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It is shown that the problems of radiation transfer in homogeneous
plane-parallel atmospheres admit a variational formulation, the equation of
transfer then being the Euler–Lagrange equation and the known quadratic
and bilinear relations being the conservation law due to form-invariance of
the suitable Lagrangian. A group of transfer problems is revealed which
are reducible to the source-free problem. We present a group-theoretical
description of radiation transfer in inhomogeneous and multi-component
atmospheres with plane-parallel geometry. The concept of composition
groups is introduced for the media with different optical and physical
properties. The group representations are derived for two possible cases of
illumination of a composite finite atmosphere from outside. An algorithm for
determining the global optical characteristics (reflectance and transmittance)
of inhomogeneous and multi-component atmospheres is given. The group
theory approach is also applied to determine the field of radiation inside
the inhomogeneous atmosphere. The concept of a group of optical depth
translations is introduced. The developed theory is illustrated with the
problem of radiation diffusion with partial frequency distribution for the
case where the inhomogeneity of the medium is due to the depth-variation of
the scattering coefficient. It is shown that once reflectance and transmittance
of a medium is determined, the internal field of radiation in the source-free
atmosphere is found without solving any new equations.

1 Introduction

The research on the theory of radiative transfer carried out in recent two decades
in Byurakan observatory develops Ambartsumian’s ideas concerning the laws
of addition of layers [1, 2] and the principle of invariance [2, 3, 4]. Being of
importance for analytical theory itself, new results allow elaborating efficient
computational schemes for various astrophysical applications involving radiation
transfer in inhomogeneous absorbing and scattering atmospheres. In this context
there is a need to define their place and importance in the modern transfer
theory.

The report considers results obtained in two directions, the first of which
concerns the variational formulation of radiation transfer problems in a plane-
parallel homogeneous atmosphere.

1 Byurakan Astrophysical Observatory, Armenia

V.Grinin et al. (eds) Radiation mechanisms of astrophysical objects. Yerevan: Edit Print, 2017, pp. 51–63.



52 A.G.Nikoghossian

2 Lagrangian formalism

Before turning to immediate description of the variational or Lagrangian approach
to radiative transfer problems we will briefly dwell on premises of this research.
The fact is that although Ambartsumian’s principle of invariance has been known
for a long time, but its physical meaning remained obscure. In particular, it was
unclear what are the limits of applicability and efficiency of the principle. The
second point concerns Rybicki’s work [5], where some quadratic integrals of
the transfer equation were derived referred by him to as Q- and R-integrals.
He supposed that these integrals are possibly related with the principle of
invariance. In some problems they lead to non-linear relations linking to each
other some characteristics of the radiation field in the atmosphere. Further
generalization of Rybicki’s results for monochromatic and isotropic scattering
in a plane-parallel medium was given in [6, 7], where new sorts of relations were
obtained referred to as bilinear and two-point bilinear relations, which couple the
radiation fields at different depths of a given atmosphere as well as the radiation
fields in different atmospheres.

In frameworks of variational formalism we developed the equations of transfer
are proved to be none the other than the Euler-Lagrange equations and the non-
linear Q-relations are the conservation laws due to form-invariance of the suitable
Lagrangian. In fact, a single functional comprises all the information on features
of the problem and allows a systematic connection between symmetries and
conservation laws. Being the first integrals of the Euler–Lagrange equation, this
laws may facilitate the solution of the problem under consideration and contribute
to its interpretation.

To demonstrate the approach, we write the transfer equations in terms of
the function Y having the following probabilistic meaning: it characterizes the
probability of the photon exit from atmosphere in the direction µ, if originally
it was moving at depth τ with the directional cosine η.

We have

±dY (τ,±η, µ)

dτ
= −Y (τ,±η, µ) +

λ

2

∫ 1

−1
Y (τ,±η′, µ)dη′, (1)

where λ is the scattering coefficient. The Lagrangian density L corresponding to
Eq. (1) was obtained in [8]

L(Φ,Φ′, τ, η, µ) = Φ2 + (ηΦ′)2 − 2ΦU, (2)

where we introduced notations

Φ(τ, η, µ) = Y (τ, η, µ) + Y (τ,−η, µ), U(τ, µ) =
λ

2

∫ 1

0
Φ(τ, η′, µ)dη′. (3)

In accordance with the results of [8], the Euler–Lagrange equation has a form

∂L

∂Φ
− d

dτ

∂L

∂Φ′
+ λ

∫ 1

0

∂L

∂U
dη′ = 0. (4)
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One will make sure that insertion of the Lagrangian (2) into Eq. (4) yields the
transfer equation (1). It is important that both the transfer equation (1) and
the Lagrangian density (2) do not depend explicitly on τ , or stated differently,
they are form-invariant under infinitesimal transformation of the optical depth.

This implies that the transformation (or translation) of the optical depth is
the symmetry transformation for the system (1). The derivation of conservation
laws from direct study of the variational integral is based on Noether’s
theorem (see, for instance, [9]), which was generalized in [10] to encompass the
integro-differential equations. For the problem under consideration, it suggests
a conservation law as follows:

∫ 1

0

[
L− ∂L

∂Φ
Φ′
]
dη = const, (5)

which, in view of Eq. (2), takes a form

∫ 1

0
Y (τ, ζ, µ)Y (τ,−ζ, µ)dζ =

λ

4

(∫ 1

−1
Y (τ, ζ, µ)dζ

)2

+ const. (6)

This relation is, in essence, a prototype of the Q-integral obtained by
Rybicki [5]. The above considerations imply that by its content the integral (6)
is an analog of the momentum conservation law in mechanics and is due to the
axes translation transformation. It holds everywhere where λ does not vary with
depth.

The variational formalism allows one not only to elucidate the physical
meaning of invariance principle but enables to derive along with many known
results a great number of new relations of great importance for the theory and
applications. It allows one also to find out some statistical characteristics of the
diffusion process in the atmosphere [7, 11]. Some of the known non-linear relations
possess a fairly obvious physical or/and probabilistic meaning and can be written
immediately on the base of simple arguments.

This approach reveals a group of common radiation transfer problems of
astrophysical interest which admit quadratic and bilinear integrals. All of them
can be reduced to the source-free problem. This group of problems referred
to as RSF-problems includes Milne’s problem, the problem of diffuse reflection
(and transmission in the case of the atmosphere of finite optical thickness)
as well as problems with exponential and polynomial laws for the distribution
of internal energy sources. The group problems are characterized at least by three
features. First of all, the invariance principle implies bilinear relations connecting
the solutions of the listed problems. It was shown in [12] that the group of the RSF-
problems admits a class of integrals involving quadratic and bilinear moments of
the intensity of arbitrarily high orders. Secondly, if the problem can be formulated
for finite atmosphere then the principle allows connecting its solution with that
of the proper problem for a semi-infinite atmosphere. Finally, knowledge of the
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Ambartsumian ϕ-function reduces their solutions to the Volterra-type equations
for the source function with the kernel-function

L(τ) =
λ

2

∫ 1

0
ϕ(ζ)e

− τ
ζ
dϕ

ζ
. (7)

While the variational approach is widely used in various branches of theoretical
physics, it was not the case in the field of the radiative transfer theory, with the
only exception being the paper of Anderson [8] who established the conservation
law suitable for the case of non-isotropic scattering. We used the results of the
rigorous mathematical theory in applying the Lagrangian formalism to the one-
dimensional transfer problem [13].

3 Group-theoretical description of radiative transfer
in inhomogeneous atmospheres

The next topic of the report concerns application of the group theory to solve
the radiative transfer problems in inhomogeneous atmospheres under general
assumptions on the frequency-angle distribution of the radiation field, the
elementary event of scattering and properties of the medium. As we shall see, the
theory we put forward can be regarded as a further extension of the layers adding
method proposed first by Ambartsumian [1, 2] for one-dimensional homogeneous
media and generalized by Nikoghossian [14, 15] over the case of inhomogeneous
media. We remind that the method establishes summation laws for global optical
properties of absorbing and scattering media (reflectance and transmittance),
which express these properties of the combined medium through similar properties
of its components. Of special interest is the particular limiting case of this method
when optical thickness of one of the added components tends to zero. This
allows one to find the global optical characteristics of a medium simultaneously
for a family of the media of different thicknesses. This branch of the theory
was developed by Bellman and his co-authors (see, e.g., [16, 17]) and is known
as “invariant imbedding”.

3.1 Composition groups

We start with considering the amalgamation procedure of the plane-parallel
absorbing and scattering inhomogeneous media. It is assumed that the added
components do not contain primary energy sources and are allowed to differ
one from the other not only by optical thicknesses, but also by the nature
of inhomogeneity. By inhomogeneity we mean that each of the physical parameters
specifying the elementary event of scattering or physical state of the medium
may vary with depth. Of them we note the profile of the absorption coefficient,
the quantum scattering (or destruction) coefficient, Voigt’s parameter, the phase
function, the frequency redistribution function, the Stokes parameters in the
case of polarized radiation, the correlation length for turbulent media, and
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so on. However, in illustrating the approach, we restrict ourselves by treating
the 1D transfer problem for the case of partial redistribution over frequencies by
assuming that the only variable parameter is the scattering coefficient.

Now we introduce the concept of composition or transformation of scattering
and absorbing inhomogeneous media, which refers to the addition of a new
medium to the initial one. The transformations induced in this way form a group
if under the group product (binary operation) one takes the resultant of two
successive transformations. It is remarkable that this definition does not specify
the nature of inhomogeneity of added media. It is easily seen that all the required
conditions for forming a group are satisfied. In particular, the role of the unit
element is played by the identity transformation, which leaves the initial medium
unchanged, and the inverse element is the transformation which reverses the effect
of the already performed transformation. The associativity of the group product
is obvious. We refer to this group of transformations as the GN(2,C) group, which,
evidently, is not commutative. As a result of the described compositions, one can
construct different atmospheres composed of inhomogeneous components.

Of special interest is one of subgroups of the introduced group which
describes the case when the added media are homogeneous. The components
of such a composite atmosphere may differ from each other not only by optical
thicknesses but also by any characteristics of the radiation diffusion in them. Such
groups, referred nominally to as GNH(2,C), are two-, three- and multi-parameter
dependent on the number of parameters changing in passing from one component
to another. The groups of these types are infinite and non-commutative. They
can serve as archetypes for a number of real radiating media of astrophysical
importance. Finally, of independent interest is the narrower subgroup of the
introduced two groups which involves compositions of homogeneous media with
identical physical properties but, in general, of different optical thicknesses.
These compositions obviously yield homogeneous medium. This one-parameter
group, we call it GH(2,C), is infinite and commutative, i.e., Abelian [18].
It becomes continuous when the only parameter, optical thickness, varies
continuously.

3.2 The group representations

In order to find the representations of introduced groups, consider a composite
atmosphere consisted of two layers, which generally differ in both the optical
thickness and functional behavior of parameters specifying the elementary event
of scattering (Fig. 1). This means that both components are inhomogeneous and
possess the property of polarity [14]. The scattering in the media is supposed
occurring with redistribution over directions and frequencies so that the optical
characteristics of media may be presented in the operator-matrix form with the
matrix elements possessing probabilistic meaning (throughout the paper we use
the probability language). They describe the angle and/or frequency dependent
probabilities of a single event of reflection and transmission. Having in mind
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Figure 1: Reflection and transmission by inhomogeneous atmosphere.

in mind the polarity property of inhomogeneous media, we introduce the notations
Ri, Qi and R̄i, Q̄i (i = 1, 2) for the reflection and transmission coefficients of
the components of a composite medium illuminated correspondingly from the right
and left. In accordance with the principle of reversibility of optical phenomena,
Q̄i=Q∗i , where the transposed matrix is supplied by asterisk. Everywhere below
we follow the designation Q∗i . An important role in this research belongs
to the inverse of the transmittance matrix P=Q−1 and the other three combined
matrices S = RP, S̄ = PR̄, M=Q∗−SR̄. These four matrices provide a complete
description of the optical properties of a inhomogeneous absorbing and scattering
medium independent of that what of its boundaries is illuminated from outside.

Let us treat now the transfer of radiation through composite medium when
a photon falls on its right boundary (top drawing in Fig. 1). Taking account of
possibility of multiple reflections between components of the medium, one can
derive the following two relations (see [19]):

P1∪2 = P2P1 − S̄2S1, (8)

S1∪2 = S2P1 + M2S1, (9)

where the quantities pertaining to composite medium are indexing with 1
⋃

2.

Taking together, relations (8) and (9) can be presented in the more convenient
compact form (

P1∪2

S1∪2

)
=

(
P2 −S̄2

S2 M2

)(
P1

S1

)
, (10)

where we used the concepts of supervector and supermatrix [18, 20, 21].
The supermatrix entering in Eq. (10) is denoted by Ã (hereafter the supermatrices
are supplied by tilde)

Ã =

(
P −S̄
S M

)
. (11)

The set of matrices Ã is the first of representations of the group of compositions
GN(2,C) which also is a group (we denote it by g) and provides a one-to-one
mapping of GN(2,C) to supervector space, i.e., the group product of two
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a photon falls on its right boundary (top drawing in Fig. 1). Taking account of
possibility of multiple reflections between components of the medium, one can
derive the following two relations (see [19]):

P1∪2 = P2P1 − S̄2S1, (8)

S1∪2 = S2P1 + M2S1, (9)

where the quantities pertaining to composite medium are indexing with 1 ∪ 2.

Taking together, relations (8) and (9) can be presented in the more convenient
compact form (

P1∪2

S1∪2

)
=

(
P2 −S̄2

S2 M2

)(
P1

S1

)
, (10)

where we used the concepts of supervector and supermatrix [18, 20, 21]. The
supermatrix entering in Eq. (10) is denoted by Ã (hereafter the supermatrices are
supplied by tilde)

Ã =

(
P −S̄
S M
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. (11)

The set of matrices Ã is the first of representations of the group of compositions
GN(2,C) which also is a group (we denote it by g) and provides a one-to-
one mapping of GN(2,C) to supervector space, i.e., the group product of two
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⊗
g2, corresponds to Ã1∪2 = Ã1Ã2, or for representations

=(g1
⊗
g2) = =(g1)=(g2) (isomorphism). On the hand, the supermatrix Ã

can be regarded as an operator mapping one supervector space to another one.
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It is natural to refer nominally to this supermatrix as “composer”. It plays
an important role in the developed theory.

It is easy to see that the transformation realizing by Ã provides determination
of optical properties of the composed medium partially, namely, only those for
the right-hand side illumination. For complete description of optical properties
of the composite medium, we need the matrices S̄ and M which obey the following
transformations [19]:

S̄1∪2 = P2S̄1 + S̄2M1, M1∪2 = M2M1 − S2S̄1. (12)

Note that these relations could be derived directly.
In the matrix-operator form they read

(
M1∪2

S1∪2

)
=

(
M2 −S2

S̄2 P2

)(
M1

S̄1

)
. (13)

Thus, we are led to an alternative group of representations given by the
supermatrix

B̃ =

(
M −S
S̄ P

)
, (14)

which we denote by =̄(g). It is evident that this group also is isomorphic to
the group of compositions GN(2,C) and together with =(g) gives a complete
description of optical properties of the composite atmosphere illuminated from
the right. In both cases the identity transformation is given by the supermatrix

Ẽ =

(
I 0
0 I

)
, (15)

where I is the unit matrix. The supermatrices Ã, B̃ are non-degenerate, and
two-sided inverse matrices exist with superdeterminant [21, 22, 23] equaled to one
(see [19]).

By introducing the four-dimensional supervector Ỹ with the components
(P,S,M, S̄), the group representations =(g), =̄(g) can be joined and presented
as a reducible representation

Ỹ1∪2 = Ψ̃2Ỹ1, (16)

where

Ψ̃ =




P −S̄ 0 0
S M 0 0
0 0 M −S
0 0 S̄ P


 . (17)

We conclude that, given the optical properties of the component layers, the
common matrix multiplications allow one to determine these properties for the
compound atmosphere. If the atmosphere is homogeneous one can restrict oneself
by transformation Eq. (10). Arguments analogous to those above in deriving
Eq. (17) allow one to derive adding laws for the case when the composite
atmosphere is illuminated from the side of the left boundary (bottom drawing
in Fig. 1) [19].
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3.3 The 1D source-free problem for partial redistribution
over frequencies

Consider a subgroup of the composition group GNH(2,C) subjected to the
only condition that the optical thickness of the medium obtained as a result
of compositions must not exceed some presetting value of τ0. When the optical
thickness varies continuously, this infinite group is obviously continuous. Then this
group together with its representation =(g) are one-dimensional Lie groups [21,
22, 23]. With help of compositions of this groups one can construct a multi-
component atmosphere with components which generally can differ one from the
other by their physical characteristics.

As an example, let us treat the matrix problem of radiation diffusion in a one-
dimensional inhomogeneous atmosphere illuminated from the boundary τ = τ0

when the scattering obeys the angle averaged law of partial redistribution over
frequencies. Suppose that the atmosphere consists of components of equal and
sufficiently small thickness characterized by some constant values of the scattering
coefficient λ, so that in the limit of the components thicknesses tending to zero
it might be regarded as a continuous function of the optical depth.

The infinitesimal operator of this group of compositions at τ0 can be re-
presented in the form

Ξ̃(τ0) = lim
∆τ0→0

Ã(τ0 + ∆τ0)− Ã(τ0)

∆τ0
=

(
m(τ0) −n(τ0)
n(τ0) −m(τ0)

)
, (18)

where

m(τ0) = α− n(τ0), n(τ0) =
λ(τ0)

2
Γ. (19)

Here α and Γ are the discrete analogs correspondingly of the profile of the
absorption coefficient and the law of the frequency redistribution [24]. For the
sake of simplicity, they are supposed to be independent of depth. Evidently, Γ is
a symmetric matrix and α is a diagonal matrix with the elements αi = α(xi).

Transformation (8) implies [25]

dP

dτ0
= m(τ0) P(τ0)− n(τ0) S(τ0), (20)

dS

dτ0
= n(τ0) P(τ0)−m(τ0) S(τ0), (21)

with the initial conditions P(0) = I, S(0) = 0, where 0 is the null matrix.
Inversion of the matrix P(τ0) found from the set of equations (20) and

(21) allows one to determine the requisite values of the medium reflectance and
transmittance. Analogously, by using the infinitesimal operator of the supermatrix
B̃ and Eq. (14), we are led to a new set of the matrix differential equations

dM

dτ0
= −m(τ0) M(τ0)− n(τ0) S̄(τ0), (22)
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dS̄

dτ0
= n(τ0) M(τ0) + m(τ0) S̄(τ0), (23)

with the initial conditions M(0) = I, S̄(0) = 0.

In the case of homogeneous atmosphere one can restrict oneself to solving the
set of equations (20)–(21). Its solution can be presented in the form of the matrix
exponential [25]. Note that from the sets of equations (20)–(23) one can derive
separate matrix differential equations of the second order for unknown matrix-
functions as it is the case in the scalar case [25].

Equations obtained with the group approach exhibit intimate connection
between the group approach and the method of invariant imbedding [16, 17].
As a matter of fact, the invariant imbedding technique is equivalent to action
of infinitesimal operators of the proper group representations introduced in the
paper. For homogeneous atmosphere, the obtained equations admit invariants or
conservation laws, the continual analogs of which were obtained in the mentioned
papers [7, 8, 25, 26].

The efficiency of the developed theory becomes especially discernible when
solving radiative transfer problems for atmospheres with a complex multi-layer
structure. In applying any of the introduced composers, one needs to predetermine
the global optical properties of each of the layers added to the boundary
τ = τ0, namely, the matrices P, S = RP, S̄ = PR̄ and M = Q∗ − SR̄ =
Q∗ − RS̄, i.e., the triad of matrices R, R̄, Q. The problem is simpler when
the components are homogeneous. Particularly, in the scalar problems these
quantities are determined analytically. In the general case of inhomogeneous
components, we can turn to solutions of the systems of equations (20)–(23) with
subsequent inversion of the matrix P. This route is preferable in finding the
field of radiation inside the medium to be discussed below. However, there exists
an alternative way of determining the required optical properties by solving basic
differential equations obtained in [12, 27], which are easily realizable initial-value
problems.

Thus, the algorithm of solution of the transfer problem in the most general
case of multi-component atmosphere is as follows. One starts with finding the
reflectance and transmittance of the layers to be added by using one of the
routes described above. Further, the compositions transformations are continued
until the optical thickness of the composite atmosphere specified by the problem
formulation is attained. Inversion of the matrix P(τ0) allows one to find Q(τ0)
what, in its turn, determines other properties of the composite atmosphere. We
shall see below that the obtained quantities are sufficient to find the field of
radiation inside the medium.

In the special case when the supplemented layers are homogeneous and possess
similar properties, we deal with the cyclic group and the composition process
reduces to the action of powers of corresponding operators (Ãn, for instance).
This naturally reduces the volume of computations to a great extent.
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3.4 Radiation field inside the medium

The goal we pursue in this section is to extend the group theory approach
over the field of radiation inside inhomogeneous media. Consider a plane-parallel
inhomogeneous atmosphere of optical thickness τ0, the boundary τ = τ0 of which is
illuminated from outside (Fig. 2). Light scattering is generally assumed occurring
with the angle and frequency redistribution. The internal field of radiation we
assign by the matrices U(τ, τ0) and V(τ, τ0), which specify the probabilities
that the quantum with the angle-frequency characteristics (η, x) falling on the
boundary τ = τ0, will be found, as a result of diffusion in the medium, at the
depth τ moving correspondingly to the boundaries τ = 0, and τ = τ0, generally
with some other characteristics (η′, x′).64 A.G.Nikoghossian

0 τ τ0

U(τ, τ0) V(τ, τ0)

Q(τ0) R(τ0)

0 τ τ0

V̄(τ, τ0) Ū(τ, τ0)
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Figure 2: Description of the radiation field inside the inhomogeneous atmosphere.
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in the medium, at the depth τ moving correspondingly to the boundaries τ = 0,
and τ = τ0, generally with some other characteristics (η′, x′).

Let us treat now the procedure of transition from one optical depth to another
one by supplementing a new layer. The infinite set of such transitions obviously
composes a group if the group product is defined as the result of two subsequent
transitions. One can easily check that all the group postulates are satisfied.
In accordance with the physics of the problem, the resulting value of the optical
depth should not exceed the optical thickness of the medium τ ≤ τ0. This group
is a subgroup of the group GN(2,C) and is equivalent to the similar subgroup
considered in the preceding sections for composition of different media.

Taking into account the probability meaning of matrices U(τ, τ0) and V(τ, τ0),
one can write

Q(τ0) = Q(τ)U(τ, τ0),V(τ, τ0) = R(τ)U(τ, τ0), (24)
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Let us treat now the procedure of transition from one optical depth to another
one by supplementing a new layer. The infinite set of such transitions obviously
composes a group if the group product is defined as the result of two subsequent
transitions. One can easily check that all the group postulates are satisfied.
In accordance with the physics of the problem, the resulting value of the optical
depth should not exceed the optical thickness of the medium τ ≤ τ0. This group
is a subgroup of the group GN(2,C) and is equivalent to the similar subgroup
considered in the preceding sections for composition of different media.

Taking into account the probability meaning of matrices U(τ, τ0) and V(τ, τ0),
one can write

Q(τ0) = Q(τ) U(τ, τ0), V(τ, τ0) = R(τ) U(τ, τ0), (24)

hence

U(τ, τ0) = P(τ) Q(τ0), V(τ, τ0) = S(τ) Q(τ0). (25)

The fact of separation of arguments in U(τ, τ0) and V(τ, τ0) is one of
advantages of the applied approach. Equations (24) imply that the subgroup
of representation =(g) relevant to the media compositions group may be now
regarded as representation of the depth-translation group.

Indeed, on the base of Eq. (10), one may write

(
U(τ + δτ, τ0)
V(τ + δτ, τ0)

)
=

(
Pτ (δτ) −S̄τ (δτ)
Sτ (δτ) Mτ (δτ)

)(
U(τ, τ0)
V(τ, τ0)

)
, (26)
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where δτ is an increment to the optical depth τ . The subscript τ indicates that
the internal physical properties of supplemented layer are relevant to (or vary in)
the interval (τ, τ + δτ).

Thus, the supermatrix Ã plays an important role not only in adding the
media of different optical thicknesses but also in translating optical depths
inside inhomogeneous atmosphere. Stating differently, it serves at the same time
as “composer” of inhomogeneous atmospheres and as “translator” in transitions
between optical depths inside the atmosphere. It is noteworthy that in the latter
case only the global optical properties of the incremented layer provide the
transformations. The internal physical characteristics do not take an immediate
part in these transformations, so that the nature of inhomogeneity in different
media or layers are allowed to be different.

To illustrate the obtained results, let us return to the matrix case of the
transfer problem treated in Section 3.3, where we confined ourselves to the global
optical characteristics of the medium. Our immediate objective now is to find the
field of radiation inside the medium, where, again, the only parameter varying
with depth is the scattering coefficient λ. In light of that said in Sect. 3.3, we
conclude that the depth-translation group together with its representation are the
Lie groups of the one-dimension.

Given the supermatrix (18), the transformation (26) leads to the customary
differential equations of radiation transfer for the operator-functions U and V

dU

dτ0
= m(τ) U(τ, τ0)− n(τ) V(τ, τ0), (27)

dV

dτ0
= n(τ) U(τ, τ0)−m(τ) V(τ, τ0). (28)

In place of the usual boundary conditions, one can now adopt the conditions
at τ = τ0, U(0, τ0) = Q(τ0), V(0, τ0) = 0, then reducing the problem to that
with initial conditions. Derivation of the transfer equations (27)–(28) on the base
of physical reasoning is straightforward, what is usually doing in the classical
astrophysical literature. As it was shown, the operator-functions P(τ) and S(τ)
satisfy the same set of equations (20)–(21) with the initial conditions P(0) = I,
S(0) = 0. By comparing the initial conditions of these two sets of equations, we
are led to relations (24) written above on the base of probabilistic reasoning [26].

Bearing in mind the computations described in Section 3.4 for the composite
inhomogeneous atmosphere as well as the equivalence of the medium-composition
and the depth-translation subgroups of GNH(2,C), we arrive at an important
conclusion that the internal field of radiation now can be found without solving
any new equations. Indeed, it is sufficient to this end to multiply the obtained
value of Q(τ0) by P and S found above in intermediate calculations in constructing
the atmosphere under study.

The far reaching analogy between media composition and depths translation
groups makes it possible to transfer different results obtained for global optical
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properties of an atmosphere to quantities determining the internal field of
radiation. For instance, if the atmosphere is homogeneous, one can derive
conservation laws in terms of U and V, as it was done above for the matrices P
and S. We do not deal with it here but refer the interested reader after continual
analogs of these laws to [7, 26].

4 Conclusions

We discussed two directions of further development of the radiation transfer theory
which, in our opinion, are promising from both the analytical and computational
points of view. They generalize Ambartsumian’s ideas concerning the principle
of invariance and the layers adding laws. The variational approach allows one to
reveal the physical nature and the scope of applicability of invariance principle.
It is important that the solutions of some standard problems of astrophysical
interest mathematically are reducible to the Volterra type integral equations.

The second direction concerns the group theory which is applied to
solve the problems of radiative transfer in inhomogeneous absorbing and
scattering atmospheres. The media composition groups and their representations
introduced in the paper generalize the layers adding approach, which now covers
inhomogeneous, particularly multi-component, atmospheres with allowance of the
angle and frequency distribution of the radiation field. The group representations
being expressed in terms of some combined discrete quantities allow one to find
the most general summation laws for reflectance and transmittance of the plane-
parallel media.

Employment of infinitesimal operators of the introduced groups makes
it possible to establish the close connection of the introduced groups with the
classical transfer equations and the equations ensuing from invariant imbedding.
In fact, the first of them are connected with the depth translation groups, while
the second – with composition groups for the media of different optical thicknesses.

An important result in considering the internal field of radiation is the
separation of variables of the optical depth and thickness in the expression
of quantities describing the optical properties. This implies that the introduced
group of the optical depths translations is a subgroup of the group of the media
compositions. In its turn, this means that after finding the reflectance and
transmittance of an atmosphere, there is no need to solve any new equations
to determine the internal field of radiation in the source-free atmosphere.

The theory we put forward is of sufficiently great generality since it does not
depend on the nature of inhomogeneity of the media as well as on the angle and
frequency distribution of the radiation field.
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