
A Viscous-Convective Instability in Laminar

Keplerian Thin Discs

K.L.Malanchev1,2, K.A. Postnov1,2, N.I. Shakura1

E-mail: malanchev@physics.msu.ru

Using the anelastic approximation of linearized hydrodynamic equations,
we investigate the development of axially symmetric small perturbations in
thin Keplerian discs. Dispersion relation is found as a solution of general
Sturm–Liouville eigenvalue problem for different values of relevant physical
parameters (viscosity, heat conductivity, disc semi-thickness). The analysis
reveals the appearance of overstable mode for Prandtl parameter higher than
some critical value. These modes have a viscous-convective nature and can
serve as a seed for turbulence in astrophysical discs even in the absence of
magnetic fields.

1 Introduction

The problem of linear stability of sheared astrophysical flows has been
actively studied. The recent papers [1] and [2] used the Boussinesq and
anelastic approximations, respectively, with taking into account microscopic
viscosity and thermal conductivity of the gas. These analyses have revealed
the presence of overstable viscous modes whose physical origin is likely to
be connected to development of convective motions in vertically stratified
accretion flows. However, in those papers averaging over vertical disc structure
was performed, which restricted applications of the obtained results. In the
present paper, we take into account more realistic polytropic structure of a
Keplerian accretion disc and solve linearized general Sturm–Liuville eigenvalue
problem. Our analysis confirms the appearance of the overstable modes in the
wide range of microscopic parameters of the gas described by the Prandtl
number.

2 Basic equations

The system of hydrodynamic equations for axially symmetric accretion flow can
be written as follows:
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1. Continuity equation
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The anelastic approximation for gas velocity is u is ∇ · ρ0u = 0.

2. The radial, azimuthal and vertical components of the Navier–Stokes
momentum equation are, respectively,
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where Nr, Nφ and Nz are viscous forces. For their specific form see for

instance [3].

In this work we will drop the second derivatives of velocities u with respect
to the vertical coordinate z in the Navier–Stokes equations following [2].
This assumption makes the problem simpler and the more general problem
will be solved in [4].

3. Energy equation

ρRT
µ

[
∂s

∂t
+ (u∇) · s

]
= Qvisc −∇ · F , (5)

where s is specific entropy per particle, Qvisc is the viscous dissipation
rate per unit volume, R is the universal gas constant, µ is the molecular
weight, T is the temperature and terms on the right stand for the viscous
energy production and the heat conductivity energy flux F , respectively.
The energy flux due to the heat conductivity is

∇ · F = ∇(−κ∇T ) = −κ∆T −∇κ · ∇T . (6)

In the Boussinesq approximation, in the energy equation the Eulerian
perturbations should be zero: p1 = 0. Following [1], we will also drop the
term ∇κ · ∇T but keep κ∆T .
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3 Linearized equations in the anelastic approximation

The perturbed hydrodynamic variables can be written in the form x =
x0 + x1, where x0 stands for the unperturbed background quantities and
x1 = (ρ1, p1, ur 1, uz 1, uφ 1) are small perturbations. We take all these small
perturbations in the form x1 = f(z) exp (iωt− ikrr). We will consider thin
discs with semi-thickness z0/r � 1 and relatively large radial wavenumbers of
perturbations krr � 1. Small thickness of the disc and large wavenumbers allow
us to set the radial derivatives to zero, ∂x0/∂r = 0. Under these assumptions,
linearizing of the system of equations (1—5) yields the following system of
equations [1, 2]:

1. Continuity equation
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2. Momentum equations
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3. Energy equation
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where Pr is the Prandtl number, R is the universal gas constant, κ is the
epicyclic frequency, ν ∼ Tαvisc

0 /ρ0 is the kinematic viscosity coefficient. The
kinematic viscosity in the disc equatorial plane is ν|z=0 = (vs/vφ) (l/r)Ωr2,
where vs is the sound velocity and l is the mean free path of particles. We
assume the gas to be fully ionized so that αvisc = 5/2.

It is necessary to set the background solution of hydrodynamic equations to
find solution for perturbations. As the background state, we will use adiabatic
polytropic discs [5]
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This system of algebraic and differential equations can be transformed to one
second-order differential equation for pressure perturbations p1
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p1 = 0 , (12)

where z0 =
√

3 (vs/vφ) r is the disc semi-thickness [5], and the dimensionless
coefficients α and β reads
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2

, (14)

The pressure perturbation p1 must vanish at the disc boundary (z = z0),
and the function p1(z) should be even or odd because of the plane symmetry of
the problem. Bellow we will consider the case of even p1(z) with the boundary
conditions

∂p1
∂z

∣∣∣∣
z=0

= 0 , (15)

p1|z=z0 = 0 . (16)

We are searching for the least oscillating solutions, which means that p1(z) should
not have zeros between z = 0 and z = z0. This condition comes from our previous
assumption about the smallness of the secondary derivatives of velocities in the
Navier–Stokes equations (2–4).

Using a new variable x ≡ z/z0, equation (12) transforms to
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Let us introduce a new function Y (x)
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After introducing the new variable ζ ≡
√
α(ω)x, the eigenvalue problem (12),

(15), (16) takes the form
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Our boundary condition (21) and the plane symmetry of the problem enable
us to use an even solution of equation (20) [6]
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where M is the confluent hypergeometric function, η(ω) ≡ −1− β(ω)/α(ω).

An eigenfunction of the problem (with the boundary condition (22)) must
satisfy the following relation:

Yη(ω)(
√
α(ω)) = 0. (24)

The last relation can be regarded as an equation for the unknown variable ω,
then the solutions to this equations are eigenvalues of our problem, and the
corresponding Yη(ζ) will be its eigenfunctions.

4 Dispersion relation

Solution of the eigenvalue problem depends of the sign of the linearized term κ∆T ,
which appears in the energy equation (11) in the form

αvisc
ν

Pr

1

T0

∂2T0
∂z2

+ αviscν

(
r
dΩ

dr

)2 µ

RT0
. (25)

If the Prandtl number Pr ≤ 8/45 and this relation is negative, there is only
one mode of the dispersion equation which corresponds to a decaying mode (see
Fig. 1). Otherwise, if Pr > 8/45, an additional overstable mode appears (see
Fig. 2).

Fig. 3 shows the dependence of Im(ω) of the overstable mode on the viscosity
parameters l/r and vs/vφ. Fig. 4 shows p1(x) corresponding to the eigenfunction
of the overstable mode for Pr = 0.2, krr = 40, l/r = 0.01 and vs/vφ = 0.01.
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5 Conclusions

Using the anelastic approximation of linearized hydrodynamic equations, we
studied the development of axially symmetric small perturbations in thin
Keplerian discs. Dispersion relation is derived as a solution of general Sturm–
Liouville eigenvalue problem for pressure perturbations. An overstable mode is
discovered for different values of the disc thickness and microscopic viscosity
and thermal conductivity of the gas. The overstability appears when the Prandtl
parameter exceeds a critical value 8/45. The unstable mode has viscous-convective
nature and can serve as a seed for turbulence in astrophysical discs even in the
absence of magnetic fields.
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Figure 1: The dispersion equation for the critical Prandtl number Pr = 8/45, the mean-
free path length of particles l/r = 0.01 and disc semi-thickness parameter vs/vφ = 0.01.
The left panel shows the real part of two decaying modes in terms of dimensionless
frequency ω/Ω and the dimensionless wavenumber krr. The right panel shows the
imaginary part of the dispersion relation which is the same for both decaying modes.
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Figure 2: Dispersion relation for Pr = 0.2, l/r = 0.01 and vs/vφ = 0.01. Left panel shows
the real part of two decaying (the solid line) and to the overstable modes (the dashed
line) in terms of the dimensionless frequency ω/Ω and the dimensionless wavenumber
krr. Right panels shows the imaginary part of these modes.
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Figure 3: The imaginary part of the dispersion relations for Pr = 0.2 and different values
of l/r and vs/vφ. In the left panel, the value of vs/vφ = 0.01 is constant for all curves.
The viscosity changes in proportion to l/r and Im(ω) changes in the same way. On the
right panel both vs/vφ and l/r changes in the same way so that the term (25) keeps
constant. Here the range of wavenumbers krr of the overstable mode decreases inversely
proportional to the disc thickness.
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Figure 4: The overstable solution of the problem (12, 15, 16) for variable x = z/z0 with
the following parameters: krr = 40, Pr = 0.2, l/r = 0.01 and vs/vφ = 0.01. Figure shows
the normalized eigenfunction p1(x). The solid line shows the real part of p1(x), the dashed
line shows the imaginary part of the pressure perturbation p1(x).


