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We suggest here a method for construction of a bilinear expansion for
an angle-averaged redistribution function. An eigenvalues and eigenvectors
determination problem is formulated and the required matrices are found
analytically, and numerical procedures for their computations are elaborated.
A simple method for the accuracy evaluation of the numerical calculations is
suggested. It is shown that a group of redistribution functions describing the
light scattering process within the spectral line frequencies can be constructed
if the eigenvalue problem is solved for the considered function. It becomes
possible if various combinations of eigenvalues and eigenvectors with the basic
functions are used.

1 The redistribution function rII(x
′, x)

Let us first redefine the redistribution function r(x′, x) which has a rather
simple physical meaning: the quantity r(x′, x)dx represents the probability that
a photon with the dimensionless frequency x′ will be absorbed by an atom and re-
emitted then in the frequency interval (x;x+ dx). The introduced dimensionless
frequencies show the distance of photon’s frequency ν(ν ′) from the line center
frequency ν0 in Doppler half widths

(
x = ν−ν0

∆νD

)
. This redistribution function

differs from one defined by Hummer [1] by the constant factor
(
π

1
4U(0, σ)

)−1
,

where the function

U(x, σ) =
σ

π

∫ ∞
−∞

exp(−t2)

(x− t)2 + σ2
dt (1)

is the well known Voigt function and σ = ∆νT
∆νD

, where ∆νT is the total half-width
of the line caused by all the broadening mechanisms taken into account.

The redistribution function describing the photon scattering within the line
frequencies of the model two-level atom the upper level of which is broadened due
to radiation damping has been independently derived by Henyey [2], Unno [3] and
Sobolev [4] assuming that in the atom’s reference frame the scattering is coherent.
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Then, using also Hummer’s [1] designation, one can represent it in the following
form:

rII(x
′, x) =

1

πU(0, σ)

∫ ∞
|x−x|

2

exp(−t2)

[
arctan

x+ t

σ
− arctan

x− t
σ

]
dt. (2)

In the expression (2) we used the following denotations: x = sup(x′, x) and
x = inf(x′, x).

It is noteworthy that there has been known bilinear expansion for two out
of four redistribution functions described in Hummer’s paper [1], namely, rI(x

′, x)
and rIII(x

′, x) before their classification by him. This fact was rather important
for solving the light scattering problems applying the Principle of Invariance (PI).
However, up to nowadays no any “natural” bilinear expansion has been revealed
for the function rII(x

′, x). Therefore, one might try to create such a bilinear
expansion using some artificial procedures.

In order to construct numerically such an expansion, let us first introduce here
another representation of rII(x

′, x) derived by Nikoghossian [5] (see also Heinzel’s
paper [6])

rII(x
′, x) =

σ

πU(0, σ)

∫ ∞
−∞

rI(x
′ + t, x+ t)

t2 + σ2
dt. (3)

From Eq. (3) one finds easily that the function rII(x
′, x) transforms into the

rI(x
′, x) when σ = 0.

On the other hand, the function rI(x
′, x) allows the following bilinear

expansion first derived by Unno [7]:

rI(x
′, x) =

∫ ∞
|x|

exp(−t2)dt =

∞∑
k=0

α2k(x
′)α2k(x)

2k + 1
, (4)

where

αk(x) = (2kπ
1
2k!)−

1
2 Hk(x) exp(−x2) (5)

and Hk(x) are the Hermit polynomials.

The obvious connection between functions rII(x
′, x) and rI(x

′, x) expressed by
relation (3) allows suggesting the functions (5) as basic ones for constructing the
eigenfunctions of rII(x

′, x). Taking into account this connection, one can search
for the bilinear expansion of rII(x

′, x) in the following form:

rII(x
′, x) =

∞∑
k=0

ω2k(x
′, σ)ω2k(x, σ)

ζk(σ)
, (6)

where

ω2k(x, σ) =
∞∑
m=0

γkm(σ)α2k(x). (7)
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The vector ζk(σ) and matrix [γkm(σ)] are, respectively, the eigenvalues and
eigenfunctions of the following problem (see, for example, [8, 9]):

∞∑
m=0

[γkm(amn − ζk(σ)bmn)] = 0, (8)

where

amn =

∫ ∞
−∞

α2m(x)α2n(x)dx, (9)

and

bmn =

∫ ∞
−∞

α2m(x)dx

∫ ∞
−∞

rII(x
′, x)α2n(x′)dx′. (10)

It is evident that calculating the matrices [amn] and [bmn] and solving the
eigenvalue problem (8) one can numerically construct the bilinear expansion (6).

2 Calculation of the relevant matrices

Using the integral forms for the Hermit polynomials, one can easily find the
following presentation for the introduced above basic functions [10]:

αk(x) = (2kπ
1
2k!)−

1
2

2√
π

Re(−2i)k
∫ ∞

0
tk exp(−t2 + 2ixt)dt. (11)

Then, using the following expression for the δ function:

1

2π

∫ ∞
−∞

exp(ixt)dt = δ(t), (12)

one finds directly

amn = (−1)m+n (2m+ 2n− 1)!!

2m+n+ 1
2

√
(2m)!(2n)!

. (13)

For calculations of the matrix [bmn], one can suggest two different ways. One is
the direct calculation of the threefold iterated integral (10) which is fraught with
huge numerical difficulties arising due to the complicated behavior of the basic
functions. Therefore, some simplifying analytical calculations before starting the
numerical procedures would sufficiently facilitate the numerical procedures. One
can find from Eq. (10) substituting Eq. (4) for the redistribution function rI(x

′, x)
in the relation (3)

bmn =
σ

πU(0, σ)

∞∑
k=0

1

2k + 1

∫ ∞
−∞

gkm(t) gkn(t)

t2 + σ2
dt, (14)

where

gkm(t) =

∫ ∞
−∞

α2k(x+ t)α2m(x)dx = Nkm αkm

(
t√
2

)
, (15)
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and

Nkm =
π

1
4

2k+m+ 1
2

√
(2k + 2m)!

(2k)!(2m)!
. (16)

Thus, one finds finally

bmn =
1

U(0, σ)

∞∑
k=0

NkmNkn

2k + 1
ck+m,k+n, (17)

where

cmn =
σ

π

∫ ∞
−∞

α2m

(
t√
2

)
α2n

(
t√
2

)
t2 + σ2

dt. (18)

As a matter of fact, the threefold iterated integral is given now by an infinite
series where only a single integration appears. However, the integrand is again
a vastly oscillating function making the direct numerical computation extremely
inefficient especially for greater values of indexes. Also it is not difficult to realize
that for the smaller damping parameters the computing error gets larger. But at
the same time in the limiting case when σ = 0, the integral (18) can be taken
analytically to find

cmn|σ=0 = α2m(0)α2n(0). (19)

In order to calculate the integral (18) for the values σ > 0, let us use the
formulae (5) and the Hermit polynomials definition (see, for example, [10])

H2k(x) = (2k)!

k∑
l=0

(−1)l

(l)!(2k − 2l)!
(2x)2k−2l, (20)

to obtain

α2n

(
t√
2

)
= exp

(
− t

2

2

) √
(2n)!

π
1
4

n∑
k=0

(−1)kt2n−2k

2kk!(2n− 2k)!
. (21)

Then, taking into account that

t2k =
(2m)!

22m

m∑
j=0

H2j(t)

(2j)! (m− j)!
, (22)

one can finally find

cmn =

√
(2m)!(2n)!

π
1
4 22m+2n

m∑
k=0

(−2)k

k! (2m− 2k)!

n∑
l=0

(−2)l

l! (2n− 2l)!

× (2m+ 2n− 2k − 2l)!

m+n−k−l∑
q=0

2qα2q(0, σ)

(m+ n− k − l − q)!
√

(2q)!
, (23)
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where the following notation is introduced:

α2q(0, σ) =
(−1)q

π
1
4

√
(2q)!

∞∑
p=0

2pσ2p

(2p)!

[
(2q + 2p− 1)!!− σ√

π

2

2p+ 1
(2q + 2p)!!

]
. (24)

The expression (23) obtained for description of elements of the required matrix,
though explicit, is again rather complicated for direct numerical calculations.
Therefore, any numerical procedure based on the ordinary accuracy of the used
computer calculations cannot provide the required accuracy of the final results.
These difficulties can be overcome only using methods of calculations based on the
usage of a higher number of significant digits. For example, about one hundred
twenty or more significant digits are needed to provide 15 correct digits for all the
elements of the 100× 100 matrix.

Nevertheless, it is possible to obtain a much simpler expression if one of the
indexes of the matrix [cmn] is equal to zero (the first row or the first column).
Then one out of the three sums disappears immediately and one obtains after
some transformations

c0,n =
(−1)n

√
(2n)!

π
1
4 22n

n∑
q=0

(−2)q α2q(0, σ)

(n− q)!
√

(2q)!
= cn,0. (25)

On the other hand, taking into account the relation of recurrence for the
Hermit polynomials

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (26)

one can derive the following recurrence relation for the required elements of the
matrix [cmn]:

cmn =

√
2n+ 1

2m
dm−1,n+1 +

√
n

m
dm−1,n−1 −

√
2m− 1

2m
cm−1,n, (27)

where
dmn = cm+ 1

2
,n+ 1

2
. (28)

Further, in terms of the physical meaning of the redistribution function one
might conclude that its integral over one of the arguments should give the profile
of the absorption coefficient∫ ∞

−∞
rII(x

′, x)dx′ = α(x, σ) =
U(x, σ)

U(0, σ)
, (29)

and bearing in mind (5)–(7), one finds

∞∑
k=0

γk,0
ζk

ω2k(x, σ) =
U(x, σ)

U(0, σ)
. (30)
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Here the following normalization relation is used:∫ ∞
−∞

αm(x)αn(x)dx = δmn, (31)

where δmn is the Kronecker symbol. Integrating Eq. (34) over all frequencies, one
obtains finally ∫ ∞

−∞
dx

∫ ∞
−∞

rII(x
′, x)dx′ =

∞∑
k=0

γk0
2

ζk
=
√
π, (32)

which can be used for the normalization purposes.

Now let us briefly consider the physical situation when both energetic levels
are broadened. Heinzel [6] has shown that the redistribution function derived
by Hummer [1] for description of this process is not correct and obtained a new
expression allowing the following notation:

rV (x′, x) =
σi

2

π2

∫ ∞
−∞

dt

t2 + σi2

∫ ∞
−∞

rII(x
′ + t, x+ u)

u2 + σi2
du. (33)

Then, using Eq. (6), one will find a bilinear expansion for this function as well.
Putting Eq. (6) into Eq. (33), one obtains

rV (x′, x) =
∞∑
k=0

ω2k(x
′, σi, σj)ω2k(x, σi, σj)

ζk(σj)
, (34)

where the functions

ω2k(x, σi, σj) =
∞∑
m=0

γkm(σj)α2m(x, σi) (35)

depend on damping parameters of both energetic levels. The functions α2k(x, σ)
are defined by the relation

αk(x, σ) = (2kπ
1
2k!)−

1
2

2√
π

Re(−2i)k
∫ ∞

0
tk exp(−t2 − 2σt+ 2ixt)dt. (36)

Thus, constructing a bilinear expansion for the function rII(x
′, x) as described

above, one arrives at a conclusion that this method provides a tool for constructing
similar expansions for all the applicable redistribution functions. It can be done
immediately, if one obtains the eigenfunctions γkm(σ) and eigenvalues ζk(σ) and
also uses an appropriate numerical procedure for computing the functions αk(x, σ).
Then the corresponding redistribution functions could be constructed by the same
procedure using the various values of the parameters σi and σj . It is easy to see
that rV (x′, x) = rIII(x

′, x), if σj = 0, rV (x′, x) = rII(x
′, x) for σi = 0 and, at last,

rV (x′, x) = rI(x
′, x), if both damping parameters are equal to zero – σj = σi = 0.
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3 The auxiliary functions αk(x, σ)

Obviously, besides the eigenvalue problem (8) one should overcome the second
key computational difficulties for the eventual construction of the redistribution
functions. That is the problem of the numerical evaluation of the corresponding
auxiliary functions. The functions α2m(x, σ) defined by Eq. (36) have been
introduced and studied by Hummer [1], and a rather effective method for their
calculation was suggested by him in the same paper. In order to simplify the
initial expression (36), the exponent exp(−2σt) is replaced by its power series.
Then one should compute several terms of that series to provide the required
accuracy of auxiliary functions. Following the Hummer’s procedure in general,
Harutyunian [11] has separated from each other the even and odd functions
appearing in the derived series to obtain the following relation:

αk(x, σ) = (2kπ
1
2k!)−

1
2

∞∑
m=0

(iσ)m

(2m)!

[
Mk+2m(x) +

σ

2m+ 1
Nk+2m+1(x)

]
, (37)

where

Mk(x) =
2√
π

Re(−2i)k
∫ ∞

0
tk exp(−t2 + 2ixt)dt (38)

and

Nk(x) =
2√
π

Im(−2i)k
∫ ∞

0
tk exp(−t2 + 2ixt)dt (39)

are the Hermit functions of the first and second kinds [10].
From Eqs. (38) and (39) one can easily find the following recurrent formulas

well known from the mathematical textbooks (see, for example, [10]):

Mk+1(x) = 2xMk(x)− 2kMk−1(x) (40)

for the first kind functions and similarly

Nk+1(x) = 2xNk(x)− 2kNk−1(x) (41)

for the second kind functions. The first functions to be used for recurrent relations
are defined as follows:

M0(x) = exp(−x2), M1(x) = 2xM0(x), (42)

N0(x) =
2√
π
, N1(x) = 2xN0(x)− 2√

π
. (43)

Here

F (x) =

∫ ∞
0

exp(−t2) sin 2xt dt = exp(−x2)

∫ x

0
exp(t2)dt (44)
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is the Dawson function connected with the error function of an imaginary argu-
ment and represents the solution of the following Cauchy problem:

F ′(x) = 1− 2xF (x) (45)

with the initial condition F (0) = 0.

Numerical procedures for calculation of the Dawson function are considered
in Hummer’s paper [12]. Some earlier references could be found in the mentioned
above review by Hummer [1]. Among the relatively recent studies one might refer
to the papers [13–14]. The most efficient procedure for calculation of the Dawson
function can be carried out using the power series [10]

F (x) =

∞∑
n=0

(−1)n 2n

(2n+ 1)!!
x2n+1, (46)

which converges for all values of the argument. However, one should take care for
the accuracy issues when applying the relation (46) for numerical computations.
Obviously, for the smaller values of the argument (x ≤ 1) the series (46) converges
rather rapidly and no big difficulties can arise. However, for the larger values of the
argument, the need in much higher digit numbers for calculations grows up very
rapidly. For instance, for x = 12 one can easily provide around 35 correct digits
of the Dawson function if uses 120 significant digits for calculations. Nonetheless,
the usage of the same number of significant digits provides only 12 correct
digits in the final result if the argument reaches to the value x = 15. Many
correct significant digits are very important not only for computing the Dawson
function itself. The point is that the recurrent formula themselves are a perilous
source of the error accumulation and therefore one needs to calculate the Dawson
function with a bigger number of correct significant digits. Actually, the problem
is absolutely the same that we encountered considering the matrix [cmn] in the
previous paragraph.

Of course, on the other hand, one can find an asymptotic series for the larger
arguments of the Dawson function which can be rather useful for the practical
applications [10]

F (x) ≈
∞∑
n=0

(2n)!

22n+1 n!x2n+1
. (47)

This asymptotic relation, as opposed to the series (46), is a diverging one.
Nevertheless, a few first terms of this series will provide an applicable accuracy for
various asymptotic estimates. Indeed, starting with the relations (42)–(43) and
using the relation (47), one obtains for x→∞ the following asymptotic form:

Nk(x) ≈ (−1)k√
πxk+1

∞∑
n=0

(2n+ k)!

22n n!x2n
, (48)
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which can be used in the series (37). It is easy to see that due to the exponentially
decreasing behavior of the first kind Hermit functions for larger values of the
argument they are falling much faster than the second kind functions. Therefore,
one finds the asymptotic relation

αk(x, σ) =
σ

xk+2
√
π

(2kπ
1
2k!)−

1
2

∞∑
n=0

(2n+ k + 1)!

x2n

n∑
m=0

(−1)mσ2m

22(n−m)(2m+ 1)!(n−m)!
,

(49)

which turns into the known asymptotic expression for the Voigt function [15]

U(x, σ) =
σ

x2
√
π

∞∑
n=0

(2n+ 1)!

x2n

n∑
m=0

(−1)mσ2m

22(n−m)(2m+ 1)!(n−m)!
. (50)

These asymptotic forms coupled with the exact formulas derived above
provide one with all the necessary tools for building the bilinear expansions
of redistribution functions and their usage for the practical purposes.

Preliminary calculations show that these numerical procedures easily can be
performed on modern PC. Elaborated specially for these purposes software
package HAHMATH allows one to perform computations with the needed number
of significant digits when high accuracy calculations are required. However,
extraordinary accuracies are needed only when the matrix [cmn] or Dawson
function and its derivatives are calculated. Once calculated the matrix [cmn] can be
used for building the matrix [bmn] and to continue all other computations with
the ordinary accuracy of computers. There is no need for using the extremely long
numbers when solving the corresponding eigenvalue problem. Calculated once the
eigenvalues and eigenfunctions for the given damping factor might be used for
further calculations.
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