

Radiation mechanisms of astrophysical objects: classics today

A scientific meeting in honour of 100th anniversary of V.V. Sobolev

Saint-Petersburg State University, 21-25 September, 2015

Molecular hydrogen absorption systems at high redshifts

S.A. Balashev, D.A. Varshalovich, A.V. Ivanchik, V.V. Klimenko

Overview

1. Introduction

- 2. Physical conditions in H_2 absorption systems
 - Temperature
 - Number density
 - Metallicity
 - Associated HD. D/H ratio
 - Associated CO. T_{CMB}
 -
- 3. Search of H_2 in SDSS
- 4. H₂ in J0843+0221

Introduction

Analysis of absorption systems in quasar spectra is the power tool to study the intergalactic and interstellar medium

H₂ at high redshifts. How to detect?

H₂ at high redshifts. How to detect?

H₂ at high redshift. How to detect?

Lyman and Werner bands of H₂: $\lambda < 1100$ Å $\times (1 + z) \Rightarrow$ Optical telescope z > 2

First identification of H₂ at high redshift was in 1985 (Levshakov & Varshalovich).

For detection and analysis of $\rm H_2$ absorption system we need high S/N and resolution spectra

KECK (HIRES)

H₂ at high redshifts. How to detect?

Simulated spectrum of H_2 absorption system at z=3.62, how it will seen in quasar spectrum

H₂ at high redshifts. Some statistics

Till now only 30 H_2 absorption systems at high z were detected.

However, in the local Universe we see H_2 very frequently:

- ➡ In 90 % cases in Milky Way (in 65 out of 73 spectra of extragalactic source perpendicular to Galaxy plain, Wakker et al. 2006)
- ➡ In 67 % cases in Magellanic clouds (52 % LMC and 92 % SMC, Tumlinson et al. 2002)

This is the result of three factors:

- 1. Quasars are **faint objects** therefore >8m telescopes are necessary to obtain high resolution spectrum
- 2. Only in **<10 %** of DLA systems H₂ is identified (Noterdaeme et al. 2008, Balashev et al 2014, Jorgenson et al. 2014)

3. Search of H_2 at high redshifts is the "blind search"

H₂ at high redshift. Physical conditions

 H_2 absorption systems represent cold (T~40-200 K) and dense (n~10-100 cm⁻³) phase of interstellar medium

To derive physical conditions one need to study H_2 and associated species

- 1. Population of H₂ rotational levels
- 2. Neutral chlorine Cl I
- 3. Neutral carbon CI
- 4. Dust extinction
- 5. HD molecules
- 6. CO molecules

CO are detected very rarely \rightarrow H₂ absorption systems correspond to "Dark" molecular gas (i.e. gas which is not traced by CO)

H₂ rotational levels. Kinetic temperature

Relative population of lower H₂ rotational levels are used to constrain kinetic temperature

e.g. Ivanchik et al., 2010 ¹⁰

H₂ rotational levels. Broadening effect

In some H_2 absorption systems "broadening effect" is revealed – the increase of velocity distribution width with increase of H_2 rotational level, J.

This effect was observed in H_2 abs. systems in local Universe (e.g. Lacour et al. 2005) as well as at high redshifts

H₂ rotational levels. Broadening effect

We propose the explanation of this effect concerned with radiative transfer in H_2 lines.

Excited levels of H_2 (J ≥ 2) are populated by radiative pumping in lines of Lyman and Werner band

When lines in which radiative pumping occurs becomes **saturated**, there is **no photons in the center of line**, therefore only molecules at the wings of velocity distribution will be excited.

Associated neutral chlorine

See Jura 1974, and Neufeld & Wolfire, 2009

Associated neutral chlorine

Associated neutral chlorine

Associated neutral carbon. Number density

2. Relative population of HD rotational levels:

Associated HD molecules

There are 8 detection of HD molecules associated with H_2

example: Q0812+3208 (z_{abs}=2.6265) Balashev et al. 2010, Tumlinson et al. 2010

17

Associated HD molecules

There is systematic difference between HD/H_2 absorption systems in our Galaxy and at the high redshifts.

Associated HD molecules

In case of selfshielding of HD and H_2 molecules D/H isotopic ratio can be estimated and therefore Ω_b can be derived using some additional assumptions (Ivanchik et al. 2010, Balashev et al. 2010)

Associated CO. CMB Temperature

Partial coverage of the BLR. QSO 1232+082

Size of the BLR of Q1232+082

1. The size of the absorption cloud:

There is another example of partial coverage of H_2 clouds (see Klimenko et al. 2015) 22

Limits on the variation of $\mu = m_p/m_e$

There are two obstacles:

- 1. Limits are restricted by the systematical errors of telescopes. Wait for the next generation of stable echelle spectrographs mounted on the large telescopes.
- 2. There are more sensitive species to do this, like CH_4 (talk of S.A. Levshakov, or Bagdoniate et al. 2013).

23

SDSS is the largest spectroscopic survey.

The latest release - Data Release 12 (DR12) contains

DR12 BOSS coverage

There are three main obstacles for detection of H_2 absorption system in SDSS

- 1. Ly- α forest
- 2. Low Signal to Noise (S/N)

Average S/N \sim 5

3. Spectral resolution of SDSS

Simulated quasar spectrum with H_2 absorption system at z=3.62

High resolution spectrum \rightarrow VLT, KECK \rightarrow Identification and analysis

Spectrum with resolution $R \approx 2000$ (SDSS)

Spectrum with resolution $R \approx 2000$ (SDSS)

Spectrum with resolution R \approx 2000 μ S/N \approx 5 (SDSS) \rightarrow Is identification possible?

Spectrum with resolution $R \approx 2000 \text{ }\text{ }\text{B}/\text{N} \approx 5 \text{ (SDSS)} \rightarrow \text{Identification is possible!}$

H₂ in SDSS. Follow up of H₂ candidates

Using automatic technique (see Balashev et al. 2014) we found about 75 (from DR12) confident candidates.

We have started to follow up these candidates.

Using observations with Xshooter/VLT during P94 we confirm 7 out of 7 H_2 candidates.

SDSS can be very efficiently used to detect H₂ absorption systems for the follow up studies,

i.e. we propose replacement of very inefficient blind search of H_2 that was previously used.

H₂ in J0843+0221

One of the H₂ candidate in SDSS was

We follow up **J0843+0221** using **UVES/VLT**. Observation were done in 92 period (autumn 2013 – spring 2014) **092.A.0345** (PI: **D.A. Varshalovich**)

No.	Date	Starting time, UT	Setting	Exposure, sec	Seeing	Airmass
1	01.07.2014†	07:19:05	437+760	4800	1.00→0.78	1.162→1.377
2	01.28.2014	03:06:44	437+760	4800	0.83→1.10	1.265→1.131
3	24.02.2014	01:07:58	390+564	4800	0.97→0.92	1.306→1.141
4	26.02.2014	01:34:21	437+760	4800	0.81→1.00	1.211→1.122
5	26.02.2014	02:58:31	437+760	4800	0.98→1.24	1.121→1.188
6	27.02.2014	01:32:14	390+564	4800	0.99→0.96	1.207→1.122
7	27.02.2014	02:55:32	390+564	4800	0.94→0.74	1.121→1.190
8	27.02.2014	04:16:46	390+564	4800	0.69→0.75	1.192→1.466
9	02.03.2014	01:02:50	437+760	4800	0.69→0.84	1.249→1.127
total				43200		

H₂ in J0843+0221

Using high resolution spectrum we confirm very high H₂ column density in this system

 $\log N(H_2) = 21.21^{+0.02}_{-0.02}$

H₂ in J0843+0221. H₂ vs HI

H₂ in J0843+0221. CO/H₂

In spite of high H₂ column density we did not detect CO lines. $N_{\rm CO} < 10^{13.4} {\rm ~cm^{-2}}$

H₂ absorption system in J0843+0221 corresponds to "dark" molecular gas.

H₂ in J0843+0221. Dust extinction

We constrain the extinction A_V associated with H_2 absorption system using SDSS spectrum.

$$A_V = 0.09 \pm 0.10$$
(syst.)

If one will use well known relation in our Galaxy:

$$\frac{N(\mathrm{H})}{A_V} = 1.8 \times 10^{21} \,\mathrm{cm}^{-2} \mathrm{mag}^{-1} \qquad \Longrightarrow \qquad A_V^{exp} \approx 5 \quad (N(\mathrm{H}) = 10^{22} \mathrm{cm}^{-2})$$

H₂ in J0843+0221. Open question

Large amount of H_2 but Low dust content $[Zn/H] = -1.46^{+0.14}_{-0.15}$ $\log N(H_2) = 21.21^{+0.02}_{-0.02}$ $\log N(CO) < 13.4 \Rightarrow CO/H_2 \lesssim 10^{-8}$ $A_v = 0.09 \pm 0.10$

In cold neutral medium H_2 forms only on dust The rate of H_2 formation on dust is very low

$$t_{\rm form} = \frac{1}{nR_{\rm form}D} = \frac{3 \times 10^{10} \,\mathrm{yr}}{n, \,\mathrm{cm}^{-3}}$$

How to create such large amount of H₂ without dust?

Summary

- 1. H_2 absorption systems identified in quasar spectra provide an opportunity to study in details cold phase of the interstellar at the high redshift.
- 2. The analysis of H_2 absorption system allow us to investigate several cosmological tasks.
- 3. SDSS can be used for the identification of H_2 absorption system candidates.
- 4. Follow up of one of H_2 candidate from SDSS reveal unique high H_2 column density absorption system with very low dust extinction.