is shown that some pulsars are better described by the rapid screening model and some other pulsars have better agreement with calculation by the gradually screening model

1. Old isolated radiopulsars
$B_{\text {dip }} \sim 10^{11}-10^{12} G$ $P \sim 100 \mathrm{~ms}-1 \mathrm{~s}$
$\tau=P /(2 P) \gtrsim 10^{6}$ years Goldreich-Julian model inner gaps

Small scale magnetic field

$$
\begin{array}{r}
\vec{B}=\frac{3 \vec{r}(\vec{r} \cdot \vec{m})-\vec{m} r^{2}}{r^{5}}+\frac{3 \vec{\rho}\left(\vec{\rho} \cdot \vec{m}_{1}\right)-\vec{m}_{1} \rho^{2}}{\rho^{5}} \\
\vec{\rho}=\vec{r}-\left(r_{n s}-\ell\right) \vec{e}_{z}, \vec{m}=m \vec{e}_{z}, \vec{m}_{1}=\nu\left(\frac{\ell}{r_{n s}}\right)^{3} m \vec{e}_{x} \\
\ell=\frac{1}{10} r_{n s} \quad \nu=\frac{B_{s c}}{B_{d i p}} \lesssim 1 \quad \quad 0 \leq \psi \leq \frac{\pi}{2}
\end{array}
$$

$\tilde{\rho}_{G J}(z) \approx \cos \tilde{\chi}$
\tilde{x} is the angle between \vec{B} and $\bar{\Omega}$

radiation

$z_{r}-z_{c} \ll r_{t}, z_{c}$
at $r_{t} \ll \ell$ at the central line the reverse positron current density may
be estimated as be estimated as

$$
\left.\tilde{\rho}_{+} \approx r_{t} \frac{\partial \tilde{\rho}_{G J}}{\partial z}\right|_{z=z_{c}} F\left(\frac{z_{c}}{r_{t}}\right)
$$

where r_{t} is the pulsar tube radius, z is altitude above star $n_{+}=n_{G J \bar{\rho}} \tilde{\varphi}_{+}$- number density of the returning

$F(x) \approx \frac{4 x}{16+15 x}\left(1+1.19 \frac{x}{1+x^{2}}\right)$ $F(x) \approx \frac{x}{4}$ at $x \ll 1, F(x) \approx \frac{4}{15}$ at
$x \gg 1$

The assumptions:

Gradual model

all values do not depend on time t
(stationary case)
pairs are affected only
by average electric field
$\tilde{\rho}_{G J}$ monotonically grows with the
ltitude z
Hence, conditions
$\left.E_{\|}\right|_{z=z_{r}}=0$ and $\left.(\vec{B} \cdot \vec{\nabla}) E_{\|}\right|_{z=0}=0$
can not be satisfied at the same point
No fullscreening area There is only partial area A.K. Harding, A.G. There is only partial screening area
Muslimov $\Phi \rightarrow \Phi_{\infty}$ at $z \rightarrow \infty$
1.0<z<zca acceleration region
no pairs production, no pair plasma
large $E_{\|}=(\vec{E} \cdot \vec{B}) / B$
2. $z_{c}<z<z_{r}$ partial screening area
pair plasma, small $E_{\|}$
positrons return to the polar cap
3. $z>z_{r}$ full screening area
pair plasma, $E_{\|}=0$
no positrons return
Condition
(a) $\left.E_{\|}\right|_{z=z_{r}}=0$
electrif field is continous
(b) $\left.(\vec{B} \cdot \vec{\nabla}) E_{\|}\right|_{z=z_{r}}=0$
charge density is continous ApJ 556987 (2001)

The polar cap luminosity

The polar cap luminosity

$B_{u_{i p}}=5.2 \cdot 10^{12} G, P=0.68 s$
$\tau=1.1 .10^{6}$ vears, $\chi=16^{\circ}$

 green line, upp

The polar cap luminosity

$B_{d_{i p}}=6.0 \cdot 10^{12} G, P=1.24 \mathrm{~s}$
$L_{\text {bol }}$ range from $[122$ is shown
area. $L_{\text {bol }}$ from $[5]$ is shown by solid green liy.
Distane
$B_{\text {Bip }}=6.0 .11^{12} G, P=1.27 s$
$\tau=3.0 .10^{0}$ years, $\chi=32^{\circ}$
 own shown by orange are

Returning current from altitude z_{f}

$\tilde{\rho}_{+} \approx \frac{1}{2}\left(\tilde{\rho}_{G J}\left(z_{f}\right)-\tilde{\rho}_{G J}\left(z_{c}\right)\right)$
where $n_{+}=n_{G J \tilde{\rho}_{+}-}$number density of returning

$n_{G J}=\frac{2 \pi a}{2 \pi a} \approx 7.10 c^{-5}\left(\frac{1}{P}\right)\left(\frac{1}{10 \cdot \sigma}\right)$
We suppose $z_{f} \sim(3-15) r_{n s}$

1. $z_{f}<z_{\text {rad }} \sim(5-50) r_{n s}$ at large z plasma waves affect on pair dynamic
2. $z_{f}<z_{\max } \sim(1-5) r_{n s}$ where $z_{\text {max }}$ is maximum of $\tilde{\rho}_{G J}(z)$
at $z \approx z_{\text {max }}$ the solution satisfied at $z \approx z_{\text {max }}$ the solution satisfied $E_{\|}=0$ and $(\vec{B} \cdot \nabla) E_{\|}=0$

The reverse positron current for pulsar $\mathrm{J} 2043+2740$

rapid: $\tilde{\rho}_{+} \sim 10^{-2}$
$\tilde{\rho}_{+} \lesssim r_{t} \frac{\partial \tilde{\rho}_{G, I}}{\partial z}$
gradual: $\tilde{\rho}_{+} \sim 10^{-1}$
$z_{f}-z_{c} \gtrsim r_{n s} \gg r_{t}$

$B_{d i p}=7.1 \cdot 10^{11} G, P=96 \mathrm{~ms}, \tau=1.2 \cdot 10^{6}$ years, $\chi=55^{\circ}$

$B_{d i p}=7.1 \cdot 10^{11} G, P=96 \mathrm{~ms}, \tau=1.2 \cdot 10^{6}$ years, $\chi=55^{\circ}$
Upper linits of polar cap enission from 101 ver shown hy cap, dashed when we see both caps.
Emission of star surface taken from $[11]$ is shown by black line.

The polar cap luminosity

$B_{t u p p^{2}}=3.96 \cdot 11^{12} G, P=1.097 \mathrm{~s}$
$\tau=4.98 \cdot 10^{6}$ years, $\chi=21^{\circ}$

The polar cap luminosity

Conclusion
For some pulsars the gradual screening model predicts the polar cap
eating which is larger than the observed polar cap luminosity
Possible explanations

1. Surface magnetic field $B_{\text {surf }}>10^{14} G$
no free charge emission
vacuum gaps, sparks [24]
2. Inner gaps occupy only small part of pulsar tube [25]
3. Large redshift $r_{n s}<2 r_{g}$
4. Viscous forces at $z \sim r_{t}[26]$

Radiation locked inside inner gaps [30, 31, 32]
sound waves from neutron star interior $[33]$
sound waves from neutron star interior $[30]$

The work has been partly supported by the RFRR (project $13-22.00112$) and by the State
roogram "Leading Scientific Schools of the Rusian Federation"(rant NSh-244-20142)

References

(1) Arons J., Fawley W.M., Scharlemamn ET. // App, V. 231 p. P54 (1979)

b| A. Stary // arxivivi304.4203

ITI I. .. Malov, E.B. Nikitina / / Astoronyy Reports, V. . 55 , p. 19 (2011)
(8| J.M. Rankin // Ap ApSS, V. $85, \mathrm{p} .146$ (1993)

${ }^{111}$ V.E. Zavinin, G.G. Paxlov // ApJ, V. 616 , p . 452 (2004)

[16] C.Y.Hui, w.Beceer // A \& A, V. V. 467, p. 1209 (22007
17] C.Y.Hui et al //ApJ, V.747, p.74 (2012)

199 B. Zhang, D. Sanwal, G.G. Pavlov // Ap, V. V. 64, p. . L109 (2005)
$[21]$ W.Beceler et al. // App, V.615, p.908 (2004)
${ }^{1221}$ A. .T.Delere et al. // ApJ. V. .701, p. 1243 (2009)
233 B. Bosseste et al// ApJ, V.749, id 146 (2012)

1555 S. Shibata // ApJ, V.378, p.239. (1991)

$28 \mid$ J.Dyks et al // Chin. J. Astron. Astrophys, V.G, Suppl. . p. P5 (2006)
291 D.Lomiastrili e tal //arXiv:0709:2019 (2007)

