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A brief review of the development of the asymptotic non-stationary
radiative transfer theory is presented. In particular, the accuracy of the
diffusion approximation is studied. It is shown that the replacement of the
non-stationary transfer equation by the heat conductive equation should give
satisfactory results when the single scattering albedo λ is close to the unity.
But this approximation can lead to significant errors when λ < 1.

Studying time-dependent processes in various non-stationary objects is
an important problem of modern astrophysics. The illumination of the dust nebula
under the influence of radiation of a new star can be considered as an example
of such process.

Sobolev initiated the systematic development of the theory of non-stationary
radiation fields in the article [1] published in 1952. Fundamentals of this theory
were presented in his book [2].

Non-stationary radiation fields are characterized by the finite speed of light c
and a definite duration of the light scattering process.

Let t1 be the mean time of the stay of a photon in the absorbed state. It is
usually assumed that the probability of emission of a photon being in the absorbed
state in the time interval from t to t + dt depends on t by the exponential law,

i.e., it is proportional to e
− t
t1
dt
t1

.
The probability of the photon absorption while travelling after his radiation

during an interval of time from t to t + dt depends on t also exponentially, e.g.,

it is proportional to e
− t
t2
dt
t2

, where t2 = 1
αc is the mean time of stay of a photon

on the path between two consecutive scatterings. Here α is the volume absorption
coefficient of the medium.

The values of t1 and t2 are usually very different from each other. Therefore,
Sobolev has proposed to allocate the consideration of two limiting cases, i.e., the
case A, when t1 � t2, and the case B, when t2 � t1.

The simplest model of non-stationary radiative transfer is a model based on
the consideration of the one-dimensional homogeneous infinite medium with an
energy source depending on time. Let us assume that the medium is illuminated by
a momentary point source of luminosity L flashing at some initial moment of time.
We note that an actual flash duration and a dependence of the luminosity L(t)
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on the time t can be taken into account by integrating over time the expressions
for light field characteristics found in the case of a point source multiplied by the
value of the luminosity L(t).

Let I1(r, t) and I2(r, t) be intensities of the radiation spreading on distance r
from the source at time t in the direction of increasing and decreasing values of
the coordinate r, respectively. Instead of the geometric distances r, the physical
time t and values t1 and t2, we use the corresponding dimensionless quantities

τ = αr, u =
t

t1 + t2
, β1 =

t1
t1 + t2

, β2 =
t2

t1 + t2
. (1)

Then the radiative transfer equation takes the following form:

∂I1(τ, u)

∂τ
+ β2

∂I1(τ, u)

∂u
= −I1(τ, u) +B(τ, u), (2)

−∂I2(τ, u)

∂τ
+ β2

∂I2(τ, u)

∂u
= −I2(τ, u) +B(τ, u). (3)

HereB(τ, u) is the source function defined by the equation of radiative equilibrium

B(τ, u) =
λ

2

∫ u

0

[
I1
(
τ, u′

)
+ I2(τ, u

′)
]
e
−u−u

′
β1

du′

β1
, (4)

where λ is the single scattering albedo. These equations are supplemented with the
initial condition which takes into account the momentary point source of energy.
The mean radiation intensity J(τ, u) and the radiation flux H(τ, u) are defined
by the expressions

J(τ, u) =
1

2
[I1(τ, u) + I2(τ, u)] , (5)

H(τ, u) = I1(τ, u)− I2(τ, u). (6)

Minin [3] obtained the exact solution of this problem by means of the Laplace
transform.

Simple asymptotic expressions for characteristics of the non-stationary
radiation field are obtained in the case when points of the medium are located
at large optical distances from energy sources (τ � 1) and scattering of light is
close to conservative (1− λ� 1). In this case Minin [4] proposed to use a simple
technique for inverting the Laplace transform. As it is known from the theory of
the Laplace transform, the value of the original at large values of the argument
(u � 1) is determined using the expansion of the image in powers of the small
parameter s. This expansion corresponds to the expansion of solutions of the
stationary radiative transfer equation in powers of the small values of 1−λ. As a
result of the Laplace transform in time, the non-stationary equation is converted



About the Asymptotic Theory of Non-Stationary Radiative Transfer 45

into the stationary one but the value of λ is replaced by the value λ
(1+β1s)(1+β2s)

.
Therefore, taking into account the fact that β1 + β2 = 1, we obtain 1 − λ = s
with accuracy to members of the higher degrees of the parameter s. Hence,
when receiving the asymptotic image, it is necessary to replace the small values
of 1 − λ by s in the equation solution for the stationary case, and then to apply
the inverse Laplace transform.

In the case of one-dimensional infinite medium illuminated by a momentary
point source, we obtain for J(τ, u, λ) and H(τ, u, λ) the following expressions (for
λ = 1, τ � 1, u > τ):

JD (τ, u, 1) =
L

4
√
πu

e−
τ2

4u , (7)

HD (τ, u, 1) =
L

4
√
πu

τ

u
e−

τ2

4u . (8)

The same expressions for these quantities are obtained in the diffusion appro-
ximation in the case of λ = 1. This approximation is based on using the heat
conductivity equation

∂2J(τ, u, λ)

∂τ2
=
∂J(τ, u, λ)

∂u
+ (1− λ) J(τ, u, λ) (9)

instead of the non-stationary radiation transfer equation. The solution of the
equation (9) leads to the following expressions for the functions J(τ, u, λ) and
H(τ, u, λ):

JD (τ, u, λ) = e−(1−λ)uJD (τ, u, 1) , (10)

HD (τ, u, λ) = e−(1−λ)uHD (τ, u, 1) , (11)

where JD (τ, u, 1) and HD (τ, u, 1) are given by the expressions (7) and (8).

The diffusion approximation was proposed by Compton [5] in 1923. However,
in 1926 Milne [6] showed that the usage of this approximation for the calculation
of non-stationary fields of radiation can lead to physically unreasonable results.

Kolesov and Sobolev [7] studied the accuracy of the diffusion approximation
in the cases A and B.

Exact expressions for J(τ, u, λ) and H(τ, u, λ) in the case A have the form

JA (τ, u, λ) =
L

2π

∫ ∞
0

e
−
(
1− λ

1+x2

)
u cosxτ

1 + x2
dx, (12)

HA (τ, u, λ) =
L

π

∫ ∞
0

e
−
(
1− λ

1+x2

)
u x sinxτ

1 + x2
dx. (13)
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When λu� 1, we have the following asymptotic expressions:

JasA (τ, u, λ) ≈ L

4
√
πλu

e−(1−λ)u−
τ2

4λu , (14)

Has
A (τ, u, λ) ≈ L

4
√
πλu

τ

λu
e−(1−λ)u−

τ2

4λu . (15)

In the absence of true absorption, when λ = 1, these expressions coincide with
the expressions (7) and (8) of the diffusion approximation.

In the case B for τ ≥ 0 and u > τ , the exact expressions for these quantities
are given by the expressions

JB (τ, u, λ) =
λL

8

[
I0

(
λ

2

√
u2 − τ2

)
+

u√
u2 − τ2

I1

(
λ

2

√
u2 − τ2

)]
e−(1−λ2 )u,

(16)

HB (τ, u, λ) =
λL

4

τ√
u2 − τ2

I1

(
λ

2

√
u2 − τ2

)
e−(1−λ2 )u, (17)

where I0 (z) and I1 (z) are the modified Bessel functions. The asymptotic expres-

sions for u� τ have the form

JasB (τ, u, λ) ≈ L

4

√
λ

πu
e−(1−λ)u−

λτ2

4u , (18)

Has
B (τ, u, λ) ≈ Lτ

4u

√
λ

πu
e−(1−λ)u−

λτ2

4u . (19)

When λ = 1, these expressions also coincide with the expressions (7) and (8)
of the diffusion approximation.

First of all, let us consider the case A. When λ = 1, the exact and appro-
ximate values of J(τ, u, λ) and H(τ, u, λ) are pretty close to each other, and
the asymptotic expressions for these quantities coincide with the expressions for
JD(τ, u, 1) and HD(τ, u, 1) in the diffusion approximation. The ratios JasA /JD and
Has
A /HD are shown in Table 1.

A different situation occurs when λ < 1. A comparison of the exact values
JA(τ, u, λ) and HA(τ, u, λ) with the approximate values of these quantities shows
that they can significantly differ from each other. The asymptotic expressions
differs from the corresponding expressions in the diffusion approximation. Their
ratio is equal to

JasA (τ, u, λ)

JD(τ, u, λ)
=
Has
A (τ, u, λ)

HD(τ, u, λ)
≈ 1√

λ
e−

τ2

4u ( 1
λ
−1). (20)

Since λ is included in the exponent, these ratios may differ significantly from the

unity.
Let us consider now the case B. We note that due to the finite speed of light

J(τ, u, λ) = 0 and H(τ, u, λ) = 0 if u < τ but in the diffusion approximation
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Table 1: Ratios of Jas
A /JD and Has

A /HD for λ = 1

τ = 1 τ = 10

u JasA /JD Has
A /HD JasA /JD Has

A /HD

I 0.801 0.98 5.30× 107 8.57× 106

2 0.916 1.57 7.78× 102 2.24× 102

3 0.977 1.76 2.92× 101 1.15× 101

4 0.995 1.77 6.92 3.33

5 1.018 1.69 3.27 1.82

6 1.022 1.59 2.12 1.32

7 1.024 1.50 1.63 1.104

8 1.023 1.43 1.38 0.997

9 1.022 1.36 1.23 0.942

10 1.021 1.32 1.14 0.914

15 1.015 1.19 0.993 0.906

20 1.012 1.13 0.971 0.939

30 1.008 1.083 0.977 0.983

40 1.006 1.060 0.985 1.001

50 1.005 1.047 0.990 1.009

60 1.004 1.039 0.993 1.012

80 1.003 1.029 0.996 1.014

100 1.002 1.023 0.998 1.014

JD(τ, u, λ) 6= 0 and HD(τ, u, λ) 6= 0 under this condition as the finite speed
of light is not taken into account in this approximation. A comparison of the
exact and asymptotic expressions gives approximately the same results, as in
the case of A, i.e. JasB (τ, u, 1) = JD(τ, u, 1) and Has

B (τ, u, 1) = HD(τ, u, 1), but
when λ < 1, JasB (τ, u, λ) and Has

B (τ, u, λ) are significantly different from JD(τ, u, λ)
and HD(τ, u, λ), as

JasB (τ, u, λ)

JD (τ, u, λ)
=
Has
B (τ, u, λ)

HD (τ, u, λ)
≈
√
λ e

τ2

4u
(1−λ), (21)

i.e., these ratios depend strongly on λ (see Tables 2 and 3).

From the above it follows that the replacement of the non-stationary radiation
transfer equation by the heat conductive equation should give satisfactory results
when λ ≈ 1 and can lead to significant errors when λ < 1.

This conclusion is also valid in the cases of non-stationary radiative transfer
in infinite three-dimensional media illuminated by planar or point sources. Let us
give the expressions of the mean intensity and radiation flux in these cases (if one
uses the Eddington approximation).

Let us consider an infinite medium illuminated by a momentary isotropic
planar source which can be represented in the form of multiple isotropic point
sources of luminosity L uniformly distributed on the plane τ = 0 with a surface
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Table 2: Values of JA(τ, u), JD(τ, u), JB(τ, u) for λ = 0.5

τ = 1 τ = 10

u JA(τ, u) JD(τ, u) JB(τ, u) JA(τ, u) JD(τ, u) JB(τ, u)

I 5.50× 10−2 6.66× 10−2 3.32× 10−2 2.84× 10−5 1.19× 10−12 0

2 3.24× 10−2 3.24× 10−2 1.82× 10−2 3.82× 10−5 1.37× 10−7 0

3 1.88× 10−2 1.67× 10−2 1.01× 10−2 4.11× 10−5 4.37× 10−6 0

4 1.09× 10−2 8.96× 10−3 5.63× 10−3 3.91× 10−5 1.84× 10−5 0

5 6.30× 10−3 4.92× 10−3 3.18× 10−3 3.43× 10−5 3.49× 10−5 0

6 3.64× 10−3 2.75× 10−3 1.82× 10−3 2.84× 10−5 4.44× 10−5 0

7 2.11× 10−3 1.55× 10−3 1.04× 10−3 2.25× 10−5 4.53× 10−5 0

8 1.22× 10−3 8.85× 10−4 5.94× 10−4 1.73× 10−5 4.01× 10−5 0

9 7.08× 10−4 5.08× 10−4 3.43× 10−4 1.29× 10−5 3.25× 10−5 0

10 4.11× 10−4 2.93× 10−4 1.99× 10−4 9.37× 10−6 2.47× 10−5 7.78× 10−5

15 2.82× 10−5 1.98× 10−5 1.36× 10−5 1.51× 10−6 3.80× 10−6 6.95× 10−6

20 2.02× 10−6 1.41× 10−6 9.81× 10−7 1.90× 10−7 4.10× 10−7 5.79× 10−7

30 1.11× 10−8 7.81× 10−9 5.46× 10−9 2.09× 10−9 3.42× 10−9 3.78× 10−9

40 6.50× 10−11 4.57× 10−11 3.20× 10−11 1.81× 10−11 2.46× 10−11 2.41× 10−11

50 3.92× 10−13 2.76× 10−13 1.93× 10−13 1.40× 10−13 1.68× 10−13 1.54× 10−13

60 2.41× 10−15 1.70× 10−15 1.19× 10−15 1.02× 10−15 1.12× 10−15 9.82× 10−16

80 9.47× 10−20 6.68× 10−20 4.70× 10−20 4.99× 10−20 4.90× 10−20 4.06× 10−20

100 3.85× 10−24 2.71× 10−24 1.91× 10−24 2.32× 10−24 2.12× 10−24 1.70× 10−24

density of l and flashing at the initial moment of time (u = 0). Then, using the
diffusion approximation, we have

JD(τ, u) =
lL

8π
√
π

√
3− x1√
u

exp

(
−(3− x1) τ2

4u

)
, (22)

HD(τ, u) =
lL

4
√
π

√
3− x1
u
√
u
|τ | exp

(
−(3− x1) τ2

4u

)
, (23)

when τ � 1, 1− λ� 1, u >
√

3− x1β2τ .

In the case of an infinite medium illuminated by a momentary point source
of luminosity L we have

JD(τ, u) =
Lα2

32π2
√
π

(3− x1)
3
2

u
√
u

exp

(
−(3− x1) τ2

4u

)
, (24)

HD(τ, u) =
Lα2

16π
√
π

(3− x1)
3
2

u2
√
u

τ exp

(
−(3− x1) τ2

4u

)
, (25)

when τ � 1, 1− λ� 1, u >
√

3− x1β2τ .
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Table 3: Values of HA(τ, u), HD(τ, u), HB(τ, u) for λ = 0.5

τ = 1 τ = 10

u HA(τ, u) HD(τ, u) HB(τ, u) HA(τ, u) HD(τ, u) HB(τ, u)

I 8.69× 10−2 6.66× 10−2 7.38× 10−3 4.96× 10−5 1.19× 10−11 0

2 4.12× 10−2 1.62× 10−2 3.57× 10−3 6.18× 10−5 6.84× 10−7 0

3 1.96× 10−2 5.57× 10−3 1.75× 10−3 6.26× 10−5 1.46× 10−5 0

4 9.38× 10−3 2.24× 10−3 8.73× 10−4 5.64× 10−5 4.61× 10−5 0

5 4.52× 10−3 9.85× 10−4 4.41× 10−4 4.71× 10−5 6.98× 10−5 0

6 2.20× 10−3 4.58× 10−4 2.26× 10−4 3.73× 10−5 7.41× 10−5 0

7 1.08× 10−3 2.22× 10−4 1.17× 10−4 2.83× 10−5 6.47× 10−5 0

8 5.37× 10−4 1.11× 10−4 6.12× 10−5 2.08× 10−5 5.02× 10−5 0

9 2.69× 10−4 5.64× 10−5 3.24× 10−5 1.49× 10−5 3.61× 10−5 0

10 1.37× 10−4 2.93× 10−5 1.73× 10−5 1.04× 10−5 2.47× 10−5 8.64× 10−5

15 5.37× 10−6 1.32× 10−6 8.39× 10−7 1.41× 10−6 2.54× 10−6 4.78× 10−6

20 2.60× 10−7 7.07× 10−8 4.63× 10−8 1.52× 10−7 2.05× 10−7 2.91× 10−7

30 8.66× 10−10 2.60× 10−10 1.75× 10−10 1.27× 10−9 1.14× 10−9 1.25× 10−9

40 3.63× 10−12 1.14× 10−12 7.79× 10−13 8.74× 10−12 6.15× 10−12 5.60× 10−12

50 1.71× 10−14 5.51× 10−15 3.79× 10−15 5.57× 10−14 3.36× 10−14 3.04× 10−14

60 8.62× 10−17 2.83× 10−17 1.95× 10−17 3.43× 10−16 1.87× 10−16 1.62× 10−19

80 2.50× 10−21 8.35× 10−22 5.80× 10−22 1.27× 10−20 6.13× 10−21 5.04× 10−21

100 8.02× 10−26 2.71× 10−26 1.89× 10−26 4.71× 10−25 2.12× 10−25 1.63× 10−25
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