
Behavior of Perturbations in an Accretion

Flow on to a Black Hole

A.V. Semyannikov1

E-mail: avsemyannikov@gmail.com

We investigate the behavior of small acoustic perturbations in the
spherical adiabatic relativistic accretion flow on to a non-rotating black
hole. The Das model of the accretion [1, 2] is a general relativistic genera-
lization of the classical spherical Bondi accretion. We consider a general
relativistic linear wave equation for small acoustic perturbations and fulfill
the mode analysis of solutions. We find numerically that perturbations remain
finite in amplitude on the event horizon due to the effects of the general
relativity in contrast to predictions of the non-relativistic model based on
the Bondi accretion approximation [3]. This circumstance downranges the
possibilities for detection of black holes.

1 Motivation

It is known that converging flows are often subject to hydrodynamic instabilities.
For example, small acoustic perturbations have to increase without limit in
the spherical adiabatic accretion flow on to a non-rotating black hole [3]. The
predictions of the referenced article are based on the non-relativistic Bondi model
of the adiabatic spherical accretion on to a point gravitating mass. However,
the more realistic model of accretion taking into account the relativistic nature
of flow near the event horizon should take proper account of the finiteness of the
accretor’s radius (the Schwarzschild radius rg) and the velocity limit (the light
speed c). The aim of the present work is to find the influence of relativistic effects
on the efficiency of amplification of small acoustic perturbations in the spherical
accretion flow.

2 Model

We examine the spatial stability of spherical adiabatic flow of a non-self-
gravitating non-viscous homogeneous matter on to a black hole from infinity. The
model of accretion is described by the general relativistic hydrodynamic equations:
equation of fluid motion

uν∇;νu
µ = − 1

n

(
gµν +

uµuν

c2

)
∇;νp, (1)
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Figure 1: The Mach number M as the function of the dimensionless radial coordinate x
(red lines). The subsonic (lower curve) and the supersonic (upper curve) separatrices
of a relativistic solution (solid line) and a classic solution (dashed line).

and continuity equation
∇;µ(nuµ) = 0. (2)

Here c is a speed of light, gµν a contravector of metric tensor, uµ a geometrical
contravector 4-velocity

uµ =
dxµ

dτ
, (3)

n is a specific relativistic density, and the pressure

p = Knγ . (4)

A specific enthalpy is

h = mc2 +
γ

γ − 1
Knγ−1. (5)

The equation of state (4) allows us to formulate an equation for the speed of
sound cs

c2s = c2
Kγnγ−1

mc2 +K γ
γ−1n

γ−1 . (6)

Here K is the gaseous constant, m the rest mass of matter, γ the adiabatic
constant. In the case of the steady state spherically symmetric flow the system
(1)–(2), (6) is reduced to the algebraic system of two integrals of motion, the mass
flux conservation [1, 2]

yzx2

√
1− 1

x

1− y2
= λ, (7)

and the Bernoulli integral

(1 + zγ−1)

√
1− 1

x

1− y2
= β, (8)
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Figure 2: The ratio of the acoustic perturbations of radial velocity |δy| for different
azimuthal numbers l of spherical harmonics in the non-relativistic (a) and relativistic (b)
cases. Dashed line with points is for l = 0, solid line for l = 1, and dashed line for l = 10.
The frequency for all calculations ω = 0.01, the adiabatic constant γ = 1.66, the energy
∆β = 0.001.

and the equation for the non-dimensionalized sound speed a

a2 =
(γ − 1)zγ−1

1 + zγ−1
. (9)

Here λ and β are the mass flux and the Bernoulli constant, respectively. The
non-dimensionalized flow variables are defined as follows:

x =
r

rg
, y =

Vr
c
, z =

(
Kγ

mc2(γ − 1)

)− 1
γ−1

n, a =
cs
c
. (10)

3 Solution

The perturbations are sought in the form

n = δn+ n, uµ = δuµ + uµ. (11)

Potential of a 4-velocity is
uµh = ∇;µφ. (12)

We find a solution in the form

δφ = δφ̃(x)Ylm(θ, ϕ)e−iωt. (13)

Cauchy-Lagrange integral is

δn = − uσ,0

Kγc2nγ−20

∇;σδφ. (14)
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Wave equation
∇;µ(dµν∇,νδφ) = 0, (15)

where dµν is a strange tensor

dµν =
1

Kγnγ−20

(
c2s
c2
gµν −

(
1− c2s

c2

)
uµ0uν,0
c2

)
. (16)

A general relativistic wave equation

δφ̃′′drr + δφ̃′
(

1√
−g

∂

∂x

(√
−gdrr

)
− 2iωdrt

)
+

− δφ̃
(
−ω

2

c2
dtt − iω

c

1√
−g

∂

∂x

(√
−gdtr

)
− dθθl(l + 1)

)
= 0. (17)

A classical limit of reduced wave equation

δφ̃′′
(
a2 − y2

)
+ δφ̃′

(
2iωy −

(
y2 + a2

) y′
y

+ 2y2
a′

a

)
+

+ δφ̃

(
ω2 − 2iωy

a′

a
− a2 l(l + 1)

x2

)
= 0. (18)

4 Results

We find that the acoustic perturbations are amplified significantly (many order
of magnitudes) inside the sonic sphere in a spherical accretion flow, though remain
finite compared to the case of the non-relativistic Bondi model.
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