyan’s
“complete invariance”.

1 Introduction

In linear problem of transfer of radiation energy, the resulting characteristics of
the radiation field are formed in the process of multiple interactions of radiation
with matter, when the physical properties of the medium are assumed to be
unchanged. The very complexity of nonlinear problem, in contrast, is the func-
tional dependence of the scattering/absorbing properties of each elementary
volume ∆→ 0 on the intensity of radiation incident on it from all sides. The
characteristics of the diffusing in medium radiation field and the physical state of
the medium itself are forming each other reciprocally, in a self-consistent manner.

It is well known that in the linear case, the solution of the problem of reflection-
transmission (PRT) of radiation, i.e. seeking the intensities u±L (x, y) of emerging
radiation from the right “+” and left “−” boundaries of the anisotropic medium
(of finite geometrical thickness L), which is illuminated from both boundaries
simultaneously by intense radiation beams with intensities x and y, respectively,
is reduced to a simple linear combination of the solutions of the two separate
problems of its unilateral illumination (from left x, and from right y, separately):

u+
L (x, y) = q+ x+ r+ y, (1)

1 Byurakan Astrophysical Observatory, Armenia

V.Grinin et al. (eds) Radiation mechanisms of astrophysical objects. Yerevan: Edit Print, 2017, pp. 65–72.
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u−L (x, y) = r− x+ q− y, (2)

where r− and q+ are the coefficients of reflection and transmission of an anisotropic
medium of geometric thickness L, for a “single quantum”, or their “beam of unit
intensity”, incident from its left boundary, while r+ and q− are their counterparts
related to the right boundary. These coefficients can be readily interpreted as
the probability densities of reflection and transmission of a single photon incident
on one of the two boundaries of medium. In nonlinear case [1]–[5], the relations
analogous to Eqs. (1)–(2) do not hold. The relationship of these two problems is
now implemented (instead of Eqs. (1)–(2)) by Cauchy problems [1]–[5]. Moreover,
it is obvious that in the nonlinear case, it makes no sense at all to operate with
such concepts as “single photon”, or their “beam of unit intensity”, and the
use of probabilistic interpretation of transference phenomena, which though are
very efficient tools in the linear problems. This obstacle, in nonlinear problems
of bilateral illumination of medium, still prevents to explore only the solution
of equations for particular PRT of unilateral illumination of medium (such
as seeking the variables r± and q± [6, 7] of the linear case). Therefore, the
exact methods of determining the field of radiation emerging from the medium,
such as: (i) adding of layers, (ii) its limiting form, described by differential
equations of invariant imbedding, and (iii) the so-called functional equations of
Ambartsumyan’s “complete invariance” (ACI) [4, 5], are compelled here to apply
directly to the functions u±L (x, y) of bilateral illumination of medium, which
significantly complicates their determination.

A major goal of this report is to simplify further the methods of nonlinear
PRT by revealing and exploring some new functions of so-called “linear images”
of the solution of PRT. It is noteworthy that the solution in quest of nonlinear
PRT is expressed in terms of newly introduced functions explicitly, just as in the
linear case, through a simple linear combination of the solutions of more particular
PRT of unilateral illumination of medium. We show that the introduction of these
linear images allows to handle effectively a random walk of a single quantum or
their unit beam. Moreover, this ensures an application of Sobolev’s probabilistic
interpretation [8] of linear transfer problems, in nonlinear case too, as simple
as in the linear case. For a determination of linear images, as a consequence of
the systematic application of the principle of invariance [1] and [4]–[6], we explore
in unified way the analogues of described above all three methods of solutions
of PRT.

2 The linear images of nonlinear PRT

The idea of introduction of linear images is closely related to one observation
of Ambartsumian [9, 2] that inevitably a translucence of medium occurs at high
intensities of external radiation exiting it, which is due to the transition of essential
fraction of atoms from the ground state to an excited. As a result, the proportion
of absorbing neutral atoms in the medium decreases and a stationary regime was
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established in the excited medium with a new, changed, optical thickness. The
original problem becomes linear with respect to new values of the optical thickness,
unknown in advance. This is just a physical meaning of the approach entitled
“method of self-consistent optical depths”, and further used very effectively
by [10]. Following Ambartsumian, let us trace the path of a single quantum,
randomly walking in an anisotropic scattering/absorbing medium, when certain
steady state conditions are established in it. This constant level of an excitation
of medium is maintained (stationary regime) during the whole process of random
walk of a quantum. It means that an arbitrary chosen quantum just “lives”
in a linear medium during this entire time. If x number of photons are incident
on medium from the left, and y – from the right, then their total output, as in
linear case, can be given by the relations analogous to Eqs. (1)–(2), with the only
difference that the functions, R±

L (x, y) and T±
L (x, y), of the described above linear

images of solution of original PRT, are dependent on the total number of photons
(x, y), because of nonlinearity of the problem:

u+
L (x, y) = T+

L (x, y)x+R+
L (x, y) y, (3)

u−L (x, y) = T−
L (x, y) y +R−

L (x, y)x. (4)

The functions R±
L (x, y) and T±

L (x, y) are the above-mentioned linear images of
the solution of original PRT. They are, respectively, the probability densities
of reflection and transmission of a single photon or their unit beam incident on the
medium through from one of its two boundaries. Although these functions describe
the behavior of a single quantum or their unit beam, but because of nonlinearity
of the problem nevertheless depend upon the intensities (x, y) of entering medium
radiation, due to which the acting level of an excitation of medium has been
set. In asymptotic limit of weak fields x + y ≤ δ±, these functions apparently
become constants, which are the solutions of a linear problem, where δ± is
the asymptotic threshold of incident single quantum from the left and right,
respectively.

3 Relations of the adding of layers for the linear
images

As a first method for determining the linear images, let us employ a general
method of adding of layers in the nonlinear problems of transfer [1, 2, 5]. Suppose
the anisotropic one-dimensional medium of geometrical thickness of B is adjoined
from the right to a similar medium of thickness A. Thereby the composite slab
of finite thickness A + B is illuminated from the left and right boundaries by
radiation of intensities x and y, respectively. Required to determine the intensity
of the radiation u±A+B(x, y) emerging from this composite slab, when the solutions

of similar problems for its both sub-layers, u±A(x, y), u±B(x, y), are previously
known. From Eqs. (3)–(4), it is seen that the problem is reduced to determination
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of the linear images R±
A+B(x, y) and T±

A+B(x, y) by means of known linear images

R±
A(x, y), T±

A (x, y) and R±
B(x, y), T±

B (x, y). From the formulas of the nonlinear
addition of layers [5], by virtue of Eqs. (3)–(4), we obtain

T+
A+B(x, y) = T+

B (p, y) p+, (5)

R+
A+B(x, y) = R+

B (p, y) + T
+

B
(p, y) p−, (6)

R−
A+B(x, y) = R−

A (x, s) + T−
A (x, s) s+, (7)

T−
A+B(x, y) = T

−
A

(x, s) s−, (8)

where the four auxiliary functions can be obtained exploring the explicit relations

p+ =
T+
A (x, s)

1−R+
A (x, s) R−

B (p, y)
, s+ =

R−
B (p, y) T+

A (x, s)

1−R−
B (p, y) R+

A (x, s)
, (9)

p− =
R+
A (x, s) T−

B (p, y)

1−R+
A (x, s) R−

B (p, y)
, s− =

T−
B (p, y)

1−R−
B (p, y) R+

A (x, s)
. (10)

The unknowns, p and s, can be found from the system{
p = T+

A (x, s) x+R+
A (x, s) s,

s = T−
B (p, y) y +R−

B (p, y) p,
(11)

or writing them in the form of separate equations

p = g+ (x, y; p, s) +K+ (x, y; p, s) p, s = g− (x, y; p, s) +K− (x, y; p, s) s. (12)

Here the proper kernels and free terms are defined by

K+ (x, y; p, s) ≡ R+
A (x, s) R−

B (p, y) ,

K− (x, y; p, s) ≡ R−
B (p, y) R+

A (x, s) ,

K+ (x, y; p, s) = K− (x, y; p, s) ,

(13)

g+ (x, y; p, s) ≡ T+
A (x, s) x+R+

A (x, s) T−
B (p, y) y, (14)

g− (x, y; p, s) ≡ T−
B (p, y) y +R−

B (p, y) T+
A (x, s) x. (15)

When one of the equations (12) is already solved, the solution of the other can
be obtained directly by using corresponding explicit relation (11). Whereas the
attention is drawn to the fact that in the equations (12):

1. The discussed explicit structures have until now met only in linear problems,
with the ensuing advantages.

2. Furthermore, an increase of the intensity of external radiation that excites
the medium, in the form of direct dependence appears only in free terms g+,
g− of these equations. This, as well known, does not affect a convergence of
the iterative solutions of considered equations, because it is due only to the
properties of kernels.

3. The kernels of equations K+, K− are just the probability densities.
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Aforesaid ensures a convergence, for example, of a simple iterative scheme

p(n+1) = g+
(n) +K+

(n) p
(n) at s(0) = y, (16)

where
g+

(n) ≡ g
+
(
x, y; p(n), s(n)

)
, K+

(n) ≡ K
+
(
x, y; p(n), s(n)

)
. (17)

In the framework of the method of adding of layers, to determine the linear images
of nonlinear PRT, the following sequential scheme can be distinguished: to begin
with, we determine p and s from Eqs. (11)–(17), next it will be p± and s± from
Eqs. (9)–(10), afterward R±

L (x, y), T±
L (x, y) from Eqs. (5)–(8), and finally u±L (x, y)

from Eqs. (3)–(4).

4 A complete set of equations of invariant imbedding
for the linear images

As a second method for determining the linear images, we derive a complete set
of equations of invariant imbedding. More consistent way is to fulfill a limiting
transition in the general relations of addition of layers, which were built above,
i.e. successively letting one layer be elementary ∆ → 0, while the other is left
fixed: A ≡ ∆, B ≡ L and A ≡ L, B ≡ ∆. For radiation characteristics of diffuse
reflection-transmission of elementary volume can be obtained the explicit forms

T±
∆ (x, y) = 1− æ±(x, y) ∆ +O

(
∆2

)
,

R±
∆(x, y) = χ±(x, y) ∆ +O

(
∆2

)
.

(18)

The physical meaning of the functions æ±(x, y) and χ±(x, y) is as follows: they
represent the probability densities that the quantum moving in a certain direction
will first be absorbed by elementary layer of the medium, and then: a) æ±(x, y)
will not be re-emitted in the same direction; b) χ±(x, y) will be re-emitted
in backwards. Hence a complete set of the equations of invariant imbedding
can be written as follows:[

∂

∂L
− Ê+

]
T+ = −T+ æ+

(
x, u−

)
+ T+ χ+

(
x, u−

)
R−, (19)[

∂

∂L
− Ê+

]
R+ = T+ χ+

(
x, u−

)
T−, (20)[

∂

∂L
− Ê+

]
R− = χ− (

x, u−
)
−R− æ+

(
x, u−

)
−

− æ− (
x, u−

)
R− +R− χ+

(
x, u−

)
R−,

(21)

[
∂

∂L
− Ê+

]
T− = −æ− (

x, u−
)
T− +R− χ+

(
x, u−

)
T−, (22)[

∂

∂L
− Ê−

]
T+ = −æ+(u+, y)T+ +R+ χ−(u+, y)T+, (23)[

∂

∂L
− Ê−

]
R+ = χ+(u+, y)− æ+(u+, y)R+−

−R+ æ−(u+, y) +R+ χ−(u+, y)R+,

(24)
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[
∂

∂L
− Ê−

]
R− = T− χ−(u+, y)T+, (25)[

∂

∂L
− Ê−

]
T− = −T− æ−(u+, y) + T− χ

−
(u+, y)R+. (26)

The first quartet of equations is a consequence of variations of the left boun-
dary of medium, and the second quartet is that of the right boundary. The
corresponding operators of radiation “response” of medium can be written [5]

Ê+ = α+
(
x, u−L

) ∂

∂x
, Ê− = α−(u+, y)

∂

∂y
, (27)

where α± are the well-known integral of collisions of the problem. Without
going into details, we note that the initial conditions in the corresponding
Cauchy problem, in terms of the parameter of layer thickness, are R±|L=0 = 0,
T±|L=0 = 1, and in terms of the energy variables (x, y) – more particular solutions
of PRT of single quantum, when the medium is excited by radiation incident only
on one boundary (for details, see Example in Sect. 6).

5 Ambartsumian’s functional equations for linear
images

A third method of solution of PRT corresponds to the case when simultaneously
vary both boundaries of the layer (when the elementary layer of infinitesimal
thickness is added to one boundary, and it is subtracted from the other boundary).
At this, a geometry of the problem is not changed, i.e. the layer thickness remained
constant, so the derivatives of the spatial variables naturally should be excluded.
By pairwise exclusion of derivatives over thickness from Eqs. (19)–(26), we obtain
four functional equations of ACI for the linear images:

ÂT+ = T+ æ+
(
x, u−

)
− æ+(u+, y)T+

+R+ χ−(u+, y)T+ − T+ χ+
(
x, u−

)
R−,

(28)

ÂR+ = χ+(u+, y)− æ+(u+, y)R+ −R+ æ−(u+, y)

+R+ χ−(u+, y)R+ − T+ χ+
(
x, u−

)
T−,

(29)

ÂR− = − χ− (
x, u−

)
+R− æ+

(
x, u−

)
+ æ− (

x, u−
)
R−−

−R− χ
+ (
x, u−

)
R− + T− χ−(u+, y)T+,

(30)

ÂT− = æ− (
x, u−

)
T− − T− æ−(u+, y)

+ T− χ
−

(u+, y)R+ −R− χ+
(
x, u−

)
T−.

(31)

The corresponding operator of radiation “response” of medium, when simulta-
neously vary both boundaries, i.e. the ACI operator, is given by Â = Ê+ − Ê−:

Â ≡ α+
(
x, u−L

) ∂

∂x
− α− (

u+
L , y

) ∂

∂y
. (32)
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It is noteworthy that the equations of linear images (20)–(31) favorably differed
from the corresponding equations of previously known [5], u±L (x, y), in the
followings: (i) they retain a constructive explicit structure distinctive only for the
equations of linear case, (ii) the characteristics of the elementary act of scattering
(dependent on level of excitation of medium) are clearly separated from the
structural forms, which are caused by the multiple scattering. The characteristics
of the elementary act – æ±(x, y) and χ±(x, y) at the transition to the linear case
are converted into constant, when explicit structural forms, those just caused
by the multiple scattering, are naturally retained. A transition to the functional
equations of ACI (i.e. turn from the second method to the third, for determining
the linear images) provides additional simplification. The layer thickness here are
figured as fixed parameter for the whole calculation, whereas in the same problem
with a given value of the layer thickness, the use of invariant imbedding necessarily
implies an additional calculation of the entire family of PRT, starting from the
value of zero thickness and continuing until reaching its final value, intended
beforehand.

6 Particular example

Let us investigate next the simple instructive model of isotropic medium, with the
conservative and isotropic scattering. Here we have the simplifications R± ≡ R,
T± ≡ T , R + T = 1. The ACI equations, for determining the linear image T
of function u ≡ u(x, y), can be put in the simple symmetrical form[

k (x+ v)
∂

∂x
+ k (y + u)

∂

∂y

]
T = −T M(x, y), (33)

where

M(x, y) =M(y, x) ≡ k (x+ v)− k (y + u)

x− y
,

k (ξ) ≡n hν
2

A21B12

A21 + ξ
2 (B12 +B21)

,
(34)

u = (x− y) T + y, v = − (x− y) T + x. (35)

The initial conditions for Eq. (33) will be T (x, 0) = σ (x) or T (0, y) = σ (y),
where the unknown function σ (z) describes the passage of a single quantum
through medium, when it is excited by radiation of intensity z incident only
on one boundary, and determined from its equation of invariant imbedding[

∂

∂L
+ xσ

k (2x− xσ)

2

∂

∂x

]
σ = −σ2 k (2x− xσ)

2
, (36)

σ|L=0 = 1, or σ|x=0 = q, (37)

where q is the transmittance of layer of geometrical thickness L, in linear problem
of isotropic medium at conservative isotropic scattering. It is explicitly given by

q =
1

1 + 1
2 k0 L

. (38)
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Thus, in this particular example, the following sequence of solutions of the problem
we have in short: first solved a linear problem by means of (38), then this solution
is used to define a linear image of a particular nonlinear PRT of unilateral
illumination of medium by considering the auxiliary Cauchy problem (36)–(37)
(by means of the equation of invariant imbedding), and afterward then the quasi-
linear system of ACI (33)–(35) was considered. Hence, the desired solution of the
nonlinear PRT, in term of its linear image of transmission of a single quantum, is
given in an explicit form by (35).

7 Conclusion

In conclusion I want to express my deep appreciation to organizers of the
conference in honor of bright memory and the 100th anniversary of academician
V.V. Sobolev. For my great fascination by the theory of radiative transfer,
I fully obliged to the two outstanding achievements of the field: the first is the
“principle of invariance” of my teacher V.A. Ambartsumian, and the second is
the “probabilistic interpretation” of V.V. Sobolev. Their incorporation provides
the researchers by a powerful tools and methods of effective analysis of transfer
problems, and a clear vision of their future opportunities. I am sure that the
representatives of many more generations of astrophysicists, like me, would be
fascinated by this area of knowledge.

Acknowledgments. The very helpful and positive feedback from G. Ter-Kaza-
rian in preparation of this report is much appreciated.

References

1. V.A.Ambartsumian, Dokl. Akad. Nauk Arm. SSR, 38, 225, 1964.

2. V.A.Ambartsumian, in: The Theory of Stellar Spectra. Eds. V.V. Sobolev et al. Mos-
cow: Nauka, 1966, p. 91.

3. R.Bellman, R.Kalaba, M.Wing, Proc. Nat. Acad. Sci., 46, 1646, 1960.

4. H.V.Pikichian, in Proc. Conf. Evolution of Cosmic Objects Through Their Phy-
sical Activity (dedic. V. Ambartsumian’s 100th anniversary). Eds. H. Harutyunian,
A. Mickaelian, Y. Terzian. Yerevan: Publ. House NAS RA, 2010, p. 302.

5. H.V.Pikichian, Astrophys., 53, 251, 2010.

6. V.A.Ambartsumian, Izv. Akad. Nauk Arm. SSR, Nat. Sci., No. 1–2, 31, 1944.

7. V.A.Ambartsumian, Dokl. Akad. Nauk Arm. SSR, 7, 199, 1947.

8. V.V. Sobolev, Transport of Radiant Energy in the Atmospheres of the Stars and
Planets. Moscow: Gostekhizdat, 1956 (in Russian). Translated as A Treatise on Ra-
diative Transfer. Princeton: Van Nostrand, 1963.

9. V.A.Ambartsumian, Dokl. Akad. Nauk Arm. SSR, 39, 159, 1964.

10. N.B.Yengibarian, Astrophys., 1, 158, 1965.



On Some Applications of General Invariance

Relations Reduction Method to Solution

of Radiation Transfer Problems

N.N.Rogovtsov1, F.N.Borovik2

E-mail: rogovtsov@bntu.by, bfn@hmti.ac.by

Foundations of the general invariance relations reduction method are
presented outline. A number of solutions of problems of the radiation transfer
theory, obtained by the help of this method, is described briefly.

1 Background of the general invariance relations
reduction method (GIRRM)

Properties of symmetry and invariance are widely used practically in all fields
of people activity [1]. Very often these properties and principles make sense
of statements on invariance of some objects, systems, equations, constructions,
solutions and so on with respect to sets of actions and operations that form group.
However not all properties and principles of invariance can be formulated in the
framework of group-theoretical approach [1, 2]. It is necessary to point out
a number of the fundamental works in which the concept of the immutability
(invariance) solutions of one-dimensional (in the space variables) problems of
optics and radiation transfer theory (RTT) under the simplest of the above-
mentioned actions and operations are used. These publications include works
written by Stokes [3], Ambartsumian (see Refs. in [4]), Chandrasekhar [5], Bellman
and Kalaba [6], and Sobolev (see Refs. in [7]). The first principles of invariance in
the RTT were formulated by Ambartsumian [4] and Chandrasekhar [5]. Then
in 1956 Bellman and Kalaba formulated in a sufficiently abstract way the classical
principle of invariant imbedding (PII). More wide interpretation, generalization
and application of classical principles of invariance of the RTT were given in a
number of works (see Refs. in [2, 8]). The general invariance relations reduction
method (GIRRM) was proposed by Rogovtsov [1, 2, 9, 10].

The most important basic GIRRM statements and constructions are the
general invariance principle (GIP) and the general invariance relations (GIRs).
More narrow formulation of the GIP (in framework of the RTT) was given
by Rogovtsov [2, 10]. Most universal formulation of this principle was given in the
monograph [1]. By the GIRs we understand consequences of invariance (partial

1 Belarus National Technical University, Minsk, Belarus
2 A.V. Luikov Heat and Mass Transfer Institute, Minsk, Belarus

V.Grinin et al. (eds) Radiation mechanisms of astrophysical objects. Yerevan: Edit Print, 2017, pp. 73–83.
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invariance) of solutions of problems of the RTT and other mathematical physics
problems in respect to above-mentioned actions and operations. The GIRs connect
solutions of different or the same type RTT or MP problems. It should be noted
that the GIRRM are an heuristic, general and effective method

2 A short list of the results obtained by using
the GIRRM

2.1 About rigorous derivation of asymptotic formulas
for the plane albedo and spherical albedo for the case
of nearly conservative scattering

Using rigorous integral relations and some a priori assumptions Sobolev [7]
obtained the following three-term asymptotic formulas:

Apl(µ1;ω0) ∼ 1− 4

√
1− ω0

3− x1
u(µ1; 1) + bSob(µ1)(1− ω0), ω0 → 1, (1)

Asp(ω0) ∼ 1− 4

√
1− ω0

3− x1
+D(3− x1)−1(1− ω0), ω0 → 1. (2)

Here Apl (µ1; ω0) = 2
∫ 1
0 ρ

0
[0,+∞) (µ, µ1; ω0)µdµ is the plane albedo and

ρ0[0,+∞) (µ, µ1; ω0) is the azimuthally averaged reflection function for a

semi-infinite plane-parallel medium (ω0 is a single scattering albedo),
Asp(ω0) = 2

∫ 1
0 µ1Apl(µ1;ω0)dµ1 is the spherical albedo, u(µ;ω0) is the function

that defines the angular dependence of Milne’s problem solution [7, 8], bSob(µ1) =
15(5 − x2)−1

(
µ21 − 2

∫ 1
0 ρ

0
[0,+∞)(µ, µ1; 1)µ3dµ

)
+ D(3 − x1)−1u(µ1; 1), where D =

24
∫ 1
0 u(µ; 1)µ2dµ, {xs}s∈N0 is a sequence of expansion coefficients of the phase

function p(µ) in Fourier series in the system of Legendre polynomials {Ps(µ)}s∈N0

(p(µ) =
∑+∞

s=0 xsPs(µ);N0 = {0, 1, 2, . . . }). Without any a priori assumptions,
using the GIRRM, we were strictly obtained Eq. (2) and such asymptotic formula:

Apl(µ1;ω0) ∼ 1− 4

√
1− ω0

3− x1
u(µ1; 1) + bR,B(µ1;ω0)(1− w0), ω0 → 1. (3)

The value of bR,B(µ1;ω0) in Eq. (3) is equal to

bR,B(µ1;ω0) = D(3− x1)−1u(µ1; 1)

− 15(5− x2)−1
[
µ21 − 2

∫ 1

0
µ3ρ0[0,+∞)(µ, µ1; 1)dµ

]
− 2

∫ 1

−1
dµ

∫ +∞

+0

[
G̃∗∞;0(τ, µ; 0, µ1;ω0)− J(τ, µ, µ1;ω0)

]
dτ,

J(τ, µ, µ1;ω0) = 2

∫ 1

0
µ′G̃∗∞;0(τ, µ, 0,−µ′;ω0)ρ

0
[0,+∞)(µ

′, µ1; 1)dµ′.

(4)
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Table 1: Numerical values of the coefficients bSob(µ1) and bR,B;0(µ1)

µ1 g = 0.65 g = 0.75 g = 0.85 g = 0.97 g = 0.991

0.0381347 1.613 2.339 3.901 18.37 60.14

0.238853 3.212 4.652 7.974 41.00 137.3

0.333212 4.080 5.863 9.993 51.15 171.1

0.434867 5.114 7.289 12.34 62.78 209.8

0.539374 6.285 8.894 14.97 75.66 252.6

0.642166 7.545 10.61 17.77 89.32 298.0

0.738751 8.829 12.60 20.60 103.1 343.7

0.824908 10.05 14.02 23.30 116.1 387.0

0.896871 11.14 15.49 26.68 127.6 425.0

0.951494 12.00 16.65 27.54 136.7 455.0

1.0 12.78 17.72 29.26 144.9 482.4

In the formula (4) the function G̃∗∞;0(τ, µ; τ ′, µ′;ω0) has the meaning of not the
main part of the contribution to the integrated over azimuth “volume” Green
function [2, 11] of the dimensionless scalar radiative transfer equation (SRTE) for
the case of an infinite plane-parallel medium. This part is generated by the subset
of the spectrum of the reduced characteristic equation of the SRTT (it corresponds
to zero azimuthal harmonic of phase function). The above-mentioned subset does
not contain only the minimum in modulus eigenvalues. The asymptotic formulas
(1) and (3) differ in shape (their third members have different forms). Nonetheless
theoretical analysis and the series of numerical experiments showed that there are
no differences (within the limits of calculation errors for sufficiently small values
of q (q = 1− ω0) between the coefficients bSob(µ1) and bR,B(µ1;ω0).

Remark 1. The coefficient bR,B(µ1;ω0) can be represented in form of the
following series:

bR,B(µ1;ω0) =

+∞∑
l=0

bR,B;l(µ1)(1− ω0)
l. (5)

This series is convergent point-wise and uniformly on [-1,1] for sufficiently small
values of q.

Remark 2. Using the GIRRM the effective analytical and numerical algorithms
for finding all the quantities in the asymptotic formulas (2) and (3) for any phase
functions are developed.

In Table 1 a number of numerical values of the coefficients bSob(µ1)
and bR,B;0(µ1) are given for the case of Henyey-Greenstein’s phase function
χ(µ; g) [7, 8]. From the above-said and Table 1, it follows that the assump-
tions [7], which V.V. Sobolev used in the derivation of the formulas (1) and (2),
are correct for situations considered.
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2.2 The correct methods of derivation of multi-term asymptotics
for the case of plane-parallel media

The GIRRM allows to derive asymptotic formulas for azimuthally averaged
reflection and transmission coefficients [7] for the case of plane-parallel optically
thick media without using a priori assumptions about their structures. It should
be noted that it is necessary to take into account the implicit contribution
of the entire spectrum of the characteristic equation (CE) of the SRTE in
the above-mentioned coefficients in the process of rigorous derivation of these
asymptotics. In particular, all of the elements (they belong to the spectrum
of the CE), which do not coincide with minimal in modulus elements of the
same spectrum, contribute some terms of the order of (1 − ω0) (if ω0 → 1) to
asymptotics of these coefficients. Using some constructions of the GIRRM, the
principle of reciprocity [11] and the analytical representations (see [12, 13]) for
the “volume” Green function of the SRTE for a infinite plane-parallel medium,
we have proved the faithfulness of Sobolev’s a priori assumptions and asymptotic
formulas [7] for the above-mentioned coefficients for the cases of semi-infinite
media and layers of a large optical thickness τ0. In [14] multi-term formulas for
the reflection and transmission coefficients when τ0 → ∞ were first obtained in
implicit form. These asymptotics were found by using Case’s method. Then the
methods of finding of multi-terms asymptotics of various radiative characteristics
were proposed in [15, 16, 17]. The most effective algorithm for deriving of such
asymptotics was described in [15]. This algorithm was based on the constructive
ideas of the GIRRM. To illustrate capabilities of this algorithm we write down
only some relations from [15]. Consider a macroscopically homogeneous and local
isotropic plane-parallel turbid layer of an optical thickness τ0. Then using standard
constructions of the GIRRM [1, 2] the following GIRs:

ρ0(|µ|, ξ;ω0, τ0) = g01(|µ|, ξ;ω0, τ0) +

∫ 1

0
K(|µ|, µ′′;ω0, τ0)ρ

0(µ′′, ξ;ω0, τ0)dµ
′′, (6)

σ0(|µ|, ξ;ω0, τ0) = g02(|µ|, ξ;ω0, τ0) +

∫ 1

0
K(|µ|, µ′′;ω0, τ0)σ

0(µ′′, ξ;ω0, τ0)dµ
′′, (7)

(|µ|, ξ ∈ [0, 1], ω0 ∈ [0, 1], τ0 ∈ (0,+∞))

were obtained in [15]. In GIRs (6) and (7) the functions ρ0(|µ|, ξ;ω0, τ0) and
σ0(|µ|, ξ;ω0, τ0) are the azimuthally averaged reflection and transmission coef-
ficients [7, 8] of a layer correspondingly. The function K(|µ|, µ′′;ω0, τ0) is defined
by the relation.

K(|µ|, µ′′;ω0, τ0)

= µ′′
∫ 1

0
µ′G̃[0,+∞)(0,−|µ|; τ0, µ′;ω0)G̃[0,+∞)(0,−µ′; τ0, µ′′;ω0)dµ

′.
(8)

Here function G̃[0,+∞)(τ, µ; τ ′, µ′;ω0) is the “volume” Green function of the
dimensionless SRTE for the case of a semi-infinite plane-parallel medium which
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comprises the “sources” δ(τ − τ ′)δ(µ − µ′) (τ ′ > 0). In turn the functions
g01 (|µ|, ξ; ω0, τ0), g

0
2 (|µ| , ξ; ω0, τ0) can be expressed in terms of values of this

“volume” Green function (see [15]).
For example, using the principle of reciprocity [11], the representations for the

Green function G̃[0,+∞)(τ, µ; τ ′, µ′;ω0) [12, 13], K-integral of the SRTE [7] and
GIRs (6), (7) the following asymptotics:

σ0(|µ|, ξ; 1, τ0) = Q(|µ|, ξ; τ0) + (2u(|µ|; 1) + h2(|µ|; τ0))γ1(τ0, x1)

×
{∫ 1

0
µ′2ρ0[0,+∞)(µ

′, ξ; 1)dµ′ + h1(ξ; τ0) + γ2(τ0, ξ, x1)

}
+O(τ−10 exp(−2k2τ0)), τ0 → +∞,

γ1(τ0, x1) =

[
(1− x1

3
)τ0 + 4

∫ 1

0
µ′2u(µ′; 1)dµ′ + h(τ0)

]−1
,

γ2(τ0, ξ, x1) = 2−1ξ
(

1− exp
(
− τ0

ξ

))
− 2−1

(
1− x1

3

)
τ0 exp

(
− τ0

ξ

)
,

(9)

∫ 1

0
µσ0(µ, ξ; 1, τ0)dµ = γ1(τ0, x1)

{∫ 1

0
µ′2ρ0[0,+∞)(µ

′, ξ; 1)dµ′

+ h1(ξ; τ0) + γ2(τ0, ξ, x1)

}
+O(τ−20 exp(−2k2τ0)), τ0 → +∞,

(10)

were obtained in [15]. The functions Q(|µ|, ξ; τ0), h(τ0), h1(ξ; τ0), h2(|µ|; τ0)
are expressed explicitly in terms of the functions u(|µ|; 1), ρ0[0,+∞)(|µ|, ξ; 1),

G̃∗∞;0(τ, µ; τ ′, µ′;ω0). In addition there are asymptotics h(|µ|; τ0) = O(exp(−k2τ0)),
h1(ξ; τ0) = O(exp(−k2τ0)), h2(|µ|; τ0) = O(exp(−k2τ0)), τ0 → +∞. In Eqs. (9),
(10) under symbol k2 it should be understood the second non-negative root of
the reduced characteristic equation of the SRTE (if it exists). If a root does
not exist under the symbol k2 it is necessary to understand the positive number
(1 − ε), where ε is a small enough positive number. Eq. (9) is a generalization
of asymptotics for σ0(|µ|, ξ; 1, τ0) obtained by Sobolev [7].

2.3 Constructive theory of scalar characteristic equations
of the radiative transfer theory

The constructive theory of scalar characteristic equations of the RTT was
suggested in [12, 13, 18]. The construction of solutions of these equations in
analytic form can be reduced to finding solutions of infinite tridiagonal systems
of linear algebraic equations. Effective analytical and numerical algorithms for
finding discrete spectra, eigenfunctions and normalizing constants for reduced
scalar characteristic equations of the SRTE was described in above-mentioned
works. New two-term recursion formulas and analytic representations for solutions
of infinite tridiagonal systems of linear algebraic equations were suggested in [13].
In addition, Rogovtsov obtained a general analytic expression for the “volume”
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Green function of a two-dimensional (with respect to the angular variables)
integro-differential equation of the radiative transfer for the case in which the
phase function satisfies the Hölder condition on [-1, 1].

2.4 Effective algorithms for finding the reflection function,
plane and spherical albedo for any phase function

Properties of invariance are used in the RTT in developing the effective algorithms
for finding the reflection function, plane and spherical albedo. Point out two
algorithms, in which these properties are used in an explicit form. The first
algorithm is based on the use of Ambartsumian’s non-linear integral equations
for the reflection function and its azimuthal harmonics. The second algorithm
was developed through the use of Fredholm special integral equations. The
nonlinear integral above-mentioned equations were obtained by Ambartsumian
by using the principle of invariance which he formulated in 1943 (see Refs. in [4]).
Special Fredholm equations were found through the use of rigorous mathematical
considerations or some properties of invariance in a number of papers (see, for
example, [2, 12, 19, 20, 21] and references therein). The first algorithm was used,
in particular, in [22]. The second algorithm is actually used in [2, 12]. It should be
noted that the correct application of both algorithms requires the use of additional
information about solutions of other problems of the RTT. For example, the
quantities describing the deep regime of the radiation intensity in a semi-infinite
medium and the Sobolev–van de Hulst relation [7, 8, 22] was used in the first
algorithm [22] as an additional information in the construction of a sustainable
iterative algorithm for solving nonlinear scalar Ambartsumian’s integral equations.
Previously it is necessary to find “volume” Green function of the SRTE for the case
of an infinite plane-parallel turbid medium if special Fredholm integral equations
are taken as the initial equations when finding of the reflection function. Before
developing effective analytical and numerical algorithms for finding the above-
mentioned Green function for cases of arbitrary phase functions it was practically
impossible to use this kind of equations. Such algorithms were constructed and
effectively used in [2, 12, 13]. These algorithms can be applied for the cases
of sharply anisotropic phase functions. To illustrate the effectiveness of the
algorithms developed in [2, 12, 13] we give below Table 2 for the quantities
Apl(µ1;ω0), Asp(ω0) for the case of the phase function χ(µ; g).

2.5 Exact expressions, asymptotic formulas, inequalities
and asymptotic inequalities for the average characteristics
of radiative fields in turbid media of different configurations

Different GIRs can be used for finding the integral invariants of the stationary and
non-stationary SRTE. Moreover a number of average characteristics of radiative
fields in turbid media of different configurations can be found using the GIRs.
In the most simple form such results were obtained by Rogovtsov (see [1, 2, 13] and
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Table 2: Values for plane and spherical albedo Apl(µ1;ω0), Asp(ω0) (g = 0.993)

µ1 ω0 = 0.99 0.993 0.997 0.999 0.9999 0.99999

0.844195× 10−2 0.6995 0.7326 0.7996 0.8668 0.9504 0.9834

0.381347× 10−1 0.5356 0.5833 0.6836 0.7879 0.9206 0.9734

0.880185× 10−1 0.4097 0.4643 0.5860 0.7191 0.8939 0.9643

0.155914 0.3135 0.3670 0.5027 0.6575 0.8691 0.9558

0.238853 0.2407 0.2948 0.4314 0.6016 0.8453 0.9476

0.434867 0.1456 0.1906 0.3202 0.5057 0.8010 0.9318

0.642166 0.09391 0.1294 0.2442 0.4312 0.7622 0.9174

0.738751 0.07811 0.1097 0.2170 0.4020 0.7456 0.9111

0.896871 0.05896 0.08970 0.1803 0.3598 0.7200 0.9011

1.0 0.04964 0.07264 0.1605 0.3353 0.7040 0.8948

Asp(ω0) 0.1079 0.1431 0.2542 0.4351 0.7612 0.9167

Refs. in therein) for the cases turbid media having forms of layer, sphere, infinite
circular cylinder and regular polyhedral. In these works the average duration
of the luminescence and radiative fluxes were required quantities. In turn the
asymptotic inequalities for the mean intensity of the radiation, the average number
of scattering of a photon, the average density of radiation, radiative fluxes and
spherical albedo were found by Rogovtsov, Karpuk and Samson (corresponding
Refs. are given in [2, 13]). These authors considered the process of radiative
transfer in turbid media that have the forms of layer, sphere, finite and infinite
circular cylinders, spheroids, spherical shell and non-concavity body bounded by
a smooth boundary. In some of the above-mentioned publications the presence of
underlying surfaces was allowed.

2.6 On the asymptotic expressions for the Green functions
of the SRTE when turbid medium contains
mono-directional point or line sources

2.6.1. Let turbid “medium” Ṽ be a macroscopically homogeneous or two-
layer non-conservative semi-infinite “medium” Ṽ[0,∞), which is irradiated by an
infinitely narrow mono-directional beam of radiation or contains near its border
S̃[0,∞) a point mono-directional source (see Figs. 1a, 1b).

Then the intensity of the radiation (or Green functions) at an optical depth
τ0 (when τ0 → +∞) at any observation point P can be represented in a simple
analytical form (see [23]). In addition, the principle terms of asymptotic formulas
are expressed in terms of elementary functions and solutions of special BVPs for
the case of a plane-parallel anisotropic absorbing semi-infinite turbid “medium”.

Remark 3. Under the above-mentioned assumptions the forms of relative
intensities for deep regime behaviors tend asymptotically to each other when
a semi-infinite turbid medium is irradiated by an infinitely wide mono-directional
beam of radiation or infinitely narrow mono-directional beams of radiation.
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Figure 1: Geometries of problems for the cases of external and internal sources of
radiation.

Remark 4. Let the observation point P be at a large optical depth τ0 and the
shortest optical distance from point P to a perpendicular to S̃[0,∞) (it passes
through the point of incidence of external radiation) is equal τ1. Then for the
case of a macroscopically homogeneous turbid medium the principle term of the
asymptotics of “volume” Green function of the dimensionless SRTE will be in
form [24]

G̃[0,+∞)

(
~τ , ~Ω;~0, ~Ω1;ω0

)
∼ k1 exp(−k1τ0)

2π2τ0
i(µ;ω0)u(µ1;ω0),

ω0 ∈ (0, 1), τ0 → +∞, (τ1/
√
τ0)→ 0

(11)

Here functions i(µ;ω0) and u(µ1;ω0) are the classic functions of the SRTT [7, 8];
k is the smallest positive element of the discrete spectrum of characteristic
equation of the SRTT [7, 8, 13].

2.6.2. Let Ṽ[0,τ0] be a macroscopically uniform non-conservative scattering
“layer” of an optical thickness τ0 which is irradiated by a mono-directional
infinitely narrow beam of radiation (see Fig. 2). Then with the help of the GIRRM
the principle term of asymptotics of the “surface” Green function [11] of the
dimensionless the SRTE for any position of observation point P , which is on the
second boundary S̃2 of the layer Ṽ[0,τ0], can be found. Here τ0 tends to +∞.

Remark 5. Let the shortest optical distance from an observation point P to
the perpendicular to S̃1 which passes through the point of incidence of external

Figure 2: Geometry of problem for the case of the layer irradiated by the external beam
of radiation.
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radiation be equal to τ1. Then the principle term of the asymptotics of the
“surface” Green function G̃S̃(τ, ~Ω;~0, ~Ω1;ω0; Ṽ[0,τ0]) of the SRTE can be presented
in the form [24]

G̃S̃(~τ , ~Ω;~0, ~Ω1;ω0; Ṽ[0,τ0]) ∼ µ1
Mk1 exp(−k1τ0)

2π2τ0
u(µ;ω0)u(µ1;ω0),

τ0 → +∞, τ1√
τ0
→ 0, ω0 ∈ (0, 1),

M = 2

∫ 1

−1
µ i2(µ;ω0)dµ, µ = cos θ, µ1 = cos θ1.

(12)

2.6.3. Let Ṽ be a non-conservative scattering “medium” having the shape of
a sphere, the center of which is the point mono-directional “source” δ(~τ)δ(~Ω−~Ω1).
In addition, the optical radius of Ṽ is equal to τ0. Then the asymptotic formula
(see Refs. in [1, 2])

G̃(~τ , ~Ω;~0, ~Ω1;ω0; Ṽ ) ∼ k1 exp(−k1τ0)
2π2τ0

u((~n · ~Ω)) i((~n · ~Ω1)), (13)

τ0 → +∞, ((~n · ~Ω) ≥ ε > 0)

holds. Here ~n is the unit dimensionless external normal to the boundary S̃ of the
“medium” Ṽ in a observation point (it is specified by an optical radius-vector ~τ)
which lies at this boundary.

2.6.4. Let Ṽ be a non-conservative scattering “medium” which has the shape
of an infinite circular cylinder and contains (on the axis of symmetry) a linear
mono-directional “source” δ(~x)δ(~y)δ(~Ω − ~Ω1) (see Fig. 3). Then the asymptotic
formula (see Refs. in [1, 2])∫ +∞

−∞
G̃(~τp, ~Ω; z̃~e3, ~Ω1;ω0; Ṽ )dz̃∼ 1

π

√
k1

2πτ0
exp(−k1τ0)u((~n · ~Ω) i(~n · ~Ω1)), (14)

τ0 → +∞ ((~n · ~Ω) ≥ ε > 0), ω0 ∈ (0, 1)

holds. Here ~e3 is the unit dimensionless vector which defines the direction of Z̃-
axis of a dimensionless Cartesian right rectangular coordinate system OX̃Ỹ Z̃ (the
axis Z̃ coincides with symmetry axis of this cylinder), ~τp specifies an observation
point P , which is on the boundary of the cylinder.

2.6.5. Let V be a non-conservative scattering medium, which has a disk shape
(see Fig. 4). We will assume that the local optical characteristics of V can depend
only on the depth z in a Cartesian right rectangular coordinate system OXY Z.
Assume that a plane OXY is parallel to the plane parts of the boundary of the
disk V and the point O is situated on the axis of symmetry of the disk (this
point should be situated inside the disk). Let the disk V contain a point isotropic
“source” δ(~r), which is located at the point O.

Using the GIRRM an asymptotic formula for the “volume” Green function
was obtained when the observation point P is situated on the lateral boundary
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Figure 3: Geometry of the problem for the case of the infinite circular cylinder

Figure 4: Geometry of the problem for the case of the disk

of the disc and the radius R of the disk tends to +∞. This asymptotics has the
following form (see Refs. in [1, 2]):

G̃(~rp, ~Ω;~0;V ) ∼ c1√
R

exp(−k∗R)B(z; ~Ω), R sup
z∈[a,b]
{α(z)} → +∞. (15)

Here k∗ is the smallest positive root of the non-classical characteristic equation
of the SRTT, the constant c1 is expressed through the first eigenvalue and the
corresponding eigenfunction of this equation, α(z) is an attenuation coefficient,
the function B(z; ~Ω) is expressed through solutions of one-dimensional and two-
dimensional (in space variable) BVPs (the initial BVP is three-dimensional).

Acknowledgments. The authors are graceful to Yauheni Khnykin for help with
design work.
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On the Complex Radiative Transfer

in an Optically Finite Homogeneous

Atmosphere

T.Viik1

E-mail: tonu.viik@to.ee

In this paper we consider the classical problem in radiative transfer –
the planetary problem – in an isotropically scattering homogeneous optically
finite medium where the albedo of single scattering may be defined anywhere
in the complex plane.

To solve this problem we use the method of approximating the kernel in
the integral equation for the Sobolev resolvent function. This approach allows
to define easily determinable auxiliary functions which help us to express
almost all the relevant functions of transfer for this problem.

1 Statement of the problem

Usually the albedo of single scattering λ or c is assumed real in radiative transfer.
But when we consider the Laplace transformed time-dependent transport equation
λmay turn complex. We met another such problem when we tried to determine the
photon path-length distribution function in an optically semi-infinite atmosphere.
It appeared that the non-linear integral equation for the complex H-function is
valid even in the complex plane [1]. This interesting fact directed the author to
a deeper treatment of the problem and to try to find for such a case the radiation
field in general.

In order to solve this problem we used the kernel approximation method first
proposed by Krook [2] and later developed by Rybicki [3] and Vainikko et al. [4].
Rybicki approximated the kernel in the integral equation – the exponential
integral – for the Sobolev resolvent function Φ by a Gauss-Legendre sum while
Krook and Vainikko et al. used the method of kernel approximation for the integral
equation of the source function.

The substitution of the kernel by a Gauss-Legendre sum allows us to solve the
obtained approximate equation for the Sobolev resolvent function Φ [5] exactly
while the solution is a weighted sum of exponents. This approach allowed us
to define simple auxiliary functions for determining the radiation field.

Here we have chosen to consider the planetary problem in a homogeneous
isotropically scattering optically finite atmosphere where the albedo of single
scattering is complex

λ = λ1 + iλ2. (1)

1 Tartu Observatory, Estonia

V.Grinin et al. (eds) Radiation mechanisms of astrophysical objects. Yerevan: Edit Print, 2017, pp. 85–90.
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We assume that in this case the source function B for a large range of radiative
transfer problems in given type of atmospheres can still be described by the well-
known Fredholm integral equation

B(τ, κ, T ) =
1

2
λ

T∫
0

E1(t− τ)B(t, κ, T )dt+
1

4
λF exp (−τ/κ), (2)

where τ is the optical depth, T is the optical thickness of the atmosphere, πF is
the flux of the incident radiation normal to the plane of stratification, κ is the
direction cosine of the angle of incidence referred to the outward normal of the
atmosphere and the exponential integral is expressed in the form

En(x) =

1∫
0

exp(−|x|/s)sn−2ds. (3)

Since the Sobolev resolvent function is the regular part of the Green function
for Eq. (2) we may immediately write that the solution of Eq. (2) for the planetary
case is

B(τ, κ, T ) =
1

4
λF

exp (−τ/κ) +

τ∫
0

Φ(t, T ) exp (−t/κ)dt

, (4)

where the Sobolev resolvent function satisfies the following Fredholm integral
equation [6]

Φ(τ ;T ) =
1

2
λ

T∫
0

E1(t− τ) Φ(t;T )dt+
1

2
λE1(τ). (5)

Now the task is all set for the solution of Eq. (5) by approximating the kernel
of this equation.

2 Solution of the equation for the approximate
resolvent function

Eq. (5) is one of the most important equations in the radiative transfer since
all the relevant functions of transfer can be expressed through the resolvent
function.

We try to solve Eq. (5) by approximating the kernel of it by a sum of exponents

E1(τ) =
N∑
n=1

wn exp(−τ/un)u−1
n , (6)

where wn are the weights and un are the points of a Gauss quadrature rule of
the order of N in the interval (0,1). After substitution of this approximation into
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Eq. (5) the resulting equation can be solved exactly and the solution is

Φ(τ, T ) = a1 + b1τ +

N∑
i=2

{
ai exp (−siτ) + bi exp [si(T − τ)]

}
. (7)

If λ1 6= 1 then a1 = b1 = 0 outside of the summation sign and the summation
begins at i = 1. This rule applies throughout the paper. The unknown coefficients
si are the zeros of the equation

1− λ
N∑
n=1

wn
1− s2u2i

= 0. (8)

The approximate characteristic equation – Eq. (8) – can simply be solved when λ
is real and positive since we know beforehand in which intervals to search for the
zeros. This is not the case when λ is complex or negative but if we write Eq. (8)
in the polynomial form

N∑
i=1

cis
2i
i = 0, (9)

we may apply the code DZROOTS from Numerical Recipes [7].

The coefficients ai and bi are to be found from linear algebraic systems of
equations

α1 +

N∑
i=2

αi

[
1

1− siuj
+

exp (−siT )

1 + siuj

]
= u−1

j ,

β1(T + 2uj) +

N∑
i=2

βi

[
1

1− siuj
− exp (−siT )

1 + siuj

]
= u−1

j , j = 1, 2, . . . , N,

(10)

while

ai = (αi + βi)/2, bi = (αi − βi)/2, i = 2, . . . , N ;

a1 = (α1 − β1T )/2, b1 = β1.
(11)

This system may be solved, e.g., using algorithms ZGECO and ZGESL from
LINPACK.

Thus, the solution of the approximate equation for the Sobolev resolvent
function is completed.
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3 The complex radiation field

Next we define the auxiliary functions x and y as the generalizations of the well-
known Ambartsumian–Chandrasekhar functions X and Y

x(τ, κ, T ) = 1 +

T∫
τ

Φ(t;T ) exp [−(t− τ)/κ]dt,

y(τ, κ, T ) = exp (−τ/κ) +

τ∫
0

Φ(t;T ) exp [−(τ − t)/κ]dt. (12)

By the use of these functions we may express the solution of Eq. (2) [8] as

B(τ, κ, T ) =
1

4
λF{X(κ, T )y(τ, κ, T )− Y (κ, T )[x(T − τ)− 1]}. (13)

Evidently, the Ambartsumian–Chandrasekhar functions X and Y are the special
cases of x and y

X(κ, T ) = x(0, κ, T ),

Y (κ, T ) = y(T, κ, T ). (14)

As the next step we use the well-known definitions for the intensities and find
that for the upward moving radiation, i.e. for the intensities towards the smaller
optical depths we have

I(τ,−µ, κ, T ) =
λF

4

κ

µ+ κ
{X(κ, T )[x(τ, µ, T ) + y(τ, κ, T )− 1]

− Y (κ, T )[x(T − τ, κ, T ) + x(T − τ, µ, T )− 1]}
(15)

and for the intensities towards the larger optical depths

I(τ, µ, κ, T ) =
λF

4

κ

µ− κ
{X(κ, T )[y(τ, µ, T )− y(τ, κ, T )]

− Y (κ, T )[x(T − τ, µ, T )− x(T − τ, κ, T )]}.
(16)

The seeming discontinuity in Eq. (16) may be eliminated by the L’Hopital rule.

4 Results

We have performed calculations for different set of atmospheric parameters and
we are convinced that at least for the region −8 ≤ λ1 ≤ 8 and −8 ≤ λ2 ≤ 8
our method works well. We checked the results by solving the Ambartsumian–
Chandrasekhar differential equations [9] for X and Y functions and coincidence
of the results even for the modest N = 7 was very good.
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Figure 1: The real and imaginary parts of the source function (κ = 1.0, T = 1.0).
Upper panel: λ2 = 2, lower panel: λ1 = 2.

In Fig. 1 we have presented some results for the source function. One may
notice that for the fixed λ2 the surfaces – both for the real and imaginary parts –
of B are quite smooth while these for the fixed λ1 have jumps at λ2 = 0. We met
a similar behavior when computing the complex H function [1].
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Polarization of Resonance Lines in the Case

of Polarized Primary Sources of Radiation
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Transfer of polarized radiation in a spectral line in a non-magnetic
semi-infinite plane-parallel atmosphere is considered. Complete frequency
redistribution is assumed. It is supposed that primary sources of the radiation
distributed in the atmosphere are partially polarized. The dependence on the
optical depth of these sources is described by the product of a polynomial
in the exponent. The problem is to find the radiation emergent from the
atmosphere. The general theory of Î-matrices is applied to this problem.
It turns out that the solution of the problem with any of the primary sources
of this type is reduced to the solution of the so-called standard problem, and
the subsequent simple numerical integration.

We consider multiple resonance scattering of radiation in a spectral line
that takes place in a semi-infinite plane-parallel atmosphere without a magnetic
field. Due to the symmetry, the radiation field can be described by two Stokes
parameters I and Q. Therefore, the scattering is completely described by the two-
component Stokes vector i(τ, x, µ) = (I,Q)T ; its arguments are the usual optical
depth averaged over line τ , the dimensionless frequency measured from the center
of the line x, and the cosine of the zenith angle µ. Also, complete frequency
redistribution is assumed. There are polarized primary sources of radiation
embedded in the atmosphere; we suggest they are given by the vector function

sk(τ) = τk e−τ/z0 s0, k = 0, 1, 2, . . . , (1)

where z0 ∈ (0,∞) is a parameter, and s0 is a known constant vector.

In the works [1, 2] the theory of Î-matrices was developed. This theory makes
possible to generalize a number of well-known results of the standard scalar theory
of line formation to the problems when polarization of the radiation is taken
into account. The scalar version of the problem considered here was studied in [3].
All the details regarding the theory of Î-matrices, for example, the relation of
the matrix transfer equation to the vector one, as well as designations used here
can be found in [1, 2].

By definition, the Stokes matrix Î(τ, z) is a solution of the matrix transfer
equation

z
∂Î(τ, z)

∂τ
= Î(τ, z)− Ŝ(τ). (2)
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Here z ≡ µ/φ(x), φ(x) is the line absorption profile, and the matrix source function
Ŝ(τ) is given by

Ŝ(τ) = Ŝ∗(τ) +

∫ +∞

−∞
dz′ Ĝ(z′) Î(τ, z′), (3)

Ŝ∗(τ) = diag(s∗I(τ), s∗Q(τ)), (4)

where s∗I(τ) and s∗Q(τ) are the components of the vector source function of

the scattered radiation, Ĝ is directly related to the phase matrix of resonance
scattering.

The problem with Ŝ∗ ≡ diag(
√

1− λ,
√

1− 0.7Wλ) is called standard (λ
is the albedo of single scattering, W is the depolarization parameter). It was
analyzed in detail and solved numerically in the works [1, 2] and, also, in [4]
where absorption in the continuum was taken into account. In particular, it was
shown that the Stokes matrix at τ = 0 for the standard problem can be found
from the solution of the matrix generalization of the integral Ambartsumian–
Chandrasekhar equation. We denote the solution of this equation by Î(z) (it is
the Î-matrix).

For the source function matrix Ŝ(τ) of the problem under consideration
it is not difficult to write an integral equation similar to the equation for the
analogous scalar source function, when the polarization of the radiation is not
taken into account. Application of Sobolev’s resolvent method in the case of the
atmosphere with an exponential distribution of primary sources (i.e., when k = 0
in Eq. (1)) provides the following Stokes matrix for the emergent diffuse radiation:

Î(0, z) = Î(z)

[
z20 ÎT (z0)

z0 + z

∫ ∞
−∞

F̂(z′) dz′

z0 + z′
− z0

∫ ∞
0

z′ ÎT (z′) F̂(z′) dz′

(z0 − z′)(z′ + z)

]
, (5)

where F̂ is expressed through elements of the matrix Ĝ.
In general case, if k > 0, it is not difficult to show that the Stokes matrix

satisfies the recurrence formula

Îk(0, z) = z20
∂

∂z0
Îk−1(0, z). (6)

Thus, in the case of primary sources (1), the Stokes matrix of the emergent
radiation for any of such sources is expressed in terms of the solution of standard
problem Î(z) via the equations (5) and (6).
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Radiative Transfer and Spectra in Stochastic
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Various cosmic objects – stars, active galactic nuclei, accretion discs, etc.,
suffer the stochastic variations of temperature, large and small scales gas
motions, magnetic fields, number densities of atoms and molecules. These
stochastic variations give rise to changes of absorption factors, Doppler
widths of lines and so on. The existence of numerous reasons for fluctuations
lead to a Gaussian distribution of fluctuations. The observed spectra re-
present quantities averaged over the time and space. The common model
explanations do not include the effect of fluctuations. In many cases, the
consideration of fluctuations improves the agreement between theoretical
explanations and observed values.

1 The radiative transfer equation in stochastic
atmosphere

In a stochastic atmosphere the absorption factor has a fluctuating component:
α = 〈α〉 + α′ ≡ α(0) + α′, 〈α′〉 = 0. The change of radiation intensity along the
path s is determined by the equation

dI(n, s) = −[α(0)(s) + α′(s)] I(n, s)ds. (1)

The solution of this equation is

I(n, s) = I(n, 0) exp

− s∫
0

ds′(α(0)(s′) + α′(s′))

 ≡ I(n, 0) exp (−(τ (0) + τ ′)).

(2)
The average of this expression, adopting for Gaussian probability distribution for
fluctuations, gives

〈I(n, s)〉 = I(n, 0) exp

[
−
(
τ (0) − 1

2
〈τ ′2〉

)]
≡ I(n, 0) exp (−τeff (s)). (3)

It is seen from this expression that the averaged intensity 〈I(n, s)〉 in stochastic
medium decreases with the distance weaker than when accounting for the mean
absorption factor α(0).
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The radiative transfer equation for 〈I(n, s)〉 has the form

d〈I〉
ds

=−
[
α(0)(s)− 〈α′(s)τ ′(s)〉

]
〈I〉+

[
α(0)
sc (s)− 〈α′

sc(s)τ
′
sc(s)〉

]
×
∫
dn′ κ(n · n′)〈I(n′, s)〉+ 〈S〉.

(4)

Here κ(n · n′) is the phase function, 〈S(n, s)〉 is the averaged source function.
Note that α(s) = αsc(s) + αabs(s). The detailed derivation of radiative transfer
equations for all Stokes parameters in turbulent magnetized atmosphere is
presented in [1].

2 Influence of Doppler width fluctuations
on the center of absorption lines

The centers of absorption lines have a Gaussian form, i.e. the broadening is deter-

mined by Doppler’s mechanism. Fluctuations of the thermal uth = u
(0)
th + u′th and

turbulent uturb = u
(0)
turb + u′turb velocities give rise to fluctuations of the Doppler

width
∆λD = ∆

(0)
D + ∆λ′D, 〈∆λ′D〉 = 0. (5)

The level of fluctuations η is determined by the ratio η = |∆λ′D|/∆λ
(0)
D . The

averaged value of absorption factor up to η ≤ 0.3 has the form

〈αλ(x)〉 =

〈
α0

∆λD
exp

[
−
(
λ− λ0
∆λD

)2
]〉

' α(0)(x) exp (3x2η2)
[
(1 + η2) cosh (2ηx2)− η sinh (2ηx2)

]
,

(6)

where x = (λ−λ0)/∆λ(0)D and α(0)(x) = (α0/∆λ
(0)
D ) exp(−x2). It is seen from this

expression that in the center of the line (x = 0)

〈αλ(0)〉 ' α(0)(0) (1 + η2). (7)

Thus, the stochastic effect gives rise to additional increase of line’s depth. Note
that non-LTE models and also synthetic spectra often lead to an increase in the
depth of the absorption line. Nevertheless, sometimes this increase is insufficient
to explain the observed depth of the line. In these cases the consideration of
stochastic effect may help.

3 The influence of fluctuations on spectra
in the continuum

The convective and turbulent motions and the magnetic field evolution lead
to temperature fluctuations in stellar atmospheres, active galactic nuclei and
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other cosmic objects. First, we demonstrate the nature of statistical effects by
considering two realizations with temperatures T0 + T ′ and T0 − T ′. The mean
value of Planck function (in Wien’s limit) is equal to

〈Bλ(T )〉 =
1

2

2hc2

λ5

{
exp

[
−
(

hν

k(T0 + T ′)

)]
+ exp

[
−
(

hν

k(T0 − T ′)

)]}
' Bλ(T0) cosh

(
hν

kT0

T ′

T0

)
≥ Bλ(T0).

(8)

Here we accepted T ′ � T0. This simple example demonstrates that the averaged
value 〈Bλ(T0)〉 is larger than Bλ(T0). Analogously one can see that the averaged
value of absorption factor 〈αλ(T )〉may be either larger than αλ(T0) or smaller than
this value, depending on specific form of function αλ(T ). The averaged radiation
flux 〈Hλ〉 with allowance for temperature fluctuations is determined as

〈Hλ〉 = 2π

∫ ∞

0
d〈τλ〉

∫ 1

0
dµ exp

[
−〈τλ〉

µ

]
〈αλ(T )Bλ(T )〉
〈αλ(T )〉

, (9)

where d〈τλ〉 = 〈αλ(T )〉ds determines the averaged optical length. It is interesting
that in the Wien limit 〈Hλ〉 can be derived directly from observed spectrum, from
the first and second derivatives over λ of the observed spectrum. The fluctuation
effects are considered in the papers [2–4].
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