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The Sobolev approximation is one of the most effective methods of
the modeling of emission spectra of astrophysical objects of various types.
It plays also an important role in the radiative hydrodynamics. In this short
review, after an introduction to the Sobolev method, I discuss the main steps
in its development and astrophysical applications.

1 Introduction to the Sobolev method

Emission spectra of many astrophysical objects are formed in the media with
large-scale differential motions which velocities are much greater than the thermal
velocity of atoms. In these conditions, the Doppler shift of the radiation frequency
leads to strong changes in optical properties of the gas in the line frequencies. This
circumstance strongly complicates the solution of the radiative transfer problem.
However, as shown by V.V. Sobolev [58], in the media with the large velocity
gradient, the solution of this problem can be significantly simplified.

The essence of this approximation is as follows: for large velocity gradients,
due to the shift between resonance frequencies of the emitting and absorbing
atoms, the radiative interaction at each point of the medium ~r is determined by its
local vicinity. The characteristic size of this vicinity is equal to the distance from
the given point to that, where the aforementioned shift in resonance frequencies is
equal to the half-width of the line profile function ∆νD determined by the thermal
(or turbulent) velocity vt,

s0 = vt/|dv~s/ds|. (1)

Here dv~s/ds is the velocity gradient in the comoving coordinate system at the
point ~r in the direction ~s = ~r ′ − ~r; s = |~s | � |~r |), and dv~s/ds ' [~v(~r ′)− ~v(~r)]/s
(see Fig. 1).

For rough estimates, the velocity gradient in this expression can be replaced
by the ratio v/R, where v is the characteristic velocity of large-scale motions
and R is the characteristic size occupied by the emitting gas. As a result, we
obtain the approximate relation: s0 ≈ R(vt/v). The parameter s0, which was
subsequently called the “Sobolev length”, is the main parameter of the Sobolev
method, characterizing the size of the local vicinity of the point.
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Figure 1

In general case, the equation for the source function has a form

S(~r) = λ

∫
V
K(~r, ~r ′)S(~r ′) d~r ′ + g(~r). (2)

Here K(~r, ~r ′) is the kernel function determining the density probability of
a transfer of the radiative excitation from the point ~r to the point ~r ′, λ is the
probability of a photon survival at a single scattering, V is the volume of the
space filled in with atoms, and g(~r) represents the primary sources of excitation
in the spectral line under consideration.

In the media with the large velocity gradient s0 � R, Eq. (2) can be essentially
simplified. In this case, one can approximately assume that the source function
does not change in the vicinity of the point ~r, and we can take it outside the
integral by setting S(~r ′) ≈ S(~r). A similar procedure can be done with the kernel
function K(~r, ~r ′) if to replace its parameters that determine optical properties
of the medium (atomic level populations, thermal or turbulent velocity) by
the corresponding values at the point ~r. Finally, one can neglect an influence
of the boundaries and assume that the medium fills in an infinite volume
of space. As a result, the integral equation with the very complicated kernel is
transformed to the simple equation

S(~r) [1− λ+ λβ(~r)] = g(~r), (3)

where β is the probability of a photon to escape the point of the medium ~r without
scattering and absorption along the way

β(~r) = 1−
∫
K(~r, ~r ′) d~r ′. (4)

It should be noted that in the stationary medium the corresponding kernel
function is always normalized to unit. This reflects the obvious fact that a photon
emitted in an infinite medium will be absorbed somewhere in it. A principal
difference of the radiative diffusion in a medium with a velocity gradient is
that this normalization condition is violated, and the integral of the kernel
function over infinite space is always less than unity. This means that because
of enlightenment of the medium in the line frequencies due to the Doppler effect,
there is a nonzero probability for a photon to escape from the point of the medium
lying formally at the infinite distance from its boundary: β(∞) > 0. This property
of the radiation transfer in the line frequencies in moving media is the basis
of the Sobolev approximation (SA).
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It is important that the photon escape probability from an arbitrary point of
the medium is expressed fairly simply in terms of the characteristics of the medium
and the velocity field at the given point. For example, in a spherically-symmetric
envelope expanding with the velocity v(r) we have

β(r) =

∫ 1

0

1− e−τ(r,µ)

τ(r, µ)
dµ, (5)

where τ(r, µ) is the effective optical depth of the medium at the point r in the
direction ~s forming an angle θ = arccosµ with the vector ~r

τ(r, µ) = k(r) vt|ψ(r, µ)|−1, (6)

k(r) is the integrated line opacity per unit volume (weighted with the line profile
function), and

ψ(r, µ) =
dv~s
ds

=
dv

dr
µ2 +

v

r
(1− µ2). (7)

In the particular case of an isotropically expanding medium (an example
of which is the expanding Universe), v(r) = Ar, ψ(r, µ) = v/r and τ(r, µ) =
constant = k vt/A. As a result, β(r) = (1−e−τ(r))/τ(r). From this, we get β = 1/τ
for τ � 1.

Thus, if the primary sources of excitation g(~r) in the spectral line are
known, then we can immediately calculate the source function from Eq. (3),
and then calculate the intensity of the spectral line. This method has been
originally developed by V.V. Sobolev for the case of a rectangular line profile
function and the complete frequency redistribution in a comoving frame. Later, in
1957, he considered in [59] the general case of an arbitrary absorption coefficient.
It turned out that the expression for the photon escape probability β(r) does
not depend on the type of the line profile function. This invariance is one of the
most interesting properties of the process of radiative diffusion at line frequencies
in moving media which has no analog in the case of stationary media. In the latter
case, as we know, the escape probability depends sensitively on the type of the
line profile function (see, e.g., the book of Ivanov [42]).

Due to its simplicity, the Sobolev approximation was widely used when
modeling and interpreting the emission spectra of stars with circumstellar
envelopes and other astrophysical objects. The role of this method in the solution
of complex, multilevel problems was especially great. First steps in this direction
were taken by Rublev [54, 55], Gorbatskii [20], Boyarchuk [4], Doazan [11], Luud
and Il’mas [45], Gershberg and Shnol [18], Grinin and Katysheva [28], Castor and
Lamers [7], Natta and Giovanardi [50], and many others (see a more detailed
bibliography of the works on this subject in the review [24]).

In 1961 Sobolev’s book “Moving Envelopes of Stars” was translated into
English by S. Payne-Gaposchkin and published in the USA. Soon a series of
fundamental discoveries in astronomy have been done, resulting in appearance
of new astrophysical objects: quasars, neutron stars and maser sources. First
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observations of ultraviolet spectra of stars from space led to the discovery
of intense mass outflows (stellar winds) from hot supergiants. All this
expanded considerably the field of the application of the SA and stimulated
its further development in the papers by Castor [5, 6], Grachev [22], Rybicki
and Hummer [57], Hummer and Rybicki [36, 37], Jeffery [39], Hutsemekers and
Surdej [38], Petrenz and Puls [53], Dorodnitsyn [13], Grinin and Tambovtseva [30],
and others (see below). In particular, the Sobolev approximation has been
adapted for studying polarization in spectral lines [39], for the case of relativistic
motions [38, 40] and conditions near black holes and neutron stars [12, 13, 14].

1.1 The SEI algorithm

The questions of the accuracy of the SA and the limits of its applicability naturally
emerged. The development of numerical and asymptotic methods of the radiative
transfer theory has made possible the solution of this problem. It turned out
that the limits of applicability of the SA depend sensitively on the type of the
line profile function and are determined by the asymptotic behavior of the kernel
function in Eq. (2). These and related topics are discussed in more detail in the
review papers by Grachev [23] and Grinin [24].

Using the numerical methods, Bastian et al. [2] and Hamann [31] investigated
in detail the accuracy of the SA in models of spherically symmetric outflows.
They have shown that the error in the calculations performed on the basis of
the SA arises mainly when calculating the line profile, while accuracy of the
source function calculations was quite good. Based on this result, Bertout [3] and
Lamers et al. [44] suggested to use the exact expression for the intensity of the
radiation emerging from the medium in the combination with the source function
calculated in the Sobolev approximation. This algorithm is known as the Sobolev
Exact Integration (SEI) method [44]. It yields a considerable gain in accuracy
of the line profiles and is widely used when modeling the emission spectra.

2 The non-local approximation

In the seventies it was found that the presence of the large gradient velocity in the
emitting region actually still does not guarantee the condition of locality of the
radiative interaction at the line frequencies, and one additional condition must
be fulfilled. Namely, the derivative of the velocity in the comoving coordinate
system, dv~s/ds has to be a positive definite function of the angle θ between the
vector ~r and the arbitrary direction ~s. In the case of radially symmetric motions,
this condition is fulfilled for the outflow with the acceleration (dv/dr > 0) and
does not fulfilled in the case of decelerated outflows. The latter is also true in
the case of accretion flows, including the quasi-Keplerian disks. In these cases,
at each point ~r there are directions along which dv~s/ds = 0, and the Sobolev
length s0 =∞ (see Fig. 2).
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Figure 2: Azimuthal structure of the velocity
gradient in the comoving frame in the plane
of the quasi-Keplerian disk (from [29]). In the
filled regions ψ(r, θ) < 0.

Figure 3: The common-point velocity
surface in the rotating and collapsing
envelope (from [24]).

These distinctions in the structure of the velocity field in the comoving frame
are key for definition of a type of the radiative interaction in a moving medium.
The equation for the source function in the case of the non-local radiative inter-
action was first obtained by Grachev and Grinin [21]. They showed that in shells
expanding with deceleration, the source function is determined by the equation

S(~r) [1− λ+ λβ(~r)] = λ

∫
Ωc

S(~r ′)
[
1− e−τ(~r ′,θ′)

]
β(~r, θ)

dΩ

4π
+ g(~r), (8)

which differs from Eq. (3) by the integral term. This additional term allows for the
fact that besides the local vicinity of the point, a contribution to photoexcitations
at the point ~r comes from the so-called surfaces of comoving points that are
in resonance with the point ~r and satisfy the equation (~v(~r ′)− ~v(~r)) · ~s = 0. An
example of such a surface is presented in Fig. 3. The existence of such surfaces
provides for the non-local nature of the radiative interaction in media moving with
large velocity gradients.

An equation similar to Eq. (8) was derived independently and investigated
in detail by Rybicki and Hummer [56]. They introduced the term “the common
points surface” which has now become generally accepted. We should also note
a paper by Deguchi and Fukui [9] in which Eq. (8) was derived and used for
calculations of the spectra of collapsing protostellar clouds as well as a version
of a non-local radiative interaction between components of a resonance doublet
in moving media, considered by Surdej [60].

Let us note that the integral term in this equation does not contain any new
quantities in comparison with the local version of the Sobolev approximation. We
see the same expressions for the escape probability β and for the effective optical
depth τ as in Eq. (3). An analysis shows that the contribution of the integral term
in Eq. (8) to the source function depends on two factors: on the behavior of the
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primary sources of excitation g(r) and on the solid angle Ωc in which the surface
of comoving points is seen from the point ~r. For Ωc � 4π, the influence of the
integral term on the source function can be neglected in most cases. The non-
local version of the Sobolev approximation is applied to modeling the emitting
regions around young stars (see, e.g., the works of Hartmann et al. [33], Muzerolle
et al. [49]), black holes and neutron stars (the paper of Dorodnitsyn [14]),
supernova shells (that of Fransson [16]) and other astrophysical objects. It is
interesting to note that the non-local radiative interaction can take place near to
the compact objects (black holes and neutron stars) in the accelerating outflows
due to the gravitation red shift (the work of Dorodnitsyn [13]). In this case
the P Cygni profile may have both red- and blue-shifted absorption troughs
(in contrast with the classical theory).

3 The radiative force

Due to the large cross sections of the interaction with matter, radiation
in spectral lines plays an important role in the dynamics of gas in high-luminosity
astrophysical objects. In 1957 Sobolev [59] has obtained the formula for the
radiative force in the plane-parallel layer expanding with a constant velocity
gradient. Only diffuse radiation produced in the layer was taken into account.
The next important step was made by Castor [5]. Developing the ideas laid down
in the SA, he has obtained the expression for the radiative force exerted on the
gas in a spherically symmetric expanding shell with absorption and scattering
of continuous stellar radiation in the line frequencies. It has a simple form

fr,L =
k(r)Fc ∆νD

c
min(1, 1/τ), (9)

where Fc is the radiation flux at the stellar surface at the frequency of the spectral
line under consideration, k is the integrated line opacity (normalized to a unit
of mass), c is the speed of light, and τ is the optical depth defined by Eqs. (6)–
(7). Castor, Abbott, and Klein (CAK) [8] subsequently calculated models of the
expanding envelopes of hot supergiants and showed that the main contribution
to the radiative force comes from a set of weak subordinate lines of ionized atoms
such as CII, CIII, etc. It is needed to note that in the earlier attempts to solve
this problem it was assumed that the main contribution to the radiative force
provided the ultraviolet resonance lines (see the works of Lucy and Solomon [46],
Lucy [47]). However, their effect was too small to explain the high mass loss rate
from the hot supergiants.

The CAK theory has had a significant effect on the development of the theory
of radiative driven stellar winds. Due to the efforts of Castor and his co-authors,
this theory is now one of the most advanced fields of theoretical astrophysics.
The results of this theory are applied not only to calculations of the radiative
driven winds from hot stars but also to modeling of the envelopes and disk winds
of quasars and active galactic nuclei.
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3.1 The azimuthal component of the radiative force

Completing the topic of the radiative force in moving media, we note one non-
trivial property of this mechanism. It consists in the fact that in envelopes with
axially symmetric motions, along with the radial component fr,L of the radiative
force there is also an azimuthal component fθ,L. Its appearance is related to the
fact that in the general case of axially symmetric motions, the derivative of the
velocity in the comoving frame in the plane of the motions includes the odd
dependence on the angle θ between the vector ~r and the arbitrary direction ~s
in the plane of motions

dv~s
ds

=
dv

dr
cos2 θ +

v

r
sin2 θ +

(
du

dr
− u

r

)
sin θ cos θ. (10)

For this reason, the Sobolev length s0(r, θ) and, therefore, the optical
properties of the medium at the line frequencies are asymmetric functions of
the angle θ (Fig. 2). Radiation in the spectral line propagates in such a medium
not along the radius vector ~r but at some angle to it. This angle depends on the
ratio between the radial and tangential velocity components v and u. A result
of this is an azimuthal component of the radiative force. Its sign depends on the
physical conditions in the envelope, such as the gradient of the source function and
the direction of the radial velocity (expansion or accretion). Depending on these
parameters, the direction of the azimuthal radiative force can either coincide with
the rotation of a gaseous envelope or act against the rotation. The efficiency
of this mechanism, operating on the principle of “Segner’s wheel”, depends on the
ratio between the radiation density at spectral lines frequencies and the kinetic
energy of gas as well as on the ratio between the velocity components v and u.
For example, in the accretion disks v � u, and the ratio fθ,L/fr,L ∼ v/u � 1.
More detailed information on this radiative mechanism can be found in [25, 26, 27].
Here we only note that in 1995 Owocki, Cranmer, and Gayley [52] independently
discovered a similar effect in a numerical solution of the radiative hydrodynamics
equations in the envelopes of Be stars (see also [17]).

4 Molecular lines and cosmic masers

Despite the fact that the velocities of internal motions in interstellar molecular
clouds do not exceed several kilometers per second, as a rule, they nevertheless
can also be objects to which SA can be applied. Because of the low temperatures,
the velocities of thermal motions of molecules in the clouds are also very small and
often do not exceed several hundreds of meters per second. This fact has been used
by many authors who have used the SA for the diagnostics of interstellar clouds
based on molecular line intensities. In particular, Goldreich and Kylafis [19], and
Deguchi and Watson [10] used the SA to study the polarization of molecular lines.

In cosmic masers the optical depth of the emitting region with an inverted
population of molecular levels plays the role of the amplification factor, and in the
case of powerful masers it can be much larger than unity. Under these conditions,
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even a relatively small number of working molecules going out of resonance
can cause considerable changes in the maser emission intensity (e.g., the paper
of Watson and Wyld [63]). Maser lines are therefore the most sensitive indicators
of internal motions of the medium, especially in the case of unsaturated regime.
For the same reason, maser emission is also very sensitive to the type of radiative
interaction in the medium. Really, only at the non-local radiative interaction, at
each point of the medium there are directions in which the velocity gradient in
the comoving coordinate system equals zero. In particular, in the quasi-Keplerian
disk the equation ψ(r, µ) = 0 has four solutions: µ1, . . . , µ4 (Fig. 2). In terms
of the SA, the optical depth in the line frequencies in these directions formally
becomes infinite.

To determine the effective optical depth in this case, one must allow for the
second order derivative of the velocity (see Fig. 4) from the work of Grinin and
Grigor’ev [29]). Typical examples of such objects are the quasi-Keplerian disks
(see, e.g., the paper by Babkovskaia et al. [1]) as well as protostellar clouds in
the phase of gravitational contraction. It should be also noted that in addition
to a velocity gradient, the maser lines can be also sensitive to the presence
of magnetic field. These are the hydroxyl masers and some others. Calculations
of such masers require joint allowance for the velocity and magnetic field gradients
(see the work of Kegel and Varshalovich [41]).

Figure 4: Azimuthal structure of the optical depth in the maser line in the plane of the
quasi-Keplerian disk (from [29]).

Thus, despite the appearance of the effective numerical methods (see,
e.g., [48, 35, 34] and references there), the Sobolev approximation is an important
tool for modeling and diagnostics of emitting regions in the different kinds
of astrophysical objects. It is applied in combination with the Monte Carlo method
for modeling of the complex emitting regions near the young stars (see, e.g., the
papers of Harries [32], Kurosawa et al. [43]). The unique object of application of
the SA is the expanding Universe (e.g., the work of Dubrovich and Grachev [15])
which can be optically very thick for the Lα radiation at the large red shifts
as shown by Varshalovich and Syunyaev [62]. It is also difficult to overestimate
the role of the SA in the theory of the radiative driving stellar winds (see the
paper of Owocki and Puls [51] and references therein).
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