Radiation mechanisms of astrophysical objects: classics today

Search for the Giant Pulses (GPs) – an extreme phenomenon in radio pulsar emission

<u>Kazantsev A.N.</u>, Potapov V.A. Pushchino Radioastronomy Observatory ASC LPI

St.Petersburg, September 21-25, 2015

Radio pulsars

MPItR-Bonn Pulsar Group

strictly periodic signals

 $B \approx 10^{12} G$; $E \approx 10^{10} V / cm$

Individual pulses and average profile of pulsar

14.03

14.03.2016

average energy distribution of pulses by phase of period.

4

Histograms of individual pulses energy distribution of pulsars

Giant pulses (GPs) of pulsar

Pulses that exceed the average profile over 30 times were called giant pulses.

First pulsars with GPs

Crab (B0531+21) P: 0.0331 s. DM: 56.791 cm⁻³pc. Discovery: 1968.

B1937+21 P: 0.0016 s. DM: 29.1168 cm⁻³pc. Discovery: 1984.

It should be noted that excess for these pulsars reach really giant values.

First pulsars with GPs

Pulsar in Crab nebulae (B0531+21) has most famous GPs.

Individual pulses energy distribution

«Classical» properties of GPs

- Strong individual pulses tens, hundreds, thousands time as strong as averaged pulse.
- Peak flux density about hundreds, thousands and even millions Jy (when typical pulsar averaged pulse's flux is several Jy).
- Strong linear and circular polarization in pulse. E.g. ~60% GP of PSR B1937+21 are 100% circular polarized.
- GPs have a power law distribution both for peak flux and pulse's energy. Normal pulses have a Gaussian distribution on a logarithmic scale.
- GPs have short duration up to several nanoseconds, e.g. B1937+21 (Soglasnov et al, 2004)
- GPs microstructure component may be as short as nanosecond or less, e.g. B0531+21 (*Hankins et al., 2003*).
- Extremely high brightness temperature:

B0531+21 $T_B \ge 5 \times 10^{37} \text{K};$ B1937+21 $T_B \ge 5 \times 10^{39} \text{K}$

List of pulsars with GRPs (2015 г.)

Pulsar	P, s	P1, s/s	Frequency, MHz	DM, cm ⁻³ pc	B _{LC} , G	First note
J0034-0721	0.9429	4.08e-16	40	11.380	7.02e+00	2004
J0218+4232	0.0023	7.73e-20	610	61.252	3.21e+05	2004
J0534+2200	0.0331	4.23e-13	40-8300	56.791	9.80e+05	1968
J0529-6652	1.0249	7.73e-11	610	103.20	3.97e+01	2011
J0540-6919	0.0505	4.79e-13	1390	146.500	3.62e+05	2006
J0659+1414	0.3849	5.50e-14	111	13.977	7.66e+02	2003
J0953+0755	0.2530	2.30e-16	111	2.958	1.41e+02	2003
J1115+5030	1.6564	2.49e-15	111	9.195	4.24e+00	2003
B1237+25	1.38245	9.60e-16	111	9.242	4.14e+00	2014
J1752+2359	0.4091	0.64e-15	111	36.000	7.11e+01	2005
J1824-2452A	0.0030	1.62e-18	1510	120.500	7.41e+05	2001
J1823-3021A	0.0054	3.38e-18	685	86.834	2.52e+05	2005
J1939+2134	0.0016	1.05e-19	111-5500	71.0398	1.02e+06	1984
J1959+2048	0.0016	1.69e-20	610	29.1168	3.76e+05	2004

14.03.2016 The common physical model of the generation of the GPs is not available up to now.

Goal and tasks of research

• Goal:

Search of the pulsar with GPs and investigation of their properties.

• Tasks:

- monitoring of pulsars during several years,
- search in the collected data pulses which satisfy the main characteristics of GPs (exceed the average profile over 30 times and power law distribution for peak flux and pulse's energy).

LPA of LPI radio telescope

- Transit radio telescope. Phased array antenna. One linear polarization.
- Frequency: 111 MHz, Bandwidth: 2.3 MHz (460 x 5 kHz digital receiver with post-detector DM removal);
- Typical duration of one scan: 3 to 7 min. (e.g. B1237+21 3.53 min = 153 pulses);

Objects of observations 50 pulsars = 8 pulsars (monitoring) + 42 pulsars (search) **PSR B0007+73** PSR B0711+74 PSR B1534+12 PSR B1919+21 PSR B203 0+36 PSR B0809+74 PSR B1541+09 PSR B1929+10 PSR B2032+41 PSR B0218+42 PSR B0823+26 PSR B1652+26 PSR B1937+21 PSR B2055+25 PSR B0031-07 PSR B0834+06 PSR B1737+13 PSR B1946+35 PSR B2110+27 PSR B0301+19 PSR B0320+39 PSR B0919+06 PSR B1752+23 PSR B1957+20 PSR B2111+46 **PSR B0357+32** PSR B0950+08 PSR B1828-10 PSR B1957+50 PSR B2139+47 PSR B0450+55 PSR B1112+50 PSR B1836+59 PSR B2016+28 PSR B2154+40 PSR B1133+16 PSR B1839+09 PSR B2020+28 PSR B2217+47 PSR B0622+37 PSR B0643+80 PSR B1237+25 PSR B1846+09 PSR B2021+40 PSR B2310+42 *PSR B0656+14* PSR B1508+55 PSR B1855+09 PSR B2028+33 PSR B2315+21

Program of monitoring

The monitoring program included pulsars which has been demonstrated GPs generation phenomenon previously

Discovery of GPs of B1237+25

GPs from B1237+25 were discovered in 2014 by our group.

Individual pulses histograms for B1237+25

K.H. Hesse & R. Wielebinski, 1974

Differs for histogram at 2695 MHz (no subpeaks). Much stronger in maximum

GPs peak flux distribution (B1237+25)

14.03.2016

(Kazantsev & Potapov, 2015)

GPs B1112+50 monitoring

GPs from B1112+50 were discovered by Ershov&Kuzmin in 2003

14.03.2016 Ershov, Kuzmin, 2003

Kazantsev, Potapov, 2013

GRPs B0950+08 monitoring

GPs from B0950+08 were discovered by A.K. Singal // Astrophysics and Space Science, 2001, V.278, P.61

14.03.2016

111 MHz

2695 MHz

GPs peak flux distribution (B0950+08)

14.03.2016 Results are consistent with early obtained at 111 MHz (Smirnova, 2012)

Individual pulses of B0809+74

14.03.2016

22

Energy distribution for B0809+74

Individual pulses' peak flux distribution

14.03.2016

23

Strong individual pulses of B0809+74

Now it is a candidate only.

Discovery of GPs from PSR B1133+16

$$f_a = 1/1000$$

Discovery of GPs from PSR B1133+16

14.03.2016

14.03.2016

Conclusions

- Longtime observation program for monitoring and search GPs is conducted.
- Strong individual pulses with some properties of GPs were detected from B0809+74 (more observations need).
- GPs were discovered from B1133+16 and B1237+25
- There were confirmed regular GPs for 2 of 5 pulsar that was found earlier at low frequency (102-111 MHz)
- We can conclude that the phenomenon of GP may be quite distributed in low radio frequencies (about 10% from our observation list) but criteria of GPs are less defined and obvious than that of 2 "classical" pulsars with GPs.

THANK for YOUR attention