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We address the nonlinear problem of reflection/transmission of radiation
from an anisotropic scattering/absorbing one-dimensional medium of finite
geometrical thickness, when both of its boundaries are illuminated by intense
monochromatic radiative beams. The new conceptual element of so-called
“linear images” is noteworthy, which admits a probabilistic interpretation.
The solution of nonlinear problem of reflection/transmission of radiation
is reduced to a linear combination of linear images. They describe the
reflectivity and transmittance of the medium for a single photon or their
beam of unit intensity, incident on one of the boundaries of the layer, when
the medium in real regime is still under the bilateral illumination by external
exciting radiation of arbitrary intensity. To determine the linear images,
we exploit three well known methods: (i) adding of layers, (ii) its limiting
form described by differential equations of invariant imbedding, and (iii)
a transition to the so-called functional equations of Ambartsumyan’s
“complete invariance”.

1 Introduction

In linear problem of transfer of radiation energy, the resulting characteristics of
the radiation field are formed in the process of multiple interactions of radiation
with matter, when the physical properties of the medium are assumed to be
unchanged. The very complexity of nonlinear problem, in contrast, is the func-
tional dependence of the scattering/absorbing properties of each elementary
volume ∆→ 0 on the intensity of radiation incident on it from all sides. The
characteristics of the diffusing in medium radiation field and the physical state of
the medium itself are forming each other reciprocally, in a self-consistent manner.

It is well known that in the linear case, the solution of the problem of reflection-
transmission (PRT) of radiation, i.e. seeking the intensities u±L (x, y) of emerging
radiation from the right “+” and left “−” boundaries of the anisotropic medium
(of finite geometrical thickness L), which is illuminated from both boundaries
simultaneously by intense radiation beams with intensities x and y, respectively,
is reduced to a simple linear combination of the solutions of the two separate
problems of its unilateral illumination (from left x, and from right y, separately):

u+
L (x, y) = q+ x+ r+ y, (1)
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u−L (x, y) = r− x+ q− y, (2)

where r− and q+ are the coefficients of reflection and transmission of an anisotropic
medium of geometric thickness L, for a “single quantum”, or their “beam of unit
intensity”, incident from its left boundary, while r+ and q− are their counterparts
related to the right boundary. These coefficients can be readily interpreted as
the probability densities of reflection and transmission of a single photon incident
on one of the two boundaries of medium. In nonlinear case [1]–[5], the relations
analogous to Eqs. (1)–(2) do not hold. The relationship of these two problems is
now implemented (instead of Eqs. (1)–(2)) by Cauchy problems [1]–[5]. Moreover,
it is obvious that in the nonlinear case, it makes no sense at all to operate with
such concepts as “single photon”, or their “beam of unit intensity”, and the
use of probabilistic interpretation of transference phenomena, which though are
very efficient tools in the linear problems. This obstacle, in nonlinear problems
of bilateral illumination of medium, still prevents to explore only the solution
of equations for particular PRT of unilateral illumination of medium (such
as seeking the variables r± and q± [6, 7] of the linear case). Therefore, the
exact methods of determining the field of radiation emerging from the medium,
such as: (i) adding of layers, (ii) its limiting form, described by differential
equations of invariant imbedding, and (iii) the so-called functional equations of
Ambartsumyan’s “complete invariance” (ACI) [4, 5], are compelled here to apply
directly to the functions u±L (x, y) of bilateral illumination of medium, which
significantly complicates their determination.

A major goal of this report is to simplify further the methods of nonlinear
PRT by revealing and exploring some new functions of so-called “linear images”
of the solution of PRT. It is noteworthy that the solution in quest of nonlinear
PRT is expressed in terms of newly introduced functions explicitly, just as in the
linear case, through a simple linear combination of the solutions of more particular
PRT of unilateral illumination of medium. We show that the introduction of these
linear images allows to handle effectively a random walk of a single quantum or
their unit beam. Moreover, this ensures an application of Sobolev’s probabilistic
interpretation [8] of linear transfer problems, in nonlinear case too, as simple
as in the linear case. For a determination of linear images, as a consequence of
the systematic application of the principle of invariance [1] and [4]–[6], we explore
in unified way the analogues of described above all three methods of solutions
of PRT.

2 The linear images of nonlinear PRT

The idea of introduction of linear images is closely related to one observation
of Ambartsumian [9, 2] that inevitably a translucence of medium occurs at high
intensities of external radiation exiting it, which is due to the transition of essential
fraction of atoms from the ground state to an excited. As a result, the proportion
of absorbing neutral atoms in the medium decreases and a stationary regime was
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established in the excited medium with a new, changed, optical thickness. The
original problem becomes linear with respect to new values of the optical thickness,
unknown in advance. This is just a physical meaning of the approach entitled
“method of self-consistent optical depths”, and further used very effectively
by [10]. Following Ambartsumian, let us trace the path of a single quantum,
randomly walking in an anisotropic scattering/absorbing medium, when certain
steady state conditions are established in it. This constant level of an excitation
of medium is maintained (stationary regime) during the whole process of random
walk of a quantum. It means that an arbitrary chosen quantum just “lives”
in a linear medium during this entire time. If x number of photons are incident
on medium from the left, and y – from the right, then their total output, as in
linear case, can be given by the relations analogous to Eqs. (1)–(2), with the only
difference that the functions, R±

L (x, y) and T±
L (x, y), of the described above linear

images of solution of original PRT, are dependent on the total number of photons
(x, y), because of nonlinearity of the problem:

u+
L (x, y) = T+

L (x, y)x+R+
L (x, y) y, (3)

u−L (x, y) = T−
L (x, y) y +R−

L (x, y)x. (4)

The functions R±
L (x, y) and T±

L (x, y) are the above-mentioned linear images of
the solution of original PRT. They are, respectively, the probability densities
of reflection and transmission of a single photon or their unit beam incident on the
medium through from one of its two boundaries. Although these functions describe
the behavior of a single quantum or their unit beam, but because of nonlinearity
of the problem nevertheless depend upon the intensities (x, y) of entering medium
radiation, due to which the acting level of an excitation of medium has been
set. In asymptotic limit of weak fields x + y ≤ δ±, these functions apparently
become constants, which are the solutions of a linear problem, where δ± is
the asymptotic threshold of incident single quantum from the left and right,
respectively.

3 Relations of the adding of layers for the linear
images

As a first method for determining the linear images, let us employ a general
method of adding of layers in the nonlinear problems of transfer [1, 2, 5]. Suppose
the anisotropic one-dimensional medium of geometrical thickness of B is adjoined
from the right to a similar medium of thickness A. Thereby the composite slab
of finite thickness A + B is illuminated from the left and right boundaries by
radiation of intensities x and y, respectively. Required to determine the intensity
of the radiation u±A+B(x, y) emerging from this composite slab, when the solutions

of similar problems for its both sub-layers, u±A(x, y), u±B(x, y), are previously
known. From Eqs. (3)–(4), it is seen that the problem is reduced to determination
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of the linear images R±
A+B(x, y) and T±

A+B(x, y) by means of known linear images

R±
A(x, y), T±

A (x, y) and R±
B(x, y), T±

B (x, y). From the formulas of the nonlinear
addition of layers [5], by virtue of Eqs. (3)–(4), we obtain

T+
A+B(x, y) = T+

B (p, y) p+, (5)

R+
A+B(x, y) = R+

B (p, y) + T
+

B
(p, y) p−, (6)

R−
A+B(x, y) = R−

A (x, s) + T−
A (x, s) s+, (7)

T−
A+B(x, y) = T

−
A

(x, s) s−, (8)

where the four auxiliary functions can be obtained exploring the explicit relations

p+ =
T+
A (x, s)

1−R+
A (x, s) R−

B (p, y)
, s+ =

R−
B (p, y) T+

A (x, s)

1−R−
B (p, y) R+

A (x, s)
, (9)

p− =
R+
A (x, s) T−

B (p, y)

1−R+
A (x, s) R−

B (p, y)
, s− =

T−
B (p, y)

1−R−
B (p, y) R+

A (x, s)
. (10)

The unknowns, p and s, can be found from the system{
p = T+

A (x, s) x+R+
A (x, s) s,

s = T−
B (p, y) y +R−

B (p, y) p,
(11)

or writing them in the form of separate equations

p = g+ (x, y; p, s) +K+ (x, y; p, s) p, s = g− (x, y; p, s) +K− (x, y; p, s) s. (12)

Here the proper kernels and free terms are defined by

K+ (x, y; p, s) ≡ R+
A (x, s) R−

B (p, y) ,

K− (x, y; p, s) ≡ R−
B (p, y) R+

A (x, s) ,

K+ (x, y; p, s) = K− (x, y; p, s) ,

(13)

g+ (x, y; p, s) ≡ T+
A (x, s) x+R+

A (x, s) T−
B (p, y) y, (14)

g− (x, y; p, s) ≡ T−
B (p, y) y +R−

B (p, y) T+
A (x, s) x. (15)

When one of the equations (12) is already solved, the solution of the other can
be obtained directly by using corresponding explicit relation (11). Whereas the
attention is drawn to the fact that in the equations (12):

1. The discussed explicit structures have until now met only in linear problems,
with the ensuing advantages.

2. Furthermore, an increase of the intensity of external radiation that excites
the medium, in the form of direct dependence appears only in free terms g+,
g− of these equations. This, as well known, does not affect a convergence of
the iterative solutions of considered equations, because it is due only to the
properties of kernels.

3. The kernels of equations K+, K− are just the probability densities.
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Aforesaid ensures a convergence, for example, of a simple iterative scheme

p(n+1) = g+
(n) +K+

(n) p
(n) at s(0) = y, (16)

where
g+

(n) ≡ g
+
(
x, y; p(n), s(n)

)
, K+

(n) ≡ K
+
(
x, y; p(n), s(n)

)
. (17)

In the framework of the method of adding of layers, to determine the linear images
of nonlinear PRT, the following sequential scheme can be distinguished: to begin
with, we determine p and s from Eqs. (11)–(17), next it will be p± and s± from
Eqs. (9)–(10), afterward R±

L (x, y), T±
L (x, y) from Eqs. (5)–(8), and finally u±L (x, y)

from Eqs. (3)–(4).

4 A complete set of equations of invariant imbedding
for the linear images

As a second method for determining the linear images, we derive a complete set
of equations of invariant imbedding. More consistent way is to fulfill a limiting
transition in the general relations of addition of layers, which were built above,
i.e. successively letting one layer be elementary ∆ → 0, while the other is left
fixed: A ≡ ∆, B ≡ L and A ≡ L, B ≡ ∆. For radiation characteristics of diffuse
reflection-transmission of elementary volume can be obtained the explicit forms

T±
∆ (x, y) = 1− æ±(x, y) ∆ +O

(
∆2

)
,

R±
∆(x, y) = χ±(x, y) ∆ +O

(
∆2

)
.

(18)

The physical meaning of the functions æ±(x, y) and χ±(x, y) is as follows: they
represent the probability densities that the quantum moving in a certain direction
will first be absorbed by elementary layer of the medium, and then: a) æ±(x, y)
will not be re-emitted in the same direction; b) χ±(x, y) will be re-emitted
in backwards. Hence a complete set of the equations of invariant imbedding
can be written as follows:[

∂

∂L
− Ê+

]
T+ = −T+ æ+

(
x, u−

)
+ T+ χ+

(
x, u−

)
R−, (19)[

∂

∂L
− Ê+

]
R+ = T+ χ+

(
x, u−

)
T−, (20)[

∂

∂L
− Ê+

]
R− = χ− (

x, u−
)
−R− æ+

(
x, u−

)
−

− æ− (
x, u−

)
R− +R− χ+

(
x, u−

)
R−,

(21)

[
∂

∂L
− Ê+

]
T− = −æ− (

x, u−
)
T− +R− χ+

(
x, u−

)
T−, (22)[

∂

∂L
− Ê−

]
T+ = −æ+(u+, y)T+ +R+ χ−(u+, y)T+, (23)[

∂

∂L
− Ê−

]
R+ = χ+(u+, y)− æ+(u+, y)R+−

−R+ æ−(u+, y) +R+ χ−(u+, y)R+,

(24)
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[
∂

∂L
− Ê−

]
R− = T− χ−(u+, y)T+, (25)[

∂

∂L
− Ê−

]
T− = −T− æ−(u+, y) + T− χ

−
(u+, y)R+. (26)

The first quartet of equations is a consequence of variations of the left boun-
dary of medium, and the second quartet is that of the right boundary. The
corresponding operators of radiation “response” of medium can be written [5]

Ê+ = α+
(
x, u−L

) ∂

∂x
, Ê− = α−(u+, y)

∂

∂y
, (27)

where α± are the well-known integral of collisions of the problem. Without
going into details, we note that the initial conditions in the corresponding
Cauchy problem, in terms of the parameter of layer thickness, are R±|L=0 = 0,
T±|L=0 = 1, and in terms of the energy variables (x, y) – more particular solutions
of PRT of single quantum, when the medium is excited by radiation incident only
on one boundary (for details, see Example in Sect. 6).

5 Ambartsumian’s functional equations for linear
images

A third method of solution of PRT corresponds to the case when simultaneously
vary both boundaries of the layer (when the elementary layer of infinitesimal
thickness is added to one boundary, and it is subtracted from the other boundary).
At this, a geometry of the problem is not changed, i.e. the layer thickness remained
constant, so the derivatives of the spatial variables naturally should be excluded.
By pairwise exclusion of derivatives over thickness from Eqs. (19)–(26), we obtain
four functional equations of ACI for the linear images:

ÂT+ = T+ æ+
(
x, u−

)
− æ+(u+, y)T+

+R+ χ−(u+, y)T+ − T+ χ+
(
x, u−

)
R−,

(28)

ÂR+ = χ+(u+, y)− æ+(u+, y)R+ −R+ æ−(u+, y)

+R+ χ−(u+, y)R+ − T+ χ+
(
x, u−

)
T−,

(29)

ÂR− = − χ− (
x, u−

)
+R− æ+

(
x, u−

)
+ æ− (

x, u−
)
R−−

−R− χ
+ (
x, u−

)
R− + T− χ−(u+, y)T+,

(30)

ÂT− = æ− (
x, u−

)
T− − T− æ−(u+, y)

+ T− χ
−

(u+, y)R+ −R− χ+
(
x, u−

)
T−.

(31)

The corresponding operator of radiation “response” of medium, when simulta-
neously vary both boundaries, i.e. the ACI operator, is given by Â = Ê+ − Ê−:

Â ≡ α+
(
x, u−L

) ∂

∂x
− α− (

u+
L , y

) ∂

∂y
. (32)
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It is noteworthy that the equations of linear images (20)–(31) favorably differed
from the corresponding equations of previously known [5], u±L (x, y), in the
followings: (i) they retain a constructive explicit structure distinctive only for the
equations of linear case, (ii) the characteristics of the elementary act of scattering
(dependent on level of excitation of medium) are clearly separated from the
structural forms, which are caused by the multiple scattering. The characteristics
of the elementary act – æ±(x, y) and χ±(x, y) at the transition to the linear case
are converted into constant, when explicit structural forms, those just caused
by the multiple scattering, are naturally retained. A transition to the functional
equations of ACI (i.e. turn from the second method to the third, for determining
the linear images) provides additional simplification. The layer thickness here are
figured as fixed parameter for the whole calculation, whereas in the same problem
with a given value of the layer thickness, the use of invariant imbedding necessarily
implies an additional calculation of the entire family of PRT, starting from the
value of zero thickness and continuing until reaching its final value, intended
beforehand.

6 Particular example

Let us investigate next the simple instructive model of isotropic medium, with the
conservative and isotropic scattering. Here we have the simplifications R± ≡ R,
T± ≡ T , R + T = 1. The ACI equations, for determining the linear image T
of function u ≡ u(x, y), can be put in the simple symmetrical form[

k (x+ v)
∂

∂x
+ k (y + u)

∂

∂y

]
T = −T M(x, y), (33)

where

M(x, y) =M(y, x) ≡ k (x+ v)− k (y + u)

x− y
,

k (ξ) ≡n hν
2

A21B12

A21 + ξ
2 (B12 +B21)

,
(34)

u = (x− y) T + y, v = − (x− y) T + x. (35)

The initial conditions for Eq. (33) will be T (x, 0) = σ (x) or T (0, y) = σ (y),
where the unknown function σ (z) describes the passage of a single quantum
through medium, when it is excited by radiation of intensity z incident only
on one boundary, and determined from its equation of invariant imbedding[

∂

∂L
+ xσ

k (2x− xσ)

2

∂

∂x

]
σ = −σ2 k (2x− xσ)

2
, (36)

σ|L=0 = 1, or σ|x=0 = q, (37)

where q is the transmittance of layer of geometrical thickness L, in linear problem
of isotropic medium at conservative isotropic scattering. It is explicitly given by

q =
1

1 + 1
2 k0 L

. (38)
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Thus, in this particular example, the following sequence of solutions of the problem
we have in short: first solved a linear problem by means of (38), then this solution
is used to define a linear image of a particular nonlinear PRT of unilateral
illumination of medium by considering the auxiliary Cauchy problem (36)–(37)
(by means of the equation of invariant imbedding), and afterward then the quasi-
linear system of ACI (33)–(35) was considered. Hence, the desired solution of the
nonlinear PRT, in term of its linear image of transmission of a single quantum, is
given in an explicit form by (35).

7 Conclusion

In conclusion I want to express my deep appreciation to organizers of the
conference in honor of bright memory and the 100th anniversary of academician
V.V. Sobolev. For my great fascination by the theory of radiative transfer,
I fully obliged to the two outstanding achievements of the field: the first is the
“principle of invariance” of my teacher V.A. Ambartsumian, and the second is
the “probabilistic interpretation” of V.V. Sobolev. Their incorporation provides
the researchers by a powerful tools and methods of effective analysis of transfer
problems, and a clear vision of their future opportunities. I am sure that the
representatives of many more generations of astrophysicists, like me, would be
fascinated by this area of knowledge.

Acknowledgments. The very helpful and positive feedback from G. Ter-Kaza-
rian in preparation of this report is much appreciated.
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