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The F - and K-integrals are used to transform the zeroth azimuthal
Fourier component of the radiative transfer equation for conservative
multiple scattering of polarized light in vertically inhomogeneous plane
atmospheres into an equivalent transfer equation with a modified phase
matrix corresponding to non-conservative pseudo-scattering. As an example,
the transformation to non-conservative multiple pseudo-scattering is applied
to express the surface Green’s function matrix for conservative scattering
in terms of the surface Green’s function matrix for non-conservative pseudo-
scattering.

1 Introduction

The exclusive property of the transfer equation for conservative multiple
scattering, which permits to determine the first and second angular moments of
the intensity of the radiation field, the so called F - and K-integrals, a priori,
up to two constant parameters, has been pointed out by Chandrasekhar [1]
as well as by Sobolev [2] and partly employed by them on treating radiative
transfer problems in vertically homogeneous conservative plane media. Here, it is
shown, that even for vertically inhomogeneous conservative media, the F - and
K-integrals allow us to transform the conservative radiative transfer equation
into an equivalent transfer equation of the same form corresponding to non-
conservative pseudo-scattering.

2 The transfer equation

Let us consider the transfer of polarized radiation in a vertically inhomogeneous
and source-free plane atmosphere with local conservative scattering properties
assumed to be macroscopically isotropic and mirror symmetric. It is well known
(c.f. [3]) that, after azimuthal Fourier decomposition, the only conservative
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transfer equation emerges for the two-component vector of the azimuthally
averaged Stokes parameters I and Q

u
∂

∂τ
I(τ, u) = −I(τ, u) +

1

2

∫ +1

−1
dvWIQ(τ ;u, v) I(τ, v), (1)

where Ĩ(τ, u) = (I(τ, u), Q(τ, u)). Here, the tilde denotes transposition of the
vector, τ is the optical depth in the atmosphere, and u is the cosine of the polar
angle with respect to the inner normal at the top τ = 0 of the atmosphere. The
matrix WIQ(τ ;u, v) is the azimuthally averaged I,Q-component of the complete
phase matrix. Local macroscopic mirror symmetry and reciprocity imply [3]

WIQ(τ ;u, v) = WIQ(τ ;−u,−v) = W̃IQ(τ ; v, u), (2)

respectively. For conservative scattering, there hold the integral relations

1

2

∫ +1

−1
dvWIQ(τ ;u, v) i0 = i0,

1

2

∫ +1

−1
dvWIQ(τ ;u, v)v i0 =

u

3
β1(τ) i0, (3)

where ĩ0 = (1, 0). By means of Eq. (1) in conjunction with Eqs. (2), and (3), we
find that the flux of radiative energy will be constant, i.e.,

F (τ) =
1

2

∫ +1

−1
duu ĩ0 I(τ, u) = F = const, (4)

and the K-integral is found to be

K(τ) =
1

2

∫ +1

−1
duu2 ĩ0I(τ, u) = K(0)−

(
1− β̄1(τ)

3

)
τF. (5)

Here, β̄1(τ) is defined as β̄1(τ) = 1
τ

∫ τ
0 dtβ̄1(t). Finally, two eigensolutions to the

transfer equation (1) can be found

i0(τ, u) = i0, i1(τ, u) =

[(
1− β̄1(τ)

3

)
τ − u

]
i0. (6)

3 The equivalent transfer equation

On defining a modified phase matrix

Wc(τ ;u, v) = WIQ(τ ;u, v)−
[
c1(τ)u2 i0 ĩ0 v

2 + c2(τ)u i0 ĩ0 v
]
, (7)

and replacing the phase matrix in Eq. (1) by means of Eq. (7), and using also
Eqs. (4) and (5), we rewrite the conservative transfer equation (1) in the form

u
∂

∂τ
I(τ, u) = −I(τ, u) +

1

2

∫ +1

−1
dvWc(τ ;u, v) I(τ, v)

+ c1(τ)u2 i0

[
K(0)−

(
1− β̄1(τ)

3

)
τF

]
+ c2(τ)u i0F.

(8)
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Obviously, the new transfer equation (8) describes non-conservative multiple
pseudo-scattering, with some primary (pseudo-) source terms on the r.h.s.
linearly dependent on two constants F and K(0), which can be determined
a posteriori. We note that a particular solution to the transfer equation (8) can
be found in terms of the eigensolutions (6) of the original conservative transfer
equation (1)

Ip(τ, u) = 3 [i0K(0)− i1(τ, u)F ] . (9)

4 Semi-infinite medium surface Green’s function
matrix

The semi-infinite medium surface Green’s function matrix G(τ, u; 0, µ0), with
−1 ≤ u ≤ +1, 0 ≤ µ0 ≤ 1, and 0 < τ < ∞, is defined as the finite solution
to the transfer equation

u
∂

∂τ
G(τ, u; 0, µ0) = −G(τ, u; 0, µ0) +

1

2

∫ +1

−1
dvW(τ ;u, v)G(τ, v; 0, µ0), (10)

subject to the half-range boundary condition

G(+0, µ; 0, µ0) =
1

µ
δ(µ− µ0)E, µ, µ0 ∈ [0, 1], (11)

at the top, where E = diag(1, 1). In terms of the surface Green’s function, the
matrix of diffuse reflection is given by

R(µ, µ0) =
1

2
G(+0,−µ; 0, µ0), µ, µ0 ∈ [0, 1], (12)

where µo denotes the direction of incidence. Reciprocity implies R(µ, µ0) =
R̃(µ0, µ) (c.f. [3]). There is no net flux of radiative energy for finite radiation fields
in a semi-infinite conservatively scattering atmosphere without internal primary
sources. Thus, the F -integral of the corresponding surface Green’s function matrix
GIQ(τ, u; 0, µ0) becomes zero,

F̃IQ(τ ; 0, µ0) = F̃IQ(τ ; 0, µ0) =
1

2

∫ +1

−1
duu ĩ0GIQ(τ, u; 0, µ0) = 0. (13)

Instead of seeking the surface Green’s function matrix GIQ(τ, u; 0, µ0) as
the solution to the conservative transfer equation (10) with W(τ ;u, v) =
WIQ(τ ;u, v), we apply the equivalent transfer equation (8) corresponding to non-
conservative pseudo-scattering, where I(τ, u) is replaced by the function matrix
GIQ(τ, u; 0, µ0), while F = 0, and K(0) is replaced by the transposed vector

K̃IQ(+0; 0, µ0) =
1

2

∫ +1

−1
duu2 ĩ0GIQ(+0, u; 0, µ0). (14)
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On taking into account the particular solution (9), we use the surface Green’s
function matrix Gc(τ, u; 0, µ0) for non-conservative pseudo-scattering to get, after
some algebra, the surface Green’s function matrix for conservative scattering as

GIQ(τ, u; 0, µ0) = Gc(τ, u; 0, µ0) +
3

D

[
i0 −

∫ 1

0
dηGc(τ, u; 0, η)η i0

]
K̃c(+0; 0, µ0)

(15)
with

K̃c(+0; 0, µ0) =
1

2

[
µ0 ĩ0 + 2

∫ 1

0
dµµ2 ĩ0Rc(µ, µ0)

]
, (16)

and D = 3
∫ 1
0 dη K̃c(+0; 0, η) η i0, while K̃c(+0; 0, µ0) = D K̃IQ(+0; 0, µ0). It is

easy to verify that GIQ(τ, u; 0, µ0) as given by Eq. (15) satisfies the correct transfer
equation (8) as well as the boundary condition (11). When specified with τ = +0
and u = −µ, Eq. (15) provides a simple formula for retrieving the reflection matrix
RIQ(µ, µ0) for conservative scattering by means of the reflection matrix Rc(µ, µ0)
for non-conservative pseudo-scattering

RIQ(µ, µ0) = Rc(µ, µ0) +
3 (1−D)

D2γ
Kc(+0; 0, µ) K̃c(+0; 0, µ0), (17)

where the constant γ = 3
∫ 1
0 dη η

2 ĩ0KIQ(+0; 0, η) = 3
D

∫ 1
0 dη η

2 ĩ0Kc(+0; 0, η) is
the so called extrapolation length well known in radiative transfer theory.

For practical methods to calculate reflection matrices for inhomogeneous
semi-infinite atmospheres, which are applicable also to compute Rc(µ, µ0) for
non-conservative pseudo-scattering, we refer to the textbook of Yanovitsky [4]
and references therein. Finally, we note that for homogeneous atmospheres the
transformation to equivalent pseudo-scattering with reduced effective albedo of
single scattering can be performed also for non-conservative scattering. This has
been described in an earlier paper [5].
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