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Foundations of the general invariance relations reduction method are
presented outline. A number of solutions of problems of the radiation transfer
theory, obtained by the help of this method, is described briefly.

1 Background of the general invariance relations
reduction method (GIRRM)

Properties of symmetry and invariance are widely used practically in all fields
of people activity [1]. Very often these properties and principles make sense
of statements on invariance of some objects, systems, equations, constructions,
solutions and so on with respect to sets of actions and operations that form group.
However not all properties and principles of invariance can be formulated in the
framework of group-theoretical approach [1, 2]. It is necessary to point out
a number of the fundamental works in which the concept of the immutability
(invariance) solutions of one-dimensional (in the space variables) problems of
optics and radiation transfer theory (RTT) under the simplest of the above-
mentioned actions and operations are used. These publications include works
written by Stokes [3], Ambartsumian (see Refs. in [4]), Chandrasekhar [5], Bellman
and Kalaba [6], and Sobolev (see Refs. in [7]). The first principles of invariance in
the RTT were formulated by Ambartsumian [4] and Chandrasekhar [5]. Then
in 1956 Bellman and Kalaba formulated in a sufficiently abstract way the classical
principle of invariant imbedding (PII). More wide interpretation, generalization
and application of classical principles of invariance of the RTT were given in a
number of works (see Refs. in [2, 8]). The general invariance relations reduction
method (GIRRM) was proposed by Rogovtsov [1, 2, 9, 10].

The most important basic GIRRM statements and constructions are the
general invariance principle (GIP) and the general invariance relations (GIRs).
More narrow formulation of the GIP (in framework of the RTT) was given
by Rogovtsov [2, 10]. Most universal formulation of this principle was given in the
monograph [1]. By the GIRs we understand consequences of invariance (partial
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invariance) of solutions of problems of the RTT and other mathematical physics
problems in respect to above-mentioned actions and operations. The GIRs connect
solutions of different or the same type RTT or MP problems. It should be noted
that the GIRRM are an heuristic, general and effective method

2 A short list of the results obtained by using
the GIRRM

2.1 About rigorous derivation of asymptotic formulas
for the plane albedo and spherical albedo for the case
of nearly conservative scattering

Using rigorous integral relations and some a priori assumptions Sobolev [7]
obtained the following three-term asymptotic formulas:

Apl(µ1;ω0) ∼ 1− 4

√
1− ω0

3− x1
u(µ1; 1) + bSob(µ1)(1− ω0), ω0 → 1, (1)

Asp(ω0) ∼ 1− 4

√
1− ω0

3− x1
+D(3− x1)−1(1− ω0), ω0 → 1. (2)

Here Apl (µ1; ω0) = 2
∫ 1
0 ρ

0
[0,+∞) (µ, µ1; ω0)µdµ is the plane albedo and

ρ0[0,+∞) (µ, µ1; ω0) is the azimuthally averaged reflection function for a

semi-infinite plane-parallel medium (ω0 is a single scattering albedo),
Asp(ω0) = 2

∫ 1
0 µ1Apl(µ1;ω0)dµ1 is the spherical albedo, u(µ;ω0) is the function

that defines the angular dependence of Milne’s problem solution [7, 8], bSob(µ1) =
15(5 − x2)−1

(
µ21 − 2

∫ 1
0 ρ

0
[0,+∞)(µ, µ1; 1)µ3dµ

)
+ D(3 − x1)−1u(µ1; 1), where D =

24
∫ 1
0 u(µ; 1)µ2dµ, {xs}s∈N0 is a sequence of expansion coefficients of the phase

function p(µ) in Fourier series in the system of Legendre polynomials {Ps(µ)}s∈N0

(p(µ) =
∑+∞

s=0 xsPs(µ);N0 = {0, 1, 2, . . . }). Without any a priori assumptions,
using the GIRRM, we were strictly obtained Eq. (2) and such asymptotic formula:

Apl(µ1;ω0) ∼ 1− 4

√
1− ω0

3− x1
u(µ1; 1) + bR,B(µ1;ω0)(1− w0), ω0 → 1. (3)

The value of bR,B(µ1;ω0) in Eq. (3) is equal to

bR,B(µ1;ω0) = D(3− x1)−1u(µ1; 1)

− 15(5− x2)−1
[
µ21 − 2

∫ 1

0
µ3ρ0[0,+∞)(µ, µ1; 1)dµ

]
− 2

∫ 1

−1
dµ

∫ +∞

+0

[
G̃∗∞;0(τ, µ; 0, µ1;ω0)− J(τ, µ, µ1;ω0)

]
dτ,

J(τ, µ, µ1;ω0) = 2

∫ 1

0
µ′G̃∗∞;0(τ, µ, 0,−µ′;ω0)ρ

0
[0,+∞)(µ

′, µ1; 1)dµ′.

(4)
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Table 1: Numerical values of the coefficients bSob(µ1) and bR,B;0(µ1)

µ1 g = 0.65 g = 0.75 g = 0.85 g = 0.97 g = 0.991

0.0381347 1.613 2.339 3.901 18.37 60.14

0.238853 3.212 4.652 7.974 41.00 137.3

0.333212 4.080 5.863 9.993 51.15 171.1

0.434867 5.114 7.289 12.34 62.78 209.8

0.539374 6.285 8.894 14.97 75.66 252.6

0.642166 7.545 10.61 17.77 89.32 298.0

0.738751 8.829 12.60 20.60 103.1 343.7

0.824908 10.05 14.02 23.30 116.1 387.0

0.896871 11.14 15.49 26.68 127.6 425.0

0.951494 12.00 16.65 27.54 136.7 455.0

1.0 12.78 17.72 29.26 144.9 482.4

In the formula (4) the function G̃∗∞;0(τ, µ; τ ′, µ′;ω0) has the meaning of not the
main part of the contribution to the integrated over azimuth “volume” Green
function [2, 11] of the dimensionless scalar radiative transfer equation (SRTE) for
the case of an infinite plane-parallel medium. This part is generated by the subset
of the spectrum of the reduced characteristic equation of the SRTT (it corresponds
to zero azimuthal harmonic of phase function). The above-mentioned subset does
not contain only the minimum in modulus eigenvalues. The asymptotic formulas
(1) and (3) differ in shape (their third members have different forms). Nonetheless
theoretical analysis and the series of numerical experiments showed that there are
no differences (within the limits of calculation errors for sufficiently small values
of q (q = 1− ω0) between the coefficients bSob(µ1) and bR,B(µ1;ω0).

Remark 1. The coefficient bR,B(µ1;ω0) can be represented in form of the
following series:

bR,B(µ1;ω0) =

+∞∑
l=0

bR,B;l(µ1)(1− ω0)
l. (5)

This series is convergent point-wise and uniformly on [-1,1] for sufficiently small
values of q.

Remark 2. Using the GIRRM the effective analytical and numerical algorithms
for finding all the quantities in the asymptotic formulas (2) and (3) for any phase
functions are developed.

In Table 1 a number of numerical values of the coefficients bSob(µ1)
and bR,B;0(µ1) are given for the case of Henyey-Greenstein’s phase function
χ(µ; g) [7, 8]. From the above-said and Table 1, it follows that the assump-
tions [7], which V.V. Sobolev used in the derivation of the formulas (1) and (2),
are correct for situations considered.
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2.2 The correct methods of derivation of multi-term asymptotics
for the case of plane-parallel media

The GIRRM allows to derive asymptotic formulas for azimuthally averaged
reflection and transmission coefficients [7] for the case of plane-parallel optically
thick media without using a priori assumptions about their structures. It should
be noted that it is necessary to take into account the implicit contribution
of the entire spectrum of the characteristic equation (CE) of the SRTE in
the above-mentioned coefficients in the process of rigorous derivation of these
asymptotics. In particular, all of the elements (they belong to the spectrum
of the CE), which do not coincide with minimal in modulus elements of the
same spectrum, contribute some terms of the order of (1 − ω0) (if ω0 → 1) to
asymptotics of these coefficients. Using some constructions of the GIRRM, the
principle of reciprocity [11] and the analytical representations (see [12, 13]) for
the “volume” Green function of the SRTE for a infinite plane-parallel medium,
we have proved the faithfulness of Sobolev’s a priori assumptions and asymptotic
formulas [7] for the above-mentioned coefficients for the cases of semi-infinite
media and layers of a large optical thickness τ0. In [14] multi-term formulas for
the reflection and transmission coefficients when τ0 → ∞ were first obtained in
implicit form. These asymptotics were found by using Case’s method. Then the
methods of finding of multi-terms asymptotics of various radiative characteristics
were proposed in [15, 16, 17]. The most effective algorithm for deriving of such
asymptotics was described in [15]. This algorithm was based on the constructive
ideas of the GIRRM. To illustrate capabilities of this algorithm we write down
only some relations from [15]. Consider a macroscopically homogeneous and local
isotropic plane-parallel turbid layer of an optical thickness τ0. Then using standard
constructions of the GIRRM [1, 2] the following GIRs:

ρ0(|µ|, ξ;ω0, τ0) = g01(|µ|, ξ;ω0, τ0) +

∫ 1

0
K(|µ|, µ′′;ω0, τ0)ρ

0(µ′′, ξ;ω0, τ0)dµ
′′, (6)

σ0(|µ|, ξ;ω0, τ0) = g02(|µ|, ξ;ω0, τ0) +

∫ 1

0
K(|µ|, µ′′;ω0, τ0)σ

0(µ′′, ξ;ω0, τ0)dµ
′′, (7)

(|µ|, ξ ∈ [0, 1], ω0 ∈ [0, 1], τ0 ∈ (0,+∞))

were obtained in [15]. In GIRs (6) and (7) the functions ρ0(|µ|, ξ;ω0, τ0) and
σ0(|µ|, ξ;ω0, τ0) are the azimuthally averaged reflection and transmission coef-
ficients [7, 8] of a layer correspondingly. The function K(|µ|, µ′′;ω0, τ0) is defined
by the relation.

K(|µ|, µ′′;ω0, τ0)

= µ′′
∫ 1

0
µ′G̃[0,+∞)(0,−|µ|; τ0, µ′;ω0)G̃[0,+∞)(0,−µ′; τ0, µ′′;ω0)dµ

′.
(8)

Here function G̃[0,+∞)(τ, µ; τ ′, µ′;ω0) is the “volume” Green function of the
dimensionless SRTE for the case of a semi-infinite plane-parallel medium which
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comprises the “sources” δ(τ − τ ′)δ(µ − µ′) (τ ′ > 0). In turn the functions
g01 (|µ|, ξ; ω0, τ0), g

0
2 (|µ| , ξ; ω0, τ0) can be expressed in terms of values of this

“volume” Green function (see [15]).
For example, using the principle of reciprocity [11], the representations for the

Green function G̃[0,+∞)(τ, µ; τ ′, µ′;ω0) [12, 13], K-integral of the SRTE [7] and
GIRs (6), (7) the following asymptotics:

σ0(|µ|, ξ; 1, τ0) = Q(|µ|, ξ; τ0) + (2u(|µ|; 1) + h2(|µ|; τ0))γ1(τ0, x1)

×
{∫ 1

0
µ′2ρ0[0,+∞)(µ

′, ξ; 1)dµ′ + h1(ξ; τ0) + γ2(τ0, ξ, x1)

}
+O(τ−10 exp(−2k2τ0)), τ0 → +∞,

γ1(τ0, x1) =

[
(1− x1

3
)τ0 + 4

∫ 1

0
µ′2u(µ′; 1)dµ′ + h(τ0)

]−1
,

γ2(τ0, ξ, x1) = 2−1ξ
(

1− exp
(
− τ0

ξ

))
− 2−1

(
1− x1

3

)
τ0 exp

(
− τ0

ξ

)
,

(9)

∫ 1

0
µσ0(µ, ξ; 1, τ0)dµ = γ1(τ0, x1)

{∫ 1

0
µ′2ρ0[0,+∞)(µ

′, ξ; 1)dµ′

+ h1(ξ; τ0) + γ2(τ0, ξ, x1)

}
+O(τ−20 exp(−2k2τ0)), τ0 → +∞,

(10)

were obtained in [15]. The functions Q(|µ|, ξ; τ0), h(τ0), h1(ξ; τ0), h2(|µ|; τ0)
are expressed explicitly in terms of the functions u(|µ|; 1), ρ0[0,+∞)(|µ|, ξ; 1),

G̃∗∞;0(τ, µ; τ ′, µ′;ω0). In addition there are asymptotics h(|µ|; τ0) = O(exp(−k2τ0)),
h1(ξ; τ0) = O(exp(−k2τ0)), h2(|µ|; τ0) = O(exp(−k2τ0)), τ0 → +∞. In Eqs. (9),
(10) under symbol k2 it should be understood the second non-negative root of
the reduced characteristic equation of the SRTE (if it exists). If a root does
not exist under the symbol k2 it is necessary to understand the positive number
(1 − ε), where ε is a small enough positive number. Eq. (9) is a generalization
of asymptotics for σ0(|µ|, ξ; 1, τ0) obtained by Sobolev [7].

2.3 Constructive theory of scalar characteristic equations
of the radiative transfer theory

The constructive theory of scalar characteristic equations of the RTT was
suggested in [12, 13, 18]. The construction of solutions of these equations in
analytic form can be reduced to finding solutions of infinite tridiagonal systems
of linear algebraic equations. Effective analytical and numerical algorithms for
finding discrete spectra, eigenfunctions and normalizing constants for reduced
scalar characteristic equations of the SRTE was described in above-mentioned
works. New two-term recursion formulas and analytic representations for solutions
of infinite tridiagonal systems of linear algebraic equations were suggested in [13].
In addition, Rogovtsov obtained a general analytic expression for the “volume”
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Green function of a two-dimensional (with respect to the angular variables)
integro-differential equation of the radiative transfer for the case in which the
phase function satisfies the Hölder condition on [-1, 1].

2.4 Effective algorithms for finding the reflection function,
plane and spherical albedo for any phase function

Properties of invariance are used in the RTT in developing the effective algorithms
for finding the reflection function, plane and spherical albedo. Point out two
algorithms, in which these properties are used in an explicit form. The first
algorithm is based on the use of Ambartsumian’s non-linear integral equations
for the reflection function and its azimuthal harmonics. The second algorithm
was developed through the use of Fredholm special integral equations. The
nonlinear integral above-mentioned equations were obtained by Ambartsumian
by using the principle of invariance which he formulated in 1943 (see Refs. in [4]).
Special Fredholm equations were found through the use of rigorous mathematical
considerations or some properties of invariance in a number of papers (see, for
example, [2, 12, 19, 20, 21] and references therein). The first algorithm was used,
in particular, in [22]. The second algorithm is actually used in [2, 12]. It should be
noted that the correct application of both algorithms requires the use of additional
information about solutions of other problems of the RTT. For example, the
quantities describing the deep regime of the radiation intensity in a semi-infinite
medium and the Sobolev–van de Hulst relation [7, 8, 22] was used in the first
algorithm [22] as an additional information in the construction of a sustainable
iterative algorithm for solving nonlinear scalar Ambartsumian’s integral equations.
Previously it is necessary to find “volume” Green function of the SRTE for the case
of an infinite plane-parallel turbid medium if special Fredholm integral equations
are taken as the initial equations when finding of the reflection function. Before
developing effective analytical and numerical algorithms for finding the above-
mentioned Green function for cases of arbitrary phase functions it was practically
impossible to use this kind of equations. Such algorithms were constructed and
effectively used in [2, 12, 13]. These algorithms can be applied for the cases
of sharply anisotropic phase functions. To illustrate the effectiveness of the
algorithms developed in [2, 12, 13] we give below Table 2 for the quantities
Apl(µ1;ω0), Asp(ω0) for the case of the phase function χ(µ; g).

2.5 Exact expressions, asymptotic formulas, inequalities
and asymptotic inequalities for the average characteristics
of radiative fields in turbid media of different configurations

Different GIRs can be used for finding the integral invariants of the stationary and
non-stationary SRTE. Moreover a number of average characteristics of radiative
fields in turbid media of different configurations can be found using the GIRs.
In the most simple form such results were obtained by Rogovtsov (see [1, 2, 13] and
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Table 2: Values for plane and spherical albedo Apl(µ1;ω0), Asp(ω0) (g = 0.993)

µ1 ω0 = 0.99 0.993 0.997 0.999 0.9999 0.99999

0.844195× 10−2 0.6995 0.7326 0.7996 0.8668 0.9504 0.9834

0.381347× 10−1 0.5356 0.5833 0.6836 0.7879 0.9206 0.9734

0.880185× 10−1 0.4097 0.4643 0.5860 0.7191 0.8939 0.9643

0.155914 0.3135 0.3670 0.5027 0.6575 0.8691 0.9558

0.238853 0.2407 0.2948 0.4314 0.6016 0.8453 0.9476

0.434867 0.1456 0.1906 0.3202 0.5057 0.8010 0.9318

0.642166 0.09391 0.1294 0.2442 0.4312 0.7622 0.9174

0.738751 0.07811 0.1097 0.2170 0.4020 0.7456 0.9111

0.896871 0.05896 0.08970 0.1803 0.3598 0.7200 0.9011

1.0 0.04964 0.07264 0.1605 0.3353 0.7040 0.8948

Asp(ω0) 0.1079 0.1431 0.2542 0.4351 0.7612 0.9167

Refs. in therein) for the cases turbid media having forms of layer, sphere, infinite
circular cylinder and regular polyhedral. In these works the average duration
of the luminescence and radiative fluxes were required quantities. In turn the
asymptotic inequalities for the mean intensity of the radiation, the average number
of scattering of a photon, the average density of radiation, radiative fluxes and
spherical albedo were found by Rogovtsov, Karpuk and Samson (corresponding
Refs. are given in [2, 13]). These authors considered the process of radiative
transfer in turbid media that have the forms of layer, sphere, finite and infinite
circular cylinders, spheroids, spherical shell and non-concavity body bounded by
a smooth boundary. In some of the above-mentioned publications the presence of
underlying surfaces was allowed.

2.6 On the asymptotic expressions for the Green functions
of the SRTE when turbid medium contains
mono-directional point or line sources

2.6.1. Let turbid “medium” Ṽ be a macroscopically homogeneous or two-
layer non-conservative semi-infinite “medium” Ṽ[0,∞), which is irradiated by an
infinitely narrow mono-directional beam of radiation or contains near its border
S̃[0,∞) a point mono-directional source (see Figs. 1a, 1b).

Then the intensity of the radiation (or Green functions) at an optical depth
τ0 (when τ0 → +∞) at any observation point P can be represented in a simple
analytical form (see [23]). In addition, the principle terms of asymptotic formulas
are expressed in terms of elementary functions and solutions of special BVPs for
the case of a plane-parallel anisotropic absorbing semi-infinite turbid “medium”.

Remark 3. Under the above-mentioned assumptions the forms of relative
intensities for deep regime behaviors tend asymptotically to each other when
a semi-infinite turbid medium is irradiated by an infinitely wide mono-directional
beam of radiation or infinitely narrow mono-directional beams of radiation.
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Figure 1: Geometries of problems for the cases of external and internal sources of
radiation.

Remark 4. Let the observation point P be at a large optical depth τ0 and the
shortest optical distance from point P to a perpendicular to S̃[0,∞) (it passes
through the point of incidence of external radiation) is equal τ1. Then for the
case of a macroscopically homogeneous turbid medium the principle term of the
asymptotics of “volume” Green function of the dimensionless SRTE will be in
form [24]

G̃[0,+∞)

(
~τ , ~Ω;~0, ~Ω1;ω0

)
∼ k1 exp(−k1τ0)

2π2τ0
i(µ;ω0)u(µ1;ω0),

ω0 ∈ (0, 1), τ0 → +∞, (τ1/
√
τ0)→ 0

(11)

Here functions i(µ;ω0) and u(µ1;ω0) are the classic functions of the SRTT [7, 8];
k is the smallest positive element of the discrete spectrum of characteristic
equation of the SRTT [7, 8, 13].

2.6.2. Let Ṽ[0,τ0] be a macroscopically uniform non-conservative scattering
“layer” of an optical thickness τ0 which is irradiated by a mono-directional
infinitely narrow beam of radiation (see Fig. 2). Then with the help of the GIRRM
the principle term of asymptotics of the “surface” Green function [11] of the
dimensionless the SRTE for any position of observation point P , which is on the
second boundary S̃2 of the layer Ṽ[0,τ0], can be found. Here τ0 tends to +∞.

Remark 5. Let the shortest optical distance from an observation point P to
the perpendicular to S̃1 which passes through the point of incidence of external

Figure 2: Geometry of problem for the case of the layer irradiated by the external beam
of radiation.
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radiation be equal to τ1. Then the principle term of the asymptotics of the
“surface” Green function G̃S̃(τ, ~Ω;~0, ~Ω1;ω0; Ṽ[0,τ0]) of the SRTE can be presented
in the form [24]

G̃S̃(~τ , ~Ω;~0, ~Ω1;ω0; Ṽ[0,τ0]) ∼ µ1
Mk1 exp(−k1τ0)

2π2τ0
u(µ;ω0)u(µ1;ω0),

τ0 → +∞, τ1√
τ0
→ 0, ω0 ∈ (0, 1),

M = 2

∫ 1

−1
µ i2(µ;ω0)dµ, µ = cos θ, µ1 = cos θ1.

(12)

2.6.3. Let Ṽ be a non-conservative scattering “medium” having the shape of
a sphere, the center of which is the point mono-directional “source” δ(~τ)δ(~Ω−~Ω1).
In addition, the optical radius of Ṽ is equal to τ0. Then the asymptotic formula
(see Refs. in [1, 2])

G̃(~τ , ~Ω;~0, ~Ω1;ω0; Ṽ ) ∼ k1 exp(−k1τ0)
2π2τ0

u((~n · ~Ω)) i((~n · ~Ω1)), (13)

τ0 → +∞, ((~n · ~Ω) ≥ ε > 0)

holds. Here ~n is the unit dimensionless external normal to the boundary S̃ of the
“medium” Ṽ in a observation point (it is specified by an optical radius-vector ~τ)
which lies at this boundary.

2.6.4. Let Ṽ be a non-conservative scattering “medium” which has the shape
of an infinite circular cylinder and contains (on the axis of symmetry) a linear
mono-directional “source” δ(~x)δ(~y)δ(~Ω − ~Ω1) (see Fig. 3). Then the asymptotic
formula (see Refs. in [1, 2])∫ +∞

−∞
G̃(~τp, ~Ω; z̃~e3, ~Ω1;ω0; Ṽ )dz̃∼ 1

π

√
k1

2πτ0
exp(−k1τ0)u((~n · ~Ω) i(~n · ~Ω1)), (14)

τ0 → +∞ ((~n · ~Ω) ≥ ε > 0), ω0 ∈ (0, 1)

holds. Here ~e3 is the unit dimensionless vector which defines the direction of Z̃-
axis of a dimensionless Cartesian right rectangular coordinate system OX̃Ỹ Z̃ (the
axis Z̃ coincides with symmetry axis of this cylinder), ~τp specifies an observation
point P , which is on the boundary of the cylinder.

2.6.5. Let V be a non-conservative scattering medium, which has a disk shape
(see Fig. 4). We will assume that the local optical characteristics of V can depend
only on the depth z in a Cartesian right rectangular coordinate system OXY Z.
Assume that a plane OXY is parallel to the plane parts of the boundary of the
disk V and the point O is situated on the axis of symmetry of the disk (this
point should be situated inside the disk). Let the disk V contain a point isotropic
“source” δ(~r), which is located at the point O.

Using the GIRRM an asymptotic formula for the “volume” Green function
was obtained when the observation point P is situated on the lateral boundary
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Figure 3: Geometry of the problem for the case of the infinite circular cylinder

Figure 4: Geometry of the problem for the case of the disk

of the disc and the radius R of the disk tends to +∞. This asymptotics has the
following form (see Refs. in [1, 2]):

G̃(~rp, ~Ω;~0;V ) ∼ c1√
R

exp(−k∗R)B(z; ~Ω), R sup
z∈[a,b]
{α(z)} → +∞. (15)

Here k∗ is the smallest positive root of the non-classical characteristic equation
of the SRTT, the constant c1 is expressed through the first eigenvalue and the
corresponding eigenfunction of this equation, α(z) is an attenuation coefficient,
the function B(z; ~Ω) is expressed through solutions of one-dimensional and two-
dimensional (in space variable) BVPs (the initial BVP is three-dimensional).

Acknowledgments. The authors are graceful to Yauheni Khnykin for help with
design work.

References

1. N.N. Rogovtsov, Properties and Principles of Invariance. Application to Solving of
Problems of Mathematical Physics, Part 1. Minsk: BGPA, 1999.

2. N.N. Rogovtsov, General Invariance Relations Reduction Method and Its Applications
to Solutions of Radiative Transfer Problems for Turbid Media of Various Con-
figurations, in Light Scattering Reviews, vol. 5. Ed. A.A. Kokhanovsky. Chichester:
Springer-Praxis, 2010, pp. 243-327.

3. G.G. Stokes, Proc. Roy. Soc. Lond., 11, 545, 1862.



On Some Appl. of GIRRM to Solution of Rad. Trans. Problems 83

4. V.A. Ambartsumian, Nauchnye trudy, Vol.1. Yerevan: Publ. Co. Acad. Sci. Arm. SSR,
1960.

5. S. Chandrasekhar, Radiative Transfer. London: Oxford University Press, 1950.

6. R. Bellman, R. Kalaba, Proc. Nat. Acad. Sci., 42, 629, 1956.

7. V.V. Sobolev, Light Scattering in Planetary Atmospheres. New York: Pergamon Press,
1975.

8. E.G. Yanovitskij, Light Scattering in an Inhomogeneous Atmosphere. New York:
Springer-Verlag, 1997.

9. N.N. Rogovtsov, J. Appl. Spectrosc., 34, 241, 1981; ibid, 35, 1354, 1981.

10. N.N. Rogovtsov, Dokl. Akad. Nauk BSSR, 25, 420, 1981.

11. K.M. Case, P.F. Zweifel, Linear Transport Theory. Massachusetts: Addison-Wesley
Publ. Co., 1967.

12. N.N. Rogovtsov, F.N. Borovik, The Characteristic Equations of Radiative Transfer
Theory, in Light Scattering Reviews, vol. 4 Ed. A.A. Kokhanovsky. Chichester:
Springer-Praxis, 2009, pp. 347–429.

13. N.N. Rogovtsov, Diff. Equat., 51, 268, 2015; ibid, 51, 661, 2015.

14. N.V. Konovalov, Preprint No. 65, Moscow: Inst. Appl. Math., 1974.

15. N.N. Rogovtsov, Teoreticheskaya i Prikladnaya Mekhanika (Minsk), 22, 72, 2007.

16. N.N. Rogovtsov, A.M. Samson, Astrophys., 23, 468, 1985.

17. N.N. Rogovtsov, Dokl. Akad. Nauk BSSR, 41, 52, 1997.

18. N.N. Rogovtsov, in Boundary-Value Problems, Special Functions and Fraction Cal-
culus. Ed. A.A. Kilbas. Minsk: BGU, 1996, pp. 305–312.

19. N.N. Rogovtsov, Izv. Atmos. Ocean. Phys., 16, 160, 1980.

20. N.N. Rogovtsov, A.M. Samson, J. Appl. Spectrosc., 25, 1164, 1976.

21. H. Domke, J. Quant. Spectrosc. Rad. Transf., 16, 973, 1976.

22. M.I. Mishchenko, J.M. Dlugach, E.G. Yanovitskij, N.T. Zakharova, J. Quant. Spec-
trosc. Rad. Transf., 63, 409, 1999.

23. N.N. Rogovtsov, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okean., 26, 1082, 1990.

24. N.N. Rogovtsov, Astrophys., 29, 781, 1988.




