Д.И. Нагирнер

КОСМОЛОГИЧЕСКИЕ МОДЕЛИ

Санкт-Петербург 2017 Санкт-Петербургский государственный университет

Д.И. Нагирнер

КОСМОЛОГИЧЕСКИЕ МОДЕЛИ

Учебное пособие

2017

УДК 523.12 ББК 22.632 H16

В учебном пособии излагаются основные положения современной космологии как науки о глобальном строении Вселенной. Определены характеристики однородной (фридмановской) модели: радиус кривизны, метрика пространства времени, критическая плотность, космологическая постоянная, различные расстояния. Построены простейшие космологические модели: однокомонентные (пылевидного и ультрарелятивистского вещества, модели де Ситтера), двух и трехкомпонентные. Рассмотрены закономерности распространения излучения в искривленном пространстве, введено понятие геометрического горизонта, дана интерпретация закона Хаббла разбегания галактик. Обосновывается выбор модели, наиболее адекватной реальности — Стандартной космологической модели. Согласно этой модели рассчитаны возраст Вселенной и зависимость расстояний от красного смещения. Описаны свойства реликтового излучения, отмечены основные этапы физической эволюции Вселенной. Дается представление о первичном нуклеосинтезе и образовании крупномасштабной структуры Вселенной. Отмечаются успехи и трудности классической теории. Показано, как трудности преодолеваются теорией космической инфляции. Обсуждается понятия второй инфляции, второго (кинематического) горизонта и будущее Вселенной.

Пособие предназначено для студентов и аспирантов, специализирующихся по астрономии и теоретической физике.

ББК 22.632

© Д. И. Нагирнер, 2017

Введение

Над космологическими проблемами человечество задумывалось с самого начала своего существования. О возникновении и строении Вселенной говорят многочисленные мифы различных народов. Научная космология началась с работ астрономов эпохи Возрождения: Николая Коперника (1473–1543), Иоганна Кеплера (1571–1630) и Галилео Галилея (1564–1642). Однако все они не шли дальше сферы неподвижных звезд, то есть интересовались строением Солнечной системы. Математическую основу это направление приобрело после установления закона всемирного тяготения Исааком Ньютоном (1642–1727). Космогонические теории впервые предложили Пьер Симон Лаплас (1749–1827) и Иммануил Кант (1724–1804). Такие теории продолжают развиваться вплоть до настоящего времени на основе самых современных представлений физики, но эта наука называется космогонией, а не космологией.

Мир звезд в Галактике изучался многими учеными, отметим вклад Вильяма Гершеля (1738–1822), построившего первую схему строения Галактики. После открытия многочисленных слабых туманностей возник спор, где они находятся: в нашей Галактике или за ее пределами. Спор продолжался до 20-х годов нашего века, пока не были разложены на звезды ближайшие галактики. Современная космология изучает мир галактик и скоплений галактик, а также общее строение, происхождение и эволюцию Вселенной.

Теоретической основой общепринятой космологии сейчас является теория тяготения Альберта Эйнштейна (1879–1955), так называемая общая теория относительности (ОТО), и работы Александра Александровича Фридмана (1888–1925), получившего в 1922 году первые нестационарные решения уравнений тяготения Эйнштейна. Наблюдательный базис ее составляют открытое в 1929 году Эдвином Поуэллом Хабблом (1889–1953) явление разбегания галактик от нас со скоростями, пропорциональными расстояниям до них, а также существование и свойства реликтового фонового излучения, обнаруженного в 1964 году.

В этом учебном пособии кратко излагаются основные положения современной космологии как науки о глобальном строении Вселенной. Приводятся и изучаются общие уравнения Фридмана, обсуждаются их частные решения, являющиеся моделями Вселенной. Определены основные характеристики моделей. Рассмотрены закономерности распространения излучения в искривленном пространстве, введено понятие геометрического горизонта. Дается интерпретация соотношений Хаббла. Описываются способы выбора модели, соответствующей реальной Вселенной, и представляется модель, наиболее адекватная ей — Стандартная космологическая модель. Излагается история открытия реликтового излучения, приводятся его характеристики и искажения. Дается описание основных эпох истории горячей модели Вселенной и основных физических процессов, происходящих в эти эпохи. Дается представление о теории инфляции, первичном нуклеосинтезе и образовании крупномасштабных структур Вселенной. Рассматриваются некоторые неоднородные модели. В приложениях дан вывод уравнений Фридмана из уравнений Эйнштейна, описаны геометрия пространства постоянной кривизны и более сложные космологические модели.

Изложение в основном базируется на монографиях [1–4], но привлечены и другие источники, в том числе и новейшие данные наблюдений и теории.

Книга фактически является новым, расширенным и исправленным изданием пособия [5]. Однако, содержание настолько сильно отличается, что название пособия изменено.

Глава I. Однородные космологические модели

§ 1. Ньютоновская теория

1. Постановка задачи. Как известно, теория тяготения Эйнштейна, опубликованная в 1915 году, впоследствии получила триумфальное обоснование, дав количественно правильное объяснение трем наблюдаемым фактам: смещению перигелия Меркурия (1915), отклонению луча в поле тяжести Солнца (1919) и гравитационному уменьшению частоты излучения, исходящего от тяжелого тела (1961).

Почти сразу после формулировки знаменитых уравнений тяготения А. Эйнштейн (1917) пытался получить на их основе выводы о строении Вселенной. Однако он искал стационарные решения своих уравнений. Как уже говорилось, первые адекватные решения были получены А. А. Фридманом. Они оказались нестационарными. С тех пор именно эти решения описывают основные модели Вселенной.

Вместо того чтобы воспроизводить уравнения ОТО и выводить из них уравнения Фридмана (что сделано в Приложении II), в курсах космологии обычно используется более простой путь, своего рода полуклассический метод [1]. Дело в том, что в 1934 году Эдуард Артур Милн (1896–1950) показал, что решения типа фридмановских можно получить исходя из закона тяготения Ньютона. Мы в этом параграфе последуем по этому пути.

Введем галилееву систему отсчета с началом в произвольной точке. В ней определены пространственные координаты и обычное время. Пусть все пространство заполнено веществом с однородным и изотропным распределением плотности массы ρ_d , которая зависит только от времени. Это предположение называется космологическим принципом. Насколько оно выполняется, обсудим потом.

Рассмотрим некоторую точку на расстоянии R от начала и поместим туда пробное тело (материальную точку) массой m. Используем известное свойство ньютоновского потенциала, заключающееся в том, что при сферически симметричном распределении плотности на наше тело воздействует только масса, находящаяся внутри сферы радиуса R. Поэтому мысленно вырежем из всего пространства шар, ограниченный этой сферой, и изучим его эволюцию. При этом можно считать, что вся масса шара сосредоточена в его центре.

2. Уравнение движения и его следствия. На выбранное тело действует ньютонова сила

$$F = G \frac{mM}{R^2},\tag{1}$$

где $G=6.672\cdot 10^{-8}\ c{\it m}^3/c^2{\it r}-$ постоянная тяготения, а

$$M = \frac{4}{3}\pi R^3 \rho_{\rm d} \tag{2}$$

есть масса шара радиусом R, которая в ходе эволюции не меняется.

Вещество не испытывает вращения, и нет других сил, кроме направленной по радиусу силы (1). Кроме того, и скорость тела направлена по радиусу, то есть его движение должно быть прямолинейным. В соответствии с этим уравнение движения тела запишется в скалярном виде

$$m\ddot{R} = -F$$
 или $\ddot{R} = -G\frac{M}{R^2}.$ (3)

Уравнение (3) соответствует задаче двух тел в наиболее простом случае, когда относительное движение происходит по прямой. При этом несущественно, что вещество движется вместе с рассматриваемым телом. Решается уравнение просто.

Как обычно в задаче двух тел, сначала, домножив уравнение (3) на R и проинтегрировав, запишем закон сохранения энергии

$$\frac{\dot{R}^2}{2} = \frac{GM}{R} - kE,\tag{4}$$

где E > 0 — величина полной (модуль суммы кинетической и потенциальной) энергии единицы массы тела, а k — ее знак, то есть k может быть 1, -1 или 0 (полная энергия пробного тела равна -kmE). Ни величина энергии, ни ее знак не изменяются в ходе движения.

Разрешив соотношение (4) относительно производной, найдем

$$\frac{\mathrm{d}R}{\sqrt{2(GM/R - kE)}} = \mathrm{d}t.$$
(5)

Вид решения зависит от знака энергии k.

3. Решения уравнений. Рассмотрим сначала случай k = 1 и сделаем подстановку

$$R = \frac{GM}{E}\sin^2\frac{\eta}{2}, \quad \mathrm{d}R = \frac{GM}{E}\sin\frac{\eta}{2}\cos\frac{\eta}{2}\mathrm{d}\eta.$$
(6)

Тогда из уравнения (5) получим

$$dt = \frac{(GM/E)\sin(\eta/2)\cos(\eta/2)d\eta}{\sqrt{2E}\sqrt{1/\sin^2(\eta/2) - 1}} = \frac{GM}{(2E)^{3/2}}(1 - \cos\eta)d\eta,$$
(7)

так что при условии $\eta = 0$, когда t = 0,

$$t = \frac{GM}{(2E)^{3/2}} (\eta - \sin \eta).$$
(8)

Выражение скорости через ту же переменную имеет вид

$$\dot{R} = \sqrt{2E} \operatorname{ctg} \frac{\eta}{2}.$$
(9)

В случае k = -1 тригонометрические функции заменяются гиперболическими:

$$R = \frac{GM}{E} \operatorname{sh}^2 \frac{\eta}{2}, \quad \mathrm{d}R = \frac{GM}{E} \operatorname{sh} \frac{\eta}{2} \operatorname{ch} \frac{\eta}{2} \mathrm{d}\eta, \tag{10}$$

так что

$$dt = \frac{(GM/E)\operatorname{sh}(\eta/2)\operatorname{ch}(\eta/2)d\eta}{\sqrt{2E}\sqrt{1/\operatorname{sh}^2(\eta/2) + 1}} = \frac{GM}{(2E)^{3/2}}(\operatorname{ch}\eta - 1)d\eta,$$
(11)

и при том же условии $\eta = 0$, когда t = 0,

$$t = \frac{GM}{(2E)^{3/2}} (\operatorname{sh} \eta - \eta), \quad \dot{R} = \sqrt{2E} \operatorname{cth} \frac{\eta}{2}.$$
 (12)

Случай нулевой энергии, когда k = 0 и значение величины E несущественно, допускает явное решение

$$\frac{\sqrt{R}dR}{\sqrt{2GM}} = dt, \quad R = \left(\frac{9GM}{2}\right)^{1/3} t^{2/3}, \quad \dot{R} = \left(\frac{4GM}{3}\right)^{1/3} t^{-1/3}.$$
(13)

Однако мы запишем его в виде, аналогичном двум предыдущим:

$$R = \frac{GM}{E}\frac{\eta^2}{4}, \quad t = \frac{GM}{(2E)^{3/2}}\frac{\eta^3}{6}, \quad \dot{R} = \sqrt{2E}\frac{2}{\eta}.$$
 (14)

4. *Свойства решений*. Выведенные формулы в параметрической форме описывают прямолинейное движение тела в поле тяжести некоторой массы. Иначе можно считать, что они характеризуют изменение масштаба пространственной длины со временем.

Все решения имеют некоторые общие черты. При t = 0, когда и $\eta = 0$, радиус R = 0. Скорость же в начальный момент $\dot{R} = +\infty$. Это объясняется бесконечностью потенциальной энергии в начале координат, которая должна компенсироваться кинетической энергией, чтобы полная энергия была конечной (неважно, какой она имеет знак или равна 0).

Как явствует из формулы (6), движение при k = 1 финитно и периодично, то есть с ростом времени сначала R растет от 0 до максимума, а затем убывает снова до 0 и т. д. График зависимости R от t изображается циклоидой. При k = -1 и при k = 0 расстояние R при $t \to \infty$ увеличивается до ∞ . В последнем случае при этом скорость стремится к 0, а при k = -1 остается конечной. Движения при k = 1, -1, 0 аналогичны движениям по эллипсу, гиперболе и параболе в задаче двух тел с начальной скоростью, направленной не по прямой, проходящей через центр притяжения.

При $\eta \to 0$ решения с ненулевой энергией описываются теми же формулами, что и решение с нулевой энергией при всех η . Следовательно, на ранних этапах эволюции все три решения почти неразличимы. Однако различия проявляются уже довольно скоро.

Теперь перейдем к ОТО.

§ 2. Интерпретация решений по ОТО

1. Переход к решениям Фридмана. Возвратимся к исходной модели пространства, заполненного однородным веществом с ненулевой средней плотностью. Строго говоря, к такой модели теория Ньютона неприменима, так как согласно ей ньютоновский потенциал обратился бы в каждой точке в бесконечность. Поэтому при нахождении ньютоновских решений пришлось из бесконечного пространства вырезать конечный шар. Между тем основным предположением фридмановской теории является именно однородное распределение вещества и изотропность пространства (космологический принцип). ОТО справляется с этой трудностью. (Отметим высказываемое иногда мнение, что обращение потенциала в бесконечность не является фатальным недостатком, так как сам по себе потенциал не нужен, используются только производные от него.) Здесь будет подробно изложен один из вариантов космологической теории, при котором, как и в предыдущем параграфе, считается, что так называемая космологическая постоянная Эйнштейна равна нулю, а вещество, заполняющее пространство, имеет характер пыли (индекс d) и не оказывает давления.

Если провести строгое решение уравнений тяготения Эйнштейна при постоянной плотности вещества без давления, то результат получается совпадающим по форме с ньютоновским, но с другой интерпретацией. Как в полуклассическом методе квантовой механики, надо классические величины заменить на новые, в данном случае релятивистские, возникающие в теории Эйнштейна.

В этой теории R > 0 обозначает не радиус некоторого шара (или какой-то масштаб), а радиус кривизны трехмерного пространства. Кривизна эта согласно Эйнштейну вызывается наличием тяжелых масс и при равномерном распределении плотности также не зависит от места в пространстве. Если k = 0, то значение радиуса кривизны несущественно (в плоском пространстве он бесконечен), тогда R действительно некоторый масштаб. В общем случае кривизна пространства равна k/R^2 . Классическое финитное (эллиптическое) движение соответствует пространству постоянной положительной, а гиперболическое — постоянной отрицательной кривизны.

Далее, величина E должна быть заменена по формуле $E = c^2/2$, а произведение $GM = R_{\rm m}c^2$. Следовательно, $R_{\rm m}$ — это расстояние, на котором ньютоновская потенциальная энергия тела по отношению к притягивающему центру равна энергии покоя тела:

$$R_{\rm m} = \frac{GM}{c^2}, \quad G\frac{mM}{R_{\rm m}} = mc^2. \tag{15}$$

Заметим, что удвоенное значение этого расстояния $R_{\rm g} = 2R_{\rm m}$ называется гравитационным радиусом. На расстоянии гравитационного радиуса скорость убегания от тела (вторая космическая) как раз равна скорости света.

Нетривиальность замены ньютоновской величины — классической энергии E — на $c^2/2$ показывает, что упрощенное изложение Милна позволяет найти форму решений задачи, но не подменяет общей теории относительности. Только ОТО правильно учитывает метрику пространства—времени. Кроме того, милновский подход возможен лишь при простых моделях.

В результате указанных замен классический закон сохранения энергии примет форму

$$\frac{\dot{R}^2}{2} = \frac{c^2}{2} \left(\frac{2R_{\rm m}}{R} - k \right),\tag{16}$$

из которой следует, что амплитуда изменения радиуса кривизны в закрытой модели равна $2R_{\rm m}$.

Наконец, под временем t подразумевается собственное время каждой точки пространства, что соответствует выбору сопутствующей системы отсчета в каждой точке. Синхронизовать часы можно по значению плотности вещества, которая в данный момент одинакова во всем пространстве. В результате оказывается, что в каждый момент времени метрика пространства, то есть зависимость расстояний от координат одинакова во всех точках и по всем направлениям, а система координат движется вместе с веществом, как приклеенная к нему. Начало координат можно выбрать в любой точке, сопоставив этой точке координату r = 0.

2. Фридмановские решения. Перепишем полученные нерелятивистские решения в релятивистских обозначениях и приведем их в двух таблицах.

Из последнего столбца табл. 1 следует, что скорость изменения радиуса кривизны может быть сколь угодно большой. Это не противоречит принципу теории относительности, так как никакой передачи сигналов здесь не происходит. В первом столбце табл. 2 помещено отношение $H = \dot{R}/R$, которое будем называть функцией Хаббла. О величине, помещенной в последнем столбце табл. 2. скажем ниже.

Т а б л и ц а 1. Эволюция радиуса кривизны в модели пылевидного вещества.

k	Bремя t	Радиус кривизны R	Скорость \dot{R}
1	$\frac{R_{\rm m}}{c}(\eta - \sin \eta)$	$2R_{\rm m}\sin^2\frac{\eta}{2}$	$c \operatorname{ctg} rac{\eta}{2}$
0	$\frac{R_{\rm m}}{c}\frac{\eta^3}{6}$	$\frac{R_{\rm m}\eta^2}{2} = \left(\frac{9R_{\rm m}c^2t^2}{2}\right)^{1/3}$	$\frac{2c}{\eta}$
-1	$\frac{R_{\rm m}}{c}(\sin\eta-\eta)$	$2R_{\rm m} \operatorname{sh}^2 \frac{\eta}{2}$	$c \operatorname{cth} \frac{\eta}{2}$

k	Н	Плотность $\rho_{\rm d}$	$\Omega_{ m d}= ho_{ m d}/ ho_{ m c}$
1	$\frac{c}{2R_{\rm m}}\frac{\cos(\eta/2)}{\sin^3(\eta/2)}$	$\frac{3}{8\pi G} \frac{c^2}{4R_{\rm m}^2} \frac{1}{\sin^6(\eta/2)}$	$\frac{1}{\cos^2(\eta/2)}$
0	$\frac{c}{R_{\rm m}}\frac{4}{\eta^3} = \frac{2}{3}\frac{1}{t}$	$\frac{3}{8\pi G} \frac{c^2}{4R_{\rm m}^2} \frac{64}{\eta^6}$	1
-1	$\frac{c}{2R_{\rm m}}\frac{{\rm ch}(\eta/2)}{{\rm sh}^3(\eta/2)}$	$\frac{3}{8\pi G} \frac{c^2}{4R_{\rm m}^2} \frac{1}{{\rm sh}^6(\eta/2)}$	$\frac{1}{\mathrm{ch}^2(\eta/2)}$

Т а б л и ц а 2. Эволюция плотности и функции Хаббла в модели пылевидного вещества.

3. Метрика замкнутого трехмерного пространства. Рассмотрим сначала случай k = 1. Радиус кривизны растет от 0 при t = 0 до максимального значения $2R_{\rm m}$ при $\eta = \pi$, $t = \pi R_{\rm m}/c$. Затем рост сменяется уменьшением снова до 0 при $\eta = 2\pi$, $t = 2\pi R_{\rm m}/c$. Пространство имеет постоянную (в каждый момент) положительную кривизну. Проще всего понять структуру такого пространства исходя из четырехмерной модели.

В четырехмерном евклидовом пространстве можно представить трехмерное пространство постоянной положительной кривизны в виде гиперсферы, определяемой уравнением

$$r^{2} + u^{2} = R^{2}, \quad r^{2} = x^{2} + y^{2} + z^{2},$$
(17)

где u-четвертая координата,
аR-радиус сферы. Тогда ввиду того что
 $\vec{r}^{\,2}=r^2,$

$$xdx + ydy + zdz = \vec{r}d\vec{r} = rdr = -udu, \quad du = -\frac{rdr}{u}.$$
(18)

Дифференциал интервала в четырехмерном евклидовом пространстве определяется, как обычно, в виде суммы квадратов дифференциалов четырех декартовых координат. Запишем его в сферических координатах

$$dl^2 = dr^2 + r^2 d\omega^2 + du^2, \quad d\omega^2 = d\theta^2 + \sin^2 \theta d\phi^2, \tag{19}$$

где d ω — элемент длины на сфере единичного радиуса. Заменив в квадрате элемента длины четырехмерного пространства d l^2 дифференциал четвертой переменной согласно (18), мы перейдем в трехмерную гиперсферу и получим

$$dl^{2} = dr^{2} + r^{2}d\omega^{2} + \frac{r^{2}dr^{2}}{R^{2} - r^{2}} = \frac{dr^{2}}{1 - r^{2}/R^{2}} + r^{2}d\omega^{2}.$$
(20)

Сделаем подстановку $r = R \sin \chi$. Тогда $u = R \cos \chi$, а

$$dl^2 = R^2 (d\chi^2 + \sin^2 \chi d\omega^2).$$
⁽²¹⁾

Ясно, что $0 \le \chi \le \pi, \, 0 \le r \le R.$

Квадрат элемента длины определяет всю геометрию пространства. Например, можно найти элемент его объема в разных формах:

$$d^{3}r = \frac{dr}{\sqrt{1 - r^{2}/R^{2}}}r^{2}d^{2}\omega = R^{3}d\chi\sin^{2}\chi d^{2}\omega, \quad d^{2}\omega = \sin\theta d\theta d\phi.$$
(22)

Возьмем две точки в пространстве с координатами $\chi = 0$ и $\chi = \chi_0$. Соответствующие координаты r будут 0 и $r_0 = R \sin \chi_0$. Пусть в первой точке находится наблюдатель, вторую назовем пробной. Соединим эти точки лучом, исходящим от наблюдателя. Вдоль луча значения углов θ и ϕ постоянны, а элемент расстояния $dl = R d\chi$, так что растояние от наблюдателя до пробной точки $l_0 = R\chi_0$. Элемент площади поверхности сферы на этом расстоянии $r_0^2 d^2 \omega = R^2 \sin^2 \chi_0 \sin \theta d\theta d\phi$. Элемент $d^2 \omega$ относится к единичной сфере, поэтому r_0 — это радиус сферы, проходящей через пробную точку. В пространстве постоянной положительной кривизны радиус r_0 меньше расстояния от наблюдателя до поверхности сферы $r_0 = R \sin \chi_0 < l_0 = R\chi_0$, наблюдатель не находится в центре этой сферы, который вообще не помещается в реальном пространстве, а является точкой четырехмерного пространства. Площадь поверхности сферы радиуса $r = r_0$ вычисляется сразу, так как интеграл по сферическим углам равен 4π : она равна $4\pi r_0^2 = 4\pi R^2 \sin^2 \chi_0$. Легко находится и длина экватора этой сферы, определяемого условиями $r = r_0$, $\theta = \pi/2$: $l_{eq} = 2\pi R \sin \chi_0$. Обе эти величины с ростом χ_0 сначала растут до

максимума, а затем убывают и обращаются в нуль при $\chi_0 = \pi$, причем объем, заключенный внутри сферы, с увеличением координаты χ_0 , как и расстояние l_0 , монотонно растет:

$$V(\chi_0) = 4\pi \int_0^{r_0} \frac{r^2 \mathrm{d}r}{\sqrt{1 - r^2/R^2}} = 4\pi R^3 \int_0^{\chi_0} \sin^2 \chi \mathrm{d}\chi = 2\pi R^3 \left(\chi_0 - \frac{1}{2}\sin 2\chi_0\right).$$
(23)

Полный объем пространства в данном случае конечен: $V(\pi) = 2\pi^2 R^3$. Поэтому такое пространство называется замкнутым (или закрытым). Оно аналогично поверхности трехмерной сферы.

Действительно, отличие заключается в том, что в двумерном случае нет координаты z. Уравнение сферы имеет вид (17), но $r^2 = x^2 + y^2$. Во всех остальных равенствах также надо опустить z (положить z = 0 или считать, что угол $\theta = \pi/2$). Тогда d $\omega = d\phi$ и элемент двумерного объема (площади на сфере) $d^2r = R^2 \sin \chi d\chi d\phi$. Объем такого пространства, естественно, равен площади поверхности сферы $4\pi R^2$. В случае двумерной сферы в трехмерном пространстве очевидно, что расстояние до окружности, проведенной на этой сфере, больше, чем ее радиус, а центр окружности находится не на сфере, а внутри нее. Очевидно также, что радиус окружности (параллели) и ее длина с удалением от фиксированной точки (полюса) сначала растут, а затем уменьшаются, в то время как площадь поверхности от полюса до параллели растет.

4. Метрика открытых пространств. Случай k = -1 не допускает столь наглядной интерпретации: надо рассматривать сразу четырехмерное пространство Лобачевского. Его описание отличается от приведенного выше заменой некоторых плюсов на минусы. Вместо гиперсферы надо рассматривать другую гиперповерхность: верхнюю часть двуполостного гиперболоида вращения при индефинитной метрике, то есть

$$r^{2} - u^{2} = -R^{2}, \quad r^{2} = x^{2} + y^{2} + z^{2}, \quad \mathrm{d}l^{2} = \mathrm{d}r^{2} + r^{2}\mathrm{d}\omega^{2} - \mathrm{d}u^{2}.$$
 (24)

Следствием этого будет замена тригонометрических функций на гиперболические, как при классическом рассмотрении в предыдущем параграфе. Например:

$$r = R \operatorname{sh} \chi, \ \mathrm{d}l^2 = R^2 (\mathrm{d}\chi^2 + \operatorname{sh}^2 \chi \mathrm{d}\omega^2), \ \mathrm{d}^3 r = R^3 \operatorname{sh}^2 \chi \mathrm{d}\chi \mathrm{d}^2 \omega.$$
(25)

Трехмерное пространство тоже оказывается пространством Лобачевского и имеет бесконечные протяженность и объем. Оно называется гиперболическим, или открытым. В нем, как легко заметить, радиус сферы, все точки которой находятся на одном расстоянии от наблюдателя, больше этого расстояния: $R \operatorname{sh} \chi > R \chi$.

Случай k = 0 соответствует трехмерному евклидову пространству, которое также бесконечно по объему.

Многие соотношения можно записать для трех случаев единым образом. Например, формулы (20) и (22) переписываются так:

$$dl^{2} = \frac{dr^{2}}{1 - kr^{2}/R^{2}} + r^{2}d\omega^{2}, \ d^{3}r = \frac{dr}{\sqrt{1 - kr^{2}/R^{2}}}r^{2}d^{2}\omega.$$
 (26)

При k = -1 и χ и r изменяются от 0 до ∞ .

Если ввести общее обозначение для тригонометрического и гиперболического синуса и их предельного значения (см. Приложение I, формулы (ПІ.1) и (ПІ.2)):

$$\operatorname{sn}_{k} \chi = \begin{cases} \sin \chi, & \operatorname{при} \quad k = 1, \\ \chi, & \operatorname{при} \quad k = 0, \\ \operatorname{sh} \chi, & \operatorname{при} \quad k = -1, \end{cases} \quad \operatorname{dsn}_{k} \chi = \sqrt{1 - k \operatorname{sn}_{k}^{2} \chi} \mathrm{d}\chi, \tag{27}$$

то при k = 1, 0, -1 будет $r = R \operatorname{sn}_k \chi$ и

$$dl^2 = R^2 \left[d\chi^2 + \operatorname{sn}_k^2 \chi d\omega^2 \right].$$
⁽²⁸⁾

Элемент объема также можно представить в виде, справедливом для всех случаев:

$$\mathrm{d}^3 r = R^3(\eta) \mathrm{d}\chi \operatorname{sn}_k^2 \chi \mathrm{d}^2 \omega. \tag{29}$$

5. Метрика четырехмерного пространства—времени. Все рассуждения предыдущего пункта относились к фиксированному моменту времени. Но Вселенная должна рассматриваться как пространственно-временное многообразие, то есть четырехмерное пространство. Это пространство—время не имеет ничего общего с рассмотренными выше фиктивными (вспомогательными) четырехмерными пространствами. Его геометрия определяется, как и в обычной (специальной) теории относительности, выражением для квадрата элемента интервала, которое для однородного пространства и выбранной системы отсчета имеет вид

$$\mathrm{d}s^2 = c^2 \mathrm{d}t^2 - \mathrm{d}l^2,\tag{30}$$

где dl^2 дается одной из приведенных выше формул. Наиболее удобная форма — (28) (ее частные виды — равенства (21) и (25)).

Поскольку R зависит только от времени, можно сделать замену

$$cdt = R(\eta)d\eta. \tag{31}$$

Легко убедиться, что новая переменная η совпадает с использованной в предыдущем параграфе, а

$$ds^{2} = R^{2}(\eta) \left[d\eta^{2} - d\chi^{2} - \operatorname{sn}_{k}^{2} \chi d\omega^{2} \right].$$
(32)

Координата η определяет ход времени и изменение радиуса кривизны согласно данным табл. 1, а координата χ определяет расстояние. Формула (32) называется метрикой Фридмана—Робертсона—Уокера (ФРУ).

Заключить, что величина *R* является радиусом кривизны, проще всего исходя именно из квадрата интервала в форме (32), что и делается в книге [4]. Модель с k = 0 соответствует эвклидову пространству в каждый заданный момент и называется вселенной Эйнштейна—де Ситтера.

§ 3. Уравнения однородных космологических моделей

1. Два уравнения Фридмана. Начав с простейших моделей пылевидного вещества, мы пришли к их интерпретации как моделей замкнутого, открытого или плоского пространства, а затем к метрике ФРУ. Теперь обратимся к более общим моделям, основанным на этой метрике.

С принятием метрики (32) из уравнений тяготения Эйнштейна (общей теории относительности) выводятся два независимых уравнения (см. Приложение II)

$$\ddot{R} = -\frac{4\pi G}{3} \left(\rho + 3\frac{P}{c^2}\right) R + \frac{\Lambda c^2}{3} R,\tag{33}$$

$$\dot{R}^2 = \frac{8\pi G}{3}\rho R^2 + \frac{\Lambda c^2}{3}R^2 - kc^2.$$
(34)

Напомним, что здесь R — радиус кривизны пространства, Λ — космологическая постоянная, $\rho = \rho_{\rm m} + \rho_{\rm r}$ — массовая плотность материи, то есть вещества (m) и излучения (r), $P = P_{\rm m} + P_{\rm r}$ — давление. Константа k может принять одно из трех значений: k = 1, 0, -1, соответственно для моделей с замкнутой, плоской и открытой метрикой пространства. Подчеркнем, что в уравнении (34) константа k появилась не в результате интегрирования уравнения (33), а как следствие соотношения $cs_k^2 \chi + k sn_k^2 \chi = 1$, где $cs_k \chi$ — общее обозначение для тригонометрического и гиперболического косинусов, а также их предельного случая (см. Приложение I).

Уравнения тяготения Эйнштейна написаны в виде одного тензорного уравнения, куда входят тензоры второго ранга, а именно, тензор кривизны пространства-времени в левой части и тензор энергии-импульса материи в правой. Уравнение записывается в матричном виде, содержащем матрицы четвертого порядка, так что всего уравнений получается 16. Из-за симметрии тензоров число уравнений сводится к 10. Однако для метрики ФРУ, основанной на космологическом принципе, некоторые уравнения, как показано в Приложении II, оказываются тождествами, другие совпадают, независимых уравнений остается всего два.

2. Преобразование уравнений. Космологическое слагаемое в уравнениях стоит отдельно от других слагаемых. Присоединим слагаемые с космологической постоянной в уравнениях (33)–(34) к первым слагаемым, записав их в том же виде, то есть положив

$$\frac{\Lambda c^2}{3} = -\frac{4\pi G}{3} \left(\rho_{\Lambda} + 3\frac{P_{\Lambda}}{c^2} \right), \quad \frac{\Lambda c^2}{3} = \frac{8\pi G}{3} \rho_{\Lambda}.$$
(35)

Чтобы удовлетворить этим соотношениям, надо определить

$$\rho_{\Lambda} = \frac{\Lambda c^2}{8\pi G}, \quad P_{\Lambda} = -\rho_{\Lambda} c^2.$$
(36)

Будем для краткости называть носитель этих величин, поскольку это не вещество и не излучение, вакуумом. С учетом определений (36) уравнения (33)–(34) запишутся короче:

$$\ddot{R} = -\frac{4\pi G}{3} \left(\rho_{\rm t} + 3\frac{P_{\rm t}}{c^2} \right) R,\tag{37}$$

$$\dot{R}^2 = \frac{8\pi G}{3}\rho_{\rm t}R^2 - kc^2,\tag{38}$$

где полные плотность и давление трех компонент

$$\rho_{\rm t} = \rho + \rho_{\Lambda} = \rho_{\rm m} + \rho_{\rm r} + \rho_{\Lambda}, \quad P_{\rm t} = P + P_{\Lambda} = P_{\rm m} + P_{\rm r} + P_{\Lambda}. \tag{39}$$

Иногда и последнее слагаемое в уравнении (38) присоединяют к предпоследнему, вводя так называемые плотность и давление кривизны

$$\rho_k = -\frac{3}{8\pi G} \frac{kc^2}{R^2}, \quad P_k = \frac{1}{8\pi G} \frac{kc^2}{R^2}.$$
(40)

Это определение позволяет записать второе уравнение еще короче (вид первого уже не упрощается, но перепишем и его):

$$\ddot{R} = -\frac{4\pi G}{3}\rho_{\rm g}R, \quad \rho_{\rm g} = \rho_{\rm u} + 3\frac{P_{\rm u}}{c^2},$$
(41)

$$\dot{R}^2 = \frac{8\pi G}{3} \rho_{\rm u} R^2, \tag{42}$$

где

$$\rho_{\rm u} = \rho_{\rm t} + \rho_k = \rho_{\rm m} + \rho_{\rm r} + \rho_{\Lambda} + \rho_k, \quad P_{\rm u} = P_{\rm t} + P_k = P_{\rm m} + P_{\rm r} + P_{\Lambda} + P_k.$$
(43)

Такое преобразование уравнений носит совершенно формальный характер, но все же в дальнейшем мы используем уравнения в такой компактной форме.

Как явствует из уравнений (37) и (41), в создании гравитационного воздействия участвует не только плотность, но и давление. Величина, входящая в уравнение (41) и обозначенная $\rho_{\rm g}$, называется гравитирующей или гравитационной плотностью:

$$\rho_{\rm g} = \rho_{\rm u} + 3\frac{P_{\rm u}}{c^2} = \rho_{\rm t} + 3\frac{P_{\rm t}}{c^2}.$$
(44)

Отметим еще, что если формально ввести определение полной массы трех гравитационных компонент (кривизна в нее вклада не вносит)

$$M_{\rm g} = \frac{4\pi}{3}\rho_{\rm g}R^3,\tag{45}$$

то уравнение (41) записывается в виде, полностью совпадающем с видом ньютоновского уравнения (3):

$$\ddot{R} = -G\frac{M_{\rm g}}{R^2}.\tag{46}$$

3. Совместность уравнений. Просто из вида уравнений Фридмана следует, что для их совместности нужно потребовать выполнения какого-то дополнительного условия. Действительно, в первое уравнение входит давление, которое создает гравитацию вместе с плотностью. Во втором уравнении давления нет. Попробуем найти указанное условие.

Продифференцируем уравнение (38) по времени. Получим

$$2\dot{R}\ddot{R} = \frac{8\pi G}{3}\dot{\rho}_{\rm t}R^2 + \frac{8\pi G}{3}\rho_{\rm t}2R\dot{R}, \quad \ddot{R} = \frac{4\pi G}{3}\dot{\rho}_{\rm t}\frac{R^2}{\dot{R}} + \frac{8\pi G}{3}\rho_{\rm t}R.$$
(47)

Приравняем полученное выражение для второй производной от радиуса кривизны его выражению из уравнения (37). Сократив на $4\pi GR$, найдем

$$\frac{1}{3}\dot{\rho}_{t}\frac{R}{\dot{R}} + \frac{2}{3}\rho_{t} = -\frac{1}{3}\rho_{t} - \frac{P_{t}}{c^{2}}, \quad \frac{1}{3}\dot{\rho}_{t}\frac{R}{\dot{R}} + \rho_{t} + \frac{P_{t}}{c^{2}} = 0, \quad \dot{\rho}_{t} = -3\left(\rho_{t} + \frac{P_{t}}{c^{2}}\right)H, \tag{48}$$

где новая переменная, называемая в космологии "постоянной" Хаббла, так как она постоянна во всем пространстве в каждый момент времени, равна отношению

$$H = \frac{R}{R} \,. \tag{49}$$

Однако, она зависит от времени, поэтому будем ее называть функцией Хаббла.

4. Уравнение для функции Хаббла. Поскольку в последнем соотношении появилась новая функция, полезно найти уравнение и для нее, связав ее с плотностью. Для этого напишем очевидное равенство и приравняем результат к выражению из уравнения (37), сократив на R:

$$\ddot{R} = \frac{\mathrm{d}\dot{R}}{\mathrm{d}t} = \frac{\mathrm{d}RH}{\mathrm{d}t} = \dot{R}H + R\dot{H} = R(H^2 + \dot{H}) = -\frac{4\pi G}{3} \left(\rho_{\mathrm{t}} + 3\frac{P_{\mathrm{t}}}{c^2}\right)R.$$
(50)

Получится

$$\dot{H} = -H^2 - \frac{4\pi G}{3} \left(\rho_{\rm t} + 3\frac{P_{\rm t}}{c^2} \right). \tag{51}$$

Два уравнения (48) и (51) составляют систему, связывающую плотность и функцию Хаббла. Заметим, что реально учет космологического слагаемого не влияет на вид уравнения (48), а добавление кривизны не изменяет вида соотношения (51).

5. Физический смысл дополнительного условия. Возьмем объем V и найдем полную энергию, то есть энергию всех компонент, заключенную в этом объеме. Так как ρ — это плотность массы, то для получения энергии ее надо умножить на c^2 . Найдем дифференциал полной энергии и подставим дифференциал плотности из (48). С учетом трехмерности объема (dV/V = 3dR/R) получится

$$d(\rho_{t}c^{2}V) = c^{2}(Vd\rho_{t} + \rho_{t}dV) = -3c^{2}V\left(\rho_{t} + \frac{P_{t}}{c^{2}}\right)\frac{dR}{R} + c^{2}\rho_{t}dV = -c^{2}V\left(\rho_{t} + \frac{P_{t}}{c^{2}}\right)\frac{dV}{V} + c^{2}\rho_{t}dV = -P_{t}dV.$$
 (52)

Получилось, что изменение энергии равно работе силы давления, что в термодинамике означает адиабатичность расширения. Следовательно, космологическое расширение (или сжатие, если оно наступит) можно интерпретировать как адиабатический процесс.

6. Невзаимодействующие компоненты. Из изложенного ясно, что для полного определения эволюции космологической модели необходимо как-то установить уравнение состояния космологической смеси. В различные эпохи уравнение, связывающее вещество и излучение, может иметь различную форму, например, в него может входить температура *T*, для определения которой придется исследовать физические процессы взаимодействия этих гравитирующих компонент.

Однако, на протяжении большей части эволюции Вселенной вплоть до настоящего времени космологические компоненты между собой не взаимодействуют. Кривизна и вакуум вообще ни с чем взаимодействовать не могут. Две другие компоненты, то есть вещество и излучение, также могут считаться невзаимодействующими после так называемой эпохи рекомбинации, которая закончилась примерно через 200 тысяч лет после начала расширения, а возраст Вселенной более 13 миллиардов лет. Но и до рекомбинации взаимодействие излучения и вещества не изменяли плотности их масс. Так что эти две компоненты можно считать невзаимодействующими после эпохи аннигиляции электрон-позитронных пар, когда масса электронов и позитронов перешла в энергию излучения.

Отдельного разговоря требует вопрос о нейтрино. Более подробно об этой компоненте будет сказано в другом разделе, олнако, уже сейчас заметим, что из-за малой массы покоя нейтрино всех типов оказываются ультрарелятивистскими также почти на всем протяжении эволюции Вселенной. В эпохи, близкие к современности, наличие массы покоя может сказаться на величине плотности массы нейтрино, но в эти эпохи доля их массы в общей массе вещества незначительна, так что можно их по-прежнему считать удльтрарелятивистскими массы нейтрино. Таким образом, вещество можно подразделить на холодную (или пылевидную) и горячую (то есть нейтрино) составляющие: $\rho_m = \rho_d + \rho_{\nu}$.

Для каждой из этих компонент выполняется свое уравнение состояния. Энергия холодного вещества заключена в его энергии покоя, то есть в массе, а давлением можно пренебречь и считать вещество пылевидным, то есть $\rho_{\rm m} = \rho_{\rm d}$, $P_{\rm m} = P_{\rm d} = 0$ (d – dust). Для равновесного (теплового) излучения и для нейтрино выполняется известное соотношение между давлением и плотностью массы, как для всяких ультрарелятивистских частиц: $P = (c^2/3)\rho$.

Таким образом,

$$P_{\rm d} = 0, \quad P_{\rm r} = \frac{c^2}{3}\rho_{\rm r}, \quad P_{\nu} = \frac{c^2}{3}\rho_{\nu}, \quad P_{\rm r\nu} = \frac{c^2}{3}\rho_{\rm r\nu}, \quad P_{\Lambda} = -c^2\rho_{\Lambda}, \quad P_k = -\frac{c^2}{3}\rho_k. \tag{53}$$

Последнее уравнение вытекает из определений (40). Ультрарелятивистские нейтрино объединим с излучением.

Из уравнений состояния (53) и уравнения (48), записанного для каждой компоненты раздельно, следуют выражения для производных:

$$\dot{\rho}_{\rm d} = -3\rho_{\rm d}H, \quad \dot{\rho}_{\rm r\nu} = -3\left(\rho_{\rm r\nu} + \frac{1}{3}\rho_{\rm r\nu}\right) = -4\rho_{\rm r\nu}H, \quad \dot{\rho}_{\Lambda} = 0.$$
 (54)

Так как функция Хаббла является производной от логарифма радиуса кривизны, то уравнения (54) легко интегрируются:

$$\rho_{\rm d} = \rho_{\rm d}^0 \frac{R_0^3}{R^3}, \quad \rho_{\rm r\nu} = \rho_{\rm r\nu}^0 \frac{R_0^4}{R^4}, \quad \rho_{\Lambda} = \rho_{\Lambda}^0.$$
(55)

Здесь и в дальнейшем индексом 0 отмечаются величины, относящиеся к определенному моменту времени, как правило, к современной эпохе.

Для определения связи плотности кривизны с радиусом кривизны интегрирования не требуется, так как она задается определением (40):

$$\rho_k = \rho_k^0 \frac{R_0^2}{R^2}, \quad \rho_k^0 = -\frac{3}{8\pi G} \frac{kc^2}{R_0^2}.$$
(56)

Безразмерное отношение $a = R/R_0$ называют масштабным множителем (или фактором). Он связан с особой космологической величиной, определяемой из наблюдений, называемой красным смещением и обозначаемой z. Точное определение красного смещения будет дано в следующей главе, но уже здесь приведем указанную связь:

$$a = \frac{R}{R_0} = \frac{1}{1+z}.$$
(57)

Через масштабный множитель плотности выражаются проще:

$$\rho_{\rm d} = \frac{\rho_{\rm d}^0}{a^3}, \quad \rho_{\rm r\nu} = \frac{\rho_{\rm r\nu}^0}{a^4}, \quad \rho_{\Lambda} = \rho_{\Lambda}^0, \quad \rho_k = \frac{\rho_k^0}{a^2}.$$
(58)

С учетом уравнений состояния (53) гравитирующая плотность равна

$$\rho_{\rm g} = \rho_{\rm u} + 3\frac{P_{\rm u}}{c^2} = \rho_{\rm t} + 3\frac{P_{\rm t}}{c^2} = \rho_{\rm d} + 2\rho_{\rm r\nu} - 2\rho_{\Lambda}.$$
(59)

7. *Критические величины*. В космологической теории вводится несколько стандартных обозначений для величин, определяющих геометрические свойства пространства. Перенесем в уравнении (38) первое слагаемое в правой части в левую и вынесем множитель при плотности в этом слагаемом за скобки:

$$\frac{8\pi G}{3}R^2(\rho_{\rm c}-\rho_{\rm t}) = -kc^2.$$
(60)

Первое слагаемое в скобках — так называемая критическая плотность

$$\rho_{\rm c} = \frac{3H^2}{8\pi G}.\tag{61}$$

Знак параметра k совпадает со знаком разности $\rho_t - \rho_c$: они положительны, отрицательны или равны нулю соответственно для замкнутой, открытой и плоской моделей.

Из уравнения (60) и определений (61) и (39) вытекает, что $\rho_{\rm c} = \rho_{\rm u}$.

Другими критическими параметрами (или параметрами критичности) называют отношения

$$\Omega_{\rm d} = \frac{\rho_{\rm d}}{\rho_{\rm c}}, \quad \Omega_{\rm r} = \frac{\rho_{\rm r}}{\rho_{\rm c}}, \quad \Omega_{\nu} = \frac{\rho_{\nu}}{\rho_{\rm c}}, \quad \Omega_{\rm r} = \frac{\rho_{\rm r}}{\rho_{\rm c}}, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_{\rm c}}, \quad \Omega_{\rm t} = \frac{\rho_{\rm t}}{\rho_{\rm c}}, \quad \Omega_{\rm u} = \frac{\rho_{\rm u}}{\rho_{\rm c}}, \quad \Omega_{k} = \frac{\rho_{k}}{\rho_{\rm c}} = -\frac{kc^{2}}{\dot{R}^{2}}. \tag{62}$$

Очевидны соотношения

$$\Omega_{\rm t} = \Omega_{\rm d} + \Omega_{\rm r\nu} + \Omega_{\Lambda}, \quad \Omega_{\rm u} = \Omega_{\rm t} + \Omega_k = \Omega_{\rm d} + \Omega_{\rm r\nu} + \Omega_{\Lambda} + \Omega_k = 1.$$
(63)

Эти параметры суть доли различных составляющих в критической плотности. Через них уравнение (60) записывается в виде

$$\dot{R}^2(1-\Omega_t) = -kc^2, \quad k = \operatorname{sgn}(\Omega_t - 1) = \operatorname{sgn}(\Omega_t^0 - 1),$$
(64)

так что при $\Omega_t>1$ пространство замкнуто, при $\Omega_t<1-$ открыто, при $\Omega_t=1-$ плоское.

Именно отношение Ω_d для моделей Вселенной без давления и без космологического слагаемого ($\Omega_{r\nu} = \Omega_{\Lambda} = 0$) было помещено в последнем столбце табл. 2.

8. Сохраняющиеся величины. Из уравнения (48) вытекает, что

$$\frac{\dot{\rho}_{\rm t}}{\rho_{\rm t} + P_{\rm t}/c^2} = -3\frac{R}{R}, \quad \frac{{\rm d}\rho_{\rm t}}{\rho_{\rm t} + P_{\rm t}/c^2} = -3\frac{{\rm d}R}{R}.$$
(65)

Таким образом,

$$\int \frac{\mathrm{d}\rho_{\rm t}}{\rho_{\rm t} + P_{\rm t}/c^2} + 3\ln R = \text{const.}$$
(66)

Если привязать эту величину к современным значениям, то получится

$$\frac{R^3}{R_0^3} \exp\left(\int_{\rho_t^0}^{\rho_t} \frac{\mathrm{d}\rho_t'}{\rho_t' + P_t'/c^2}\right) = 1.$$
(67)

Из соотношения (67) вытекает, что в космологической ситуации сохраняющимися являются не отдельно энергия, масса и другие величины, а их некоторая комбинация.

При невзаимодействующих компонентах сохраняющимися величинами являются

$$M_{\rm d} = \frac{4\pi}{3} \rho_{\rm d} R^3, \quad W = 4\pi \rho_{\rm r\nu} R^4, \quad \rho_{\Lambda} = \rho_{\Lambda}^0, \quad \rho_k R^2.$$
(68)

Полная масса всех компонент в космологических моделях не сохраняется, так как

$$M_{\rm t} = \frac{4\pi}{3}\rho_{\rm t}R^3 = M_{\rm d} + M_{\rm r\nu} + M_{\Lambda} = M_{\rm d} + \frac{W}{3R} + \frac{4\pi}{3}\rho_{\Lambda}R^3.$$
 (69)

Постоянной остается только масса пылевидного вещества, масса излучения и нейтрино с ростом радиуса кривизны убывает как 1/R, а масса вакуума растет пропорционально росту объема. Таким образом, энергия излучения и нейтрино исчезает, а вакуум рождается.

9. Общее решение для невзаимодействующих компонент. В рассмотренном выше случае, когда три компоненты Вселенной: пылевидное вещество, излучение и вакуум, между собой не взаимодействуют, возможно получить решение космологических уравнений в квадратурах.

Перепишем соотношения (58) через современные значения параметров критичности:

$$\rho_{\rm d} = \rho_{\rm c}^0 \frac{\Omega_{\rm d}^0}{a^3}, \quad \rho_{\rm r\nu} = \rho_{\rm c}^0 \frac{\Omega_{\rm r\nu}^0}{a^4}, \quad \rho_{\Lambda} = \rho_{\rm c}^0 \Omega_{\Lambda}^0, \quad \rho_k = \rho_{\rm c}^0 \frac{\Omega_k^0}{a^2}, \quad \Omega_{\Lambda}^0 = \frac{\Lambda c^2}{3H_0^2}, \quad \Omega_k^0 = -\frac{kc^2}{R_0^2 H_0^2}. \tag{70}$$

Сюда входят современные значения критической плотности $\rho_c^0 = \frac{3H_0^2}{8\pi G}$ и функции Хаббла H_0 (то есть постоянная Хаббла). Подставим эти выражения в формулы (43) для полной плотности и (59) для гравитационной плотности через их составляющие:

$$\rho_{\rm u} = \frac{\rho_{\rm c}^0}{a^4} (\Omega_{\rm r\nu}^0 + \Omega_{\rm d}^0 a + \Omega_k^0 a^2 + \Omega_{\Lambda}^0 a^4), \quad \rho_{\rm g} = \frac{\rho_{\rm c}^0}{a^4} (2\Omega_{\rm r\nu}^0 + \Omega_{\rm d}^0 a - 2\Omega_{\Lambda}^0 a^4). \tag{71}$$

Затем подставим полную плотность в уравнение (42):

$$H^{2} = \frac{\dot{a}^{2}}{a^{2}} = \frac{H_{0}^{2}}{a^{4}} \left(\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0} a + \Omega_{k}^{0} a^{2} + \Omega_{\Lambda}^{0} a^{4} \right).$$
(72)

В качестве параметров в это уравнение входят только величины, относящиеся к данному моменту. При этом нефизическую величину Ω_k^0 можно исключить, воспользовавшись соотношением (63) при $t = t_0$.

Разделение переменных после извлечения корня дает

$$\frac{a\mathrm{d}a}{\sqrt{\Omega_{\mathrm{r}\nu}^0 + \Omega_{\mathrm{d}}^0 a + \Omega_k^0 a^2 + \Omega_{\Lambda}^0 a^4}} = H_0 \mathrm{d}t.$$
(73)

Пределы интегрирования в интеграле по *a* могут быть различными, так как в общем случае подкоренное выражение, представляющее многочлен четвертой степени, может обращаться в нуль. Если этого не происходит, то эволюция масштабного множителя определяется уравнением, неявное решение которого представляется интегралом

$$\int_{0}^{a} \frac{a \mathrm{d}a}{\sqrt{\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0} a + \Omega_{k}^{0} a^{2} + \Omega_{\Lambda}^{0} a^{4}}} = H_{0}t.$$
(74)

Радиус кривизны R или масштабный множитель a можно находить как функции времени t или в параметрическом виде, как это предполагается в выражении для метрики (32). Тогда находятся функции $R(\eta)$ и $t(\eta)$ от параметра η , связанного со временем соотношением (31) и называемого конформным временем. Уравнения, связывающие a и η выглядят так:

$$\frac{\mathrm{d}a}{\sqrt{\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0}a + \Omega_{k}^{0}a^{2} + \Omega_{\Lambda}^{0}a^{4}}} = \frac{H_{0}R_{0}}{c}\mathrm{d}\eta, \quad \int_{0}^{a} \frac{\mathrm{d}a}{\sqrt{\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0}a + \Omega_{k}^{0}a^{2} + \Omega_{\Lambda}^{0}a^{4}}} = \frac{H_{0}R_{0}}{c}\eta. \tag{75}$$

С помощью формулы для гравитационной плотности (71) перепишем также уравнение (41):

$$\frac{\ddot{a}}{a} = \frac{H_0^2}{a^4} \left(2\Omega_{\mathrm{r}\nu}^0 + \Omega_{\mathrm{d}}^0 a - 2\Omega_{\Lambda}^0 a^4 \right).$$
(76)

10. Случай плоских моделей. В случае плоских моделей в (74) и (75) надо просто подставить $\Omega_k^0 = 0$. Однако тогда величина R_0 неопределенна и не должна входить в величины, имеющие прямой смысл. Поэтому можно просто положить $R_0 = c/H_0$. Тогда элемент размерного метрического расстояния выразится формулой

$$dl^{2} = \frac{c^{2}}{H_{0}^{2}}a^{2}(\eta)[d\chi^{2} + \chi^{2}d\omega^{2}], \quad d\omega^{2} = d\theta^{2} + \sin^{2}\theta d\phi^{2}.$$
(77)

Метрика плоского пространства-времени тогда запишется в виде

$$ds^{2} = \frac{c^{2}}{H_{0}^{2}}a^{2}(\eta) \left[d\eta^{2} - d\chi^{2} - \chi^{2}d\omega^{2}\right].$$
(78)

Для вновь определенной метрики из (74) и (75) находим

$$\int_{0}^{a} \frac{a \mathrm{d}a}{\sqrt{\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0} a + \Omega_{\Lambda}^{0} a^{4}}} = H_{0}t, \quad \int_{0}^{a} \frac{\mathrm{d}a}{\sqrt{\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0} a + \Omega_{\Lambda}^{0} a^{4}}} = \eta.$$
(79)

Так как $\Omega_{r\nu}^0 > 0$ и $\Omega_d^0 > 0$, то нули у многочлена, стоящего под корнем в знаменателе подинтегральной функции, возможны только при $\Omega_{\Lambda}^0 < 0$. Но отрицательные значения космологической постоянной означали бы не отталкивание, а дополнительное притяжение, что не представляет интереса для теории. Поэтому интеграл в (79) можно написать всегда.

Выбор модели применительно к объективно существующей Вселенной должен быть произведен исходя из наблюдений. После этого определяется и вид функции $\operatorname{sn}_k \chi$ в выражении для пространственной координаты радиуса сферы, соответствующего координате χ : $r = R \operatorname{sn}_k \chi$.

Рассмотрим подробнее частные случаи общих уравнений, для которых получаются достаточно простые решения.

§ 4. Однокомпонентные модели

1. Пылевидное вещество. Этот случай рассмотрен в § 1, но вернемся к нему и получим решение в несколько другой форме, исходя из общего решения (74) и положив в нем $\Omega_r^0 = \Omega_{\Lambda}^0 = 0$. При таких параметрах выражение под корнем в нуль не обращается, так что указанным решением можно воспользоваться.

Вид интеграла зависит от знака $\Omega_d^0 - 1 = -\Omega_k^0$, совпадающего со знаком k:

$$H_{0}t = \int_{0}^{a} \sqrt{\frac{a}{\Omega_{d}^{0} + (1 - \Omega_{d}^{0})a}} da = \begin{cases} \frac{\sqrt{a[\Omega_{d}^{0} + (1 - \Omega_{d}^{0})a]}}{1 - \Omega_{d}^{0}} - \frac{\Omega_{d}^{0}}{(1 - \Omega_{d}^{0})^{3/2}} \operatorname{arsh} \sqrt{\frac{1 - \Omega_{d}^{0}}{\Omega_{d}^{0}}} a, \quad k = -1, \\ \frac{2}{3}a^{3/2}, \quad k = 0, \\ \frac{\Omega_{d}^{0}}{(\Omega_{d}^{0} - 1)^{3/2}} \operatorname{arcsin} \sqrt{\frac{\Omega_{d}^{0} - 1}{\Omega_{d}^{0}}} a - \frac{\sqrt{a[\Omega_{d}^{0} + (1 - \Omega_{d}^{0})a]}}{\Omega_{d}^{0} - 1}, \quad k = 1, \end{cases}$$
(80)

где $\operatorname{arsh} x = \ln \left(x + \sqrt{1 + x^2} \right)$. Формула для k = 0 получается как предельный случай двух других формул при $\Omega^0_{\rm d} \to 1.$

В частности, при a = 1, что соответствует современной эпохе, находим возраст Вселенной согласно этой модели: Ω^0 $\sqrt{1-\Omega^0}$

1

$$H_{0}t_{0} = \int_{0}^{1} \sqrt{\frac{a}{\Omega_{d}^{0} + (1 - \Omega_{d}^{0})a}} da = \begin{cases} \frac{1}{1 - \Omega_{d}^{0}} - \frac{\Omega_{d}^{0}}{(1 - \Omega_{d}^{0})^{3/2}} \operatorname{arsh} \sqrt{\frac{1 - \Omega_{d}^{0}}{\Omega_{d}^{0}}}, & k = -1, \\ \frac{2}{3}, & k = 0, \\ \frac{\Omega_{d}^{0}}{(\Omega_{d}^{0} - 1)^{3/2}} \operatorname{arcsin} \sqrt{\frac{\Omega_{d}^{0} - 1}{\Omega_{d}^{0}}} - \frac{1}{\Omega_{d}^{0} - 1}, & k = 1. \end{cases}$$
(81)

Полученные для $k \neq 0$ выражения можно записать через альтернативную функцию единой формулой:

$$H_{0}t = \frac{1}{1 - \Omega_{\rm d}^{0}} \left[\sqrt{a [\Omega_{\rm d}^{0} + (1 - \Omega_{\rm d}^{0})a]} - \frac{\Omega_{\rm d}^{0}}{\sqrt{|1 - \Omega_{\rm d}^{0}|}} \operatorname{arsn}_{k} \sqrt{\frac{|1 - \Omega_{\rm d}^{0}}{\Omega_{\rm d}^{0}}} a \right],$$
(82)

однако для k = 0 написать ту же функцию нельзя, так как необходим предельный переход с разложением до третьей степени малости аргумента.

Конечно, формулы этого пункта совпадут с приведенными в табл. 1 и 2, если в соответствии с данными столбцов этих таблиц положить

$$a = \frac{R}{R_0} = \frac{\mathrm{sn}_k^2(\eta/2)}{\mathrm{sn}_k^2(\eta_0/2)}, \quad \Omega_{\mathrm{d}}^0 = \frac{1}{\mathrm{cs}_k^2(\eta_0/2)}, \quad \mathrm{sn}_k \frac{\eta_0}{2} = \sqrt{\frac{|1 - \Omega_{\mathrm{d}}^0|}{\Omega_{\mathrm{d}}^0}}, \quad H_0 = \frac{c}{2R_{\mathrm{m}}} \frac{\mathrm{cs}_k(\eta_0/2)}{\mathrm{sn}_k^3(\eta_0/2)}.$$
(83)

Обратные замены

$$\eta = 2 \operatorname{arsn}_{k} \sqrt{\frac{|1 - \Omega_{d}^{0}|}{\Omega_{d}^{0}}} a, \quad R_{m} = \frac{c}{2H_{0}} \frac{\Omega_{d}^{0}}{|1 - \Omega_{d}^{0}|^{3/2}}.$$
(84)

2. Ультрарелятивистское вещество. Поскольку пространство Вселенной расширяется, то раньше плотность материи была значительно выше, чем сейчас. Кроме того, на ранних стадиях расширения вещество было горячим. Поэтому имеет особый смысл рассмотреть ультрарелятивистский предел, то есть эволюцию при $\rho_{\rm d} = \rho_{\Lambda} = 0$ и $P_{\rm m} = \rho_{\rm m} c^2/3$. Такое же уравнение состояния, как отмечалось выше, справедливо и для излучения (поэтому в этом пункте пишем индекс r). При таком уравнении состояния, как следует из второго соотношения (55), константой движения остается

$$W = 4\pi\rho_{\rm r}R^4,\tag{85}$$

а аналог уравнения движения (3), вытекающий из уравнения Эйнштейна (33), принимает вид

$$\ddot{R} = -\frac{2GW}{3R^3}.$$
(86)

Это уравнение допускает интеграл, который получается так же, как выводилось аналогичное соотношение (4). Конечно, указанный интеграл совпадает с уравнением (34), в котором надо сделать замены, выраженные равенствами (85) и $\Lambda = 0$:

$$\frac{\dot{R}^2}{2} = \frac{GW}{3R^2} - k\frac{c^2}{2}.$$
(87)

Разрешая выведенное соотношение относительно производной и интегрируя, получим табл. 3 и 4, аналогичные табл. 1 и 2.

Т а б л и ц а 3. Эволюция радиуса кривизны при ультрарелятивистском веществе

k	Время t	Радиус кривизны R	Скорость \dot{R}
1	$\frac{2R_{\rm m}}{c}(1-\cos\eta)$	$2R_{ m m}\sin\eta$	$c \operatorname{ctg} \eta$
0	$\frac{2R_{\rm m}}{c}\frac{\eta^2}{2}$	$2R_\mathrm{m}\eta = (4R_\mathrm{m}ct)^{1/2}$	$\frac{c}{\eta}$
-1	$\frac{2R_{\rm m}}{c}(\operatorname{ch}\eta - 1)$	$2R_{ m m} \sin\eta$	$c \operatorname{cth} \eta$

Таблица 4. Эволюция плотности и постоянной Хаббла при ультрарелятивистском веществе

k	Н	$ ho_{ m r}$	$\Omega_{\rm r}=\rho_{\rm r}/\rho_{\rm c}$
1	$\frac{c}{2R_{\rm m}}\frac{\cos\eta}{\sin^2\eta}$	$\frac{3}{32\pi G}\frac{c^2}{R_{\rm m}^2}\frac{1}{\sin^4\eta}$	$\frac{1}{\cos^2\eta}$
0	$\frac{c}{2R_{\rm m}}\frac{1}{\eta^2} = \frac{1}{2t}$	$\frac{3}{32\pi G}\frac{c^2}{R_{\rm m}^2}\frac{1}{\eta^4}$	1
-1	$\frac{c}{2R_{\rm m}}\frac{{\rm ch}\eta}{{\rm sh}^2\eta}$	$\frac{3}{32\pi G}\frac{c^2}{R_{\rm m}^2}\frac{1}{{\rm sh}^4\eta}$	$\frac{1}{\operatorname{ch}^2 \eta}$

В табл. 3 и 4 введены обозначения, близкие к использованным в табл. 1 и 2, хотя величина $R_{\rm m}$ (в закрытой модели это полуамплитуда радиуса кривизны) определяется по-другому:

$$R_{\rm m} = \sqrt{\frac{GW}{6E}}.$$
(88)

Для ультрарелятивистского случая, когда $\Omega_d = \Omega_{\Lambda} = 0$, отношение Ω_r приведено в последнем столбце табл. 4. И для этого случая можно получить решение из общих формул. Подставив в (74) $\Omega_d^0 = \Omega_{\Lambda}^0 = 0$, найдем

$$H_0 t = \frac{\sqrt{\Omega_{\rm r}^0 + (1 - \Omega_{\rm r}^0)a^2} - \sqrt{\Omega_{\rm r}^0}}{1 - \Omega_{\rm r}^0} = \frac{a^2}{\sqrt{\Omega_{\rm r}^0 + (1 - \Omega_{\rm r}^0)a^2} + \sqrt{\Omega_{\rm r}^0}}, \quad H_0 t_0 = \frac{1}{1 + \sqrt{\Omega_{\rm r}^0}}.$$
(89)

Связь между двумя вариантами решений устанавливается соотношениями, следующими из таблиц 3 и 4:

$$a = \frac{\mathrm{sn}_k(\eta)}{\mathrm{sn}_k(\eta_0)}, \quad \mathrm{cs}_k \eta_0 = \frac{1}{\sqrt{\Omega_{\mathrm{r}}^0}}, \quad \mathrm{sn}_k \eta_0 = \sqrt{\frac{|1 - \Omega_{\mathrm{r}}^0|}{\Omega_{\mathrm{r}}^0}}, \quad H_0 = \frac{c}{2R_{\mathrm{m}}} \frac{\mathrm{cs}_k(\eta_0)}{\mathrm{sn}_k^2(\eta_0)} = \frac{c}{2R_{\mathrm{m}}} \frac{\sqrt{\Omega_{\mathrm{r}}^0}}{|1 - \Omega_{\mathrm{r}}^0|}.$$
 (90)

3. Сравнение решений для пылевидного вещества и для излучения. На рис. 1 приведены графики зависимостей радиуса кривизны (a), постоянной Хаббла (b), плотности (b) и отношения ее к критической (c) от времени t при трех типах моделей для пылевидного вещества. Все величины даны в относительных единицах, то есть приводятся $R(\eta)/R_m$, $2R_mH/c$ и логарифмы $\lg \tilde{\rho} = \lg[(8\pi G/3)(4R_m^2/c^2)\rho_d]$, $\lg \Omega_d$. Время измеряется в единицах R_m/c . Кривая зависимости R от t — это циклоида, которую описывают точки обода колеса при его качении по прямой.

На рис. 2 приведены те же величины, что и на рис. 1, но для ультрарелятивистского вещества, то есть соответственно отношения $R(\eta)/R_{\rm m}$, $2R_{\rm m}H/c$ и логарифмы $\lg \tilde{\rho} = \lg[(16\pi G/3)(4R_{\rm m}^2/c^2)\rho_{\rm r}]$, $\lg \Omega_{\rm r}$ как функции времени t, измеряемого в единицах $2R_{\rm m}/c$. Напомним, что значения $R_{\rm m}$ для моделей с пылевидным и релятивистским веществом различаются.

Качественно решения для ультрарелятивистского и пылевидного вещества ведут себя одинаково, однако в закрытых моделях параметр η изменяется в разных пределах. Различаются и масштабы изменения времени.

Отметим, что закрытые модели выделяются своим поведением. Согласно этим моделям при достижении максимума радиуса кривизны постоянная Хаббла и критическая плотность обращаются в нуль (H меняет знак), а параметр Ω в бесконечность. Кривые, относящиеся к открытым и плоским моделям, не являются периодическими и могут быть продолжены по времени сколь угодно далеко.

Следующий параграф посвящен решениям уравнения, в котором присутствует только космологическое слагаемое.

4. Космологическое слагаемое. Это слагаемое первоначально было введено А. Эйнштейном для того, чтобы привести уравнения к виду, допускающему стационарные решения за счет компенсации тормозящего действия притяжения. При этом оно было помещено в левую часть его тензорного уравнения совершенно формально как средство противопоставить притяжению некоторое отталкивание. Потом, после открытия расширения Вселенной и тем самым ее нестационарности, А. Эйнштейн отказался от этого слагаемого, назвав его введение самой большой своей ошибкой. Действительно, компенсация достигается только при определенном значении R и вообще не нужна. В разные периоды развития космологии космологическое слагаемое добавляли и отбрасывали, так что вопрос о нем оставался открытым.

Можно получить решения космологических уравнений, не приписывая определенного значения параметру Λ , а пытаясь найти его из наблюдений. В последнее время наблюдения с определенностью указывают на то, что эта постоянная отлична от 0. К этому мы еще вернемся.

Пусть нет ни вещества, ни излучения, а присутствует только космологическое слагаемое. Тогда уравнение (33) предстанет в виде

$$\ddot{R} = \frac{\Lambda c^2}{3}R\tag{91}$$

или

$$\ddot{R} = H_*^2 R, \quad H_* = \sqrt{\frac{\Lambda}{3}}c.$$
 (92)

Второе уравнение теории Фридмана для рассматриваемого случая

$$\dot{R}^2 = \frac{\Lambda c^2}{3}R^2 - kc^2 = H_*^2 R^2 - kc^2$$
(93)

всегда совместно с первым, так как Λ и, следовательно, H_* постоянны. Напомним, что плотность массы вакуума $\rho_{\Lambda} = \frac{\Lambda c^2}{8\pi G}$ тоже постоянна. Отметим, что начальный толчок не требуется, так как расширение вызывается не им, а постоянно действующим отталкиванием.

Прежде чем находить решения приведенных уравнений, обсудим, какой физический смысл можно приписать космологическому слагаемому.

Рис. 1: Эволюция радиуса кривизны R(a), функции H(b), плотности $\rho_{\rm d}(b)$ и отношения $\Omega_{\rm d}(c)$ для моделей пылевидного вещества.

5. Природа космологического слагаемого. Возникает вопрос о физической сущности введенной субстанции. Первоначально считалось, что раз это не вещество и не излучение, то наверное, это вакуум, а от вакуума не следует требовать заранее какого-то определенного уравнения состояния, так что приходится принять выраженное равенством (36). Отрицательность давления и означает, что эта субстанция вызывает отталкивание.

Заметим, что физический вакуум — это не просто пустота. Например, в квантовой электродинамике, описывающей процессы взаимодействия излучения с электронами, вакуум — это живая среда, реально проявляющаяся в теории и эксперименте.

Квантовая электродинамика развивалась в 30–40 годы XX столетия и завершилась работами Ричарда Фейнмана (1918–1988). Он ввел в теорию так называемые фейнмановские диаграммы, которые не только давали схему процессов квантовой электродинамики, но и позволяли выписывать и вычислять матричные элементы, через которые выражаются сечения и вероятности процессов, значительно проще, чем это делалось до этого. Более сложные процессы вообще оказалось возможным описать количественно только после создания диаграммной техники. Рассмотрим некоторые процессы второго порядка по взаимодействию.

Например, комптоновскому рассеянию, то есть рассеянию фотона электроном, отвечают две диаграммы Фейнмана, представленные на рис.3. Электрон изображается сплошной линией, а фотон волнистой. Время течет снизу вверх. Взаимодействие происходит в точках, где встречаются электронные и фотонные линии. Диаграммы различаются порядком поглощения и излучения фотонов.

Наряду с частицами, реально участвующими во взаимодействии, то есть имевшимися до взаимодействия и

Рис. 2: Эволюция радиуса кривизны R(a), функции H(b), плотности $\rho_r(e)$ и отношения $\Omega_r(s)$ для моделей с излучением.

преобразовавшимися или образовавшимися вновь, которые изображаются входящими или исходящими линиями, на диаграммах присутствуют внутренние линии. Эти линии отвечают частицам, которые появляются в ходе процесса, но потом преобразуются в другие. Поэтому они называются виртуальными. От виртуальных частиц не надо требовать всех физических свойств реальных частиц. Например, для виртуальных частиц необязательно выполнение релятивистского соотношения между энергией и импульсом. Виртуальный электрон вообще теряет свою природу, то есть с равным успехом может считаться как электроном, так и позитроном. Позитрон, как и электрон, изображается сплошной линией, но направленной обратно по времени.

Среди диаграмм второго порядка имеется три, описывающие процессы, осуществление которых не вызывает никаких заметных изменений у частиц, участвующих в этих процессах. Диаграммы таких процессов приведены на рис. 4.

Диаграмма рис. 4*a* соответствует так называемой собственной энергии электрона. Электрон испускает фотон, а затем его же поглощает. В классической электродинамике похожий процесс называется самодействием заряда. Движущийся с ускорением заряд порождает электромагнитное поле, которое в свою очередь воздействует на породивший его заряд. Классическая электродинамика описывает такие процессы не вполне корректно, только в случае слабого воздействия поля нерелятивистского заряда удается объяснить затухание его излучения и расширение спектральной линии около собственной частоты осциллятора. Изображенную на рис. 4*б* диаграмму можно налогично приписать собственной энергии фотона. Оба процесса виртуальные. Еще одна диаграмма,

Рис. 3: Диаграммы комптоновского рассеяния.

Рис. 4: Диаграммы собственной энергии электрона (а) и фотона (б) и диаграмма поляризации вакуума (6)

а именно, 4a, повернутая на 180° , изображает собственную энергию позитрона, но она по смыслу не отличается от электронной.

Согласно диаграмме рис. 46 вообще никаких частиц нет ни в начале, ни в конце процесса, процесс чисто виртуальный. Фотон рождает виртуальную пару электрон-позитрон, которая аннигилирует и превращается в фотон, который ее и породил. Временная последовательность описанных событий несущественна, так как процесс виртуальный. Он называется поляризацией вакуума. Впрочем, и диаграмма на рис. 46 часто связывается с поляризацией вакуума, так как в обоих случаях в вакууме образуются виртуальные пары. Уместно назвать процессы, диаграммы которых помещены на рис. 46 и 46, соответственно фотонной и спонтанной поляризацией вакуума.

Все три процесса оставляют состояние системы неизменным, поэтому они могут происходить сколь угодно часто, то есть все время. Вероятности их оказываются формально бесконечными. Эти процессы можно включить во все другие, поляризацию вакуума просто добавить к любому процессу, а собственные энергии вставить в любую электронную или фотонную линию. Появление при этом бесконечностей признается логическим несовершенством теории, частично объясняемым применением разложения по кратностям взаимодействия.

Виртуальные процессы могут превращаться в реальные, когда сильное внешнее поле оказывается способным разорвать какую-то замкнутую линию и ее концы добавляются к диаграмме. Например, разрыв замкнутой линии поляризации вакуума приводит к спонтанному рождению пар частица-античастица, что реально наблюдается.

Разработана процедура, при которой многие процессы оказываются не зависящими от наличия виртуальных бесконечностей. Однако, некоторые величины получают заметные добавки, причем с большой точностью совпадающие с теми, которые наблюдаются в экспериментах. Примерами являются так называемый лембовский сдвиг уровней атомов, в частности, атома водорода как наиболее изученного, а также аномальный магнитный момент электрона.

Таким образом, физический вакуум реально воздействует на процессы взаимодействия вещества и излучения. Вакуум, так же как и космологическое слагаемое, не изменяется при переходе от одной системы отсчета к другой. Однако попытки согласовать физические соображения с величиной космологической постоянной пока что к успеху не привели. В последнее время эту субстанцию называют темной энергией, что, конечно, нелепо, так как энергия это количественная характеристика субстанции, но так все говорят по аналогии с темным веществом (о котором речь впереди). Примем этот термин как общепринятый.

Обратимся к решению уравнения (92).

6. Общее решение. Можно, в принципе, взять любую линейную комбинацию двух независимых решений уравнения (92)

$$R(t) = R_{+}e^{H_{*}t} + R_{-}e^{-H_{*}t}.$$
(94)

Конечно, главную роль играет растущая экспонента. Как будет показано, в самый начальный период эволюции Вселенной происходило именно быстрое экспоненциальное расширение, называемое инфляцией. В далеком будущем также начнется экспоненциальное расширение, хотя с гораздо меньшим темпом.

Глава II. Излучение в космологии

§ 1. Распространение излучения

1. Распространение излучения и горизонт. В этом параграфе рассмотрим эффекты, связанные с распространением излучения в искривленном и расширяющемся пространстве. Траектория фотона в трехмерном пространстве определяется, как и в обычной теории относительности, тем, что вдоль нее ds = 0 (ds берем в виде (I.32)).

Пусть фотон в трехмерном пространстве летит по лучу, исходящему из точки, где находится наблюдатель. Поместим в нее начало координат. Луч задается тем, что вдоль него постоянны углы θ и ϕ , то есть $\theta = \theta_0$, $\phi = phi_0$, так что $d\theta = d\phi = 0$. Следовательно, для такого фотона $d\eta^2 = d\chi^2$ и уравнение его траектории в принятых координатах

$$\theta = \theta_0, \ \phi = \phi_0, \ \chi = \pm \eta + \text{const.}$$
 (1)

Знак плюс отвечает фотону, удаляющемуся от начала координат, так как с ростом времени растет и координата, а минус — движущемуся к началу.

Если фотон доходит до наблюдателя, где r = 0, $\chi = 0$, в момент $t_0 = t(\eta_0)$, то распространение такого фотона определяется уравнением $\chi = \eta_0 - \eta$. Этот фотон был испущен в некоторый момент η_e , $0 \le \eta_e \le \eta_0$, в точке пространства, имеющей координату $\chi_e = \eta_0 - \eta_e$. Рассуждение не изменится, если считать, что фотон пришел в указанную точку в указанное время в направлении на наблюдателя.

Мы видим прошлое Вселенной, тем более отдаленное по времени от настоящего момента, чем далыше смотрим. Ясно, что $\chi_e \leq \eta_0$ и расстояние от места возникновения фотона не может отстоять от точки наблюдения сколь угодно далеко. Фотон, излученный в начальный момент $\eta = \eta_e = 0$ в сторону наблюдателя, находящегося в точке $\chi = 0$, может дойти до него в момент $t_0 = t(\eta_0)$ только с поверхности сферы, точки которой имели (в тот же начальный момент) координату $\chi_0 = \eta_0$. Поскольку координата χ точек пространства при его расширении не изменяется, то в каждый момент времени $t(\eta_0)$ существует сфера, ограничивающая область пространства, из которой доходит излучение в данную точку, находящуюся на одинаковом расстоянии от точек этой сферы. Эта сфера называется в космологии горизонтом. Вся остальная часть Вселенной наблюдениям принципиально недоступна. Вывод о существовании горизонта не зависит от вида метрики пространства. Видимая в данный момент часть пространства всегда имеет конечный объем (см. подробнее ниже). Так как параметр η_0 с течением времени увеличивается, то горизонт расширяется.

2. Движение фотона от начала координат. Для фотона, излученного из точки с координатой $\chi = 0$ вдоль луча, который исходит из этой точки, имеем $\chi = \eta - \eta_{\rm e}$, где опять $t_{\rm e} = t(\eta_{\rm e})$ — момент испускания. Длина пути, пройденного фотоном к моменту $t = t(\eta)$ (тогда он находится в точке с координатой χ):

$$l_{\rm ph}(t_{\rm e},t) = \int_{0}^{\chi} R(\chi + \eta_{\rm e}) \mathrm{d}\chi = \int_{\eta_{\rm e}}^{\eta} R(\eta) \mathrm{d}\eta = c \int_{t_{\rm e}}^{t} \mathrm{d}t = c[t(\eta) - t(\eta_{\rm e})] = c(t - t_{\rm e}), \tag{2}$$

непрерывно возрастает. Расстояние же от места фотона в момент $t(\eta)$ до начала координат

$$l(\eta) = R(\eta)\chi = R(\eta)(\eta - \eta_{\rm e}) \tag{3}$$

монотонно растет только для открытых пространств. Радиус кривизны замкнутого пространства после $\eta = \pi$ убывает, и с некоторого момента фотон начинает приближаться к месту своего возникновения, увлекаемый общим сжатием пространства.

Проследим изменение со временем радиуса сферы, на которой располагается в момент $t(\eta)$ рассматриваемый фотон. Этот радиус равен $r_{\rm ph}(\eta) = R(\eta) | \operatorname{sn}_k(\eta - \eta_{\rm e}) |$. При k = -1 и k = 0 с ростом времени η радиус $r_{\rm ph}(\eta)$ увеличивается неограниченно. При k = 1, то есть в закрытой модели, поведение этого радиуса из-за немонотонного изменения радиуса кривизны и координаты r более сложно. Действительно, в закрытой модели пылевидного вешества

$$r_{\rm ph}(\eta) = R_{\rm m}(1 - \cos\eta) |\sin(\eta - \eta_{\rm e})|. \tag{4}$$

Здесь величина η ограничена снизу моментом испускания фотона $\eta \geq \eta_{\rm e}$, а сверху значением 2π , при котором обращается в 0 множитель $1 - \cos \eta$, то есть радиус кривизны. Поведение последнего множителя существенно зависит от начального значения $\eta_{\rm e}$. Если $\eta_{\rm e} \leq \pi$, то при изменении η от $\eta_{\rm e}$ до $(2/3)(\eta_{\rm e} + \pi)$ с ней растет и радиус $r_{\rm ph}(\eta)$ от 0 до своего максимального значения $r_{1 \max} = R_{\rm m}[1 - \cos(2(\eta_{\rm e} + \pi)/3)]\sin(2\pi/3 - \eta_{\rm e}/3)$. При дальнейшем росте η этот радиус убывает и при $\eta = \eta_{\rm e} + \pi$ обращается в 0. Затем фотон переходит с направления $\theta = \theta_0$, $\phi = \phi_0$ на противоположное направление $\theta = \pi - \theta_0$, $\phi = \phi_0 \pm \pi$. На этом направлении параметр χ изменяется от π до $\eta_{\rm e}$ по закону $\chi = 2\pi + \eta_{\rm e} - \eta$: фотон приближается к точке, из которой вышел. При $\eta_{\rm e} + \pi \leq \eta \leq 2(\eta_{\rm e} + 2\pi)/3$ радиус $r_{\rm ph}(\eta)$ опять растет до максимума $r_{2\max} = R_{\rm m}[1 - \cos(2(\eta_{\rm e} + 2\pi)/3)]\sin(\pi/3 + \eta_{\rm e}/3)$ и обращается в 0 при

 $\eta = 2\pi$. Значения $r_{\rm ph}(\eta)$ для фотона, вышедшего из начала в момент $\eta_{\rm e} + \pi \ge \pi$, и для фотона, стартовавшего оттуда же в момент $\eta_{\rm e} \le \pi$, при одних и тех же $\eta \ge \eta_{\rm e} + \pi$ одинаковы, хотя $\sin(\eta - \eta_{\rm e})$ и $\sin(\eta - \pi - \eta_{\rm e})$ имеют противоположные знаки.

Если опять для наглядности трехмерное пространство моделировать двумерной поверхностью в трехмерном пространстве, формально полагая координату z = 0, то для пространства с отрицательной энергией вместо уравнения гиперсферы (I.17) получается уравнение трехмерной сферы $u = \pm \sqrt{R^2 - x^2 - y^2}$, а в случае положительной энергии соответствующее уравнение будет $u = \sqrt{x^2 + y^2 + R^2}$, но при неопределенной метрике, когда квадраты расстояний по оси u берутся с минусом в согласии с формулами (I.24). Делаются обычные для полярной системы координат подстановки $x = r \cos \varphi$, $y = r \sin \varphi$, $r = R \operatorname{sn}_k(\chi)$, после чего метрика таких пространств принимает вид

$$\mathrm{d}l^2 = R^2 [\mathrm{d}\chi^2 + \mathrm{sn}_k^2(\chi)\mathrm{d}\varphi^2]. \tag{5}$$

По сравнению с точной эта метрика игнорирует угол θ (формально $\theta = \pi/2$). Таким образом, в замкнутой космологической модели пространство изображается сферой, в открытой — верхней частью двуполостного гиперболоида, а в плоской — их общим пределом при $R \to \infty$, то есть плоскостью u = R в трехмерном пространстве. Начало координат во всех трех случаях находится в точке x = y = 0, u = R. Путь фотона, вышедшего из начала, изображается кривой на поверхности при постоянном угле φ . На сфере это большой круг, выходящий из полюса (меридиан), на гиперболоиде — ветвь гиперболы, проходящая через вершину параболоида и лежащая в той же плоскости, что и ось u. Вдоль указанной ветви гиперболы $r = R \operatorname{sh} \chi$, $u = R \operatorname{ch} \chi$, $\varphi = \varphi_0$, $l = R\chi < r$. В плоской модели путь фотона — луч на плоскости u = R.

Рис. 5: Последовательные положения фотонов, вышедших из точки $\chi_e = 0$ в моменты $\eta_e = 0$ и $\pi/3$, в замкнутой модели.

Пусть фотоны, вышедшие одновременно из начала координат реального пространства в разных направлениях, дошли по своим траекториям до некоторой сферы. Эта сфера моделируется окружностью в сечении модельной поверхности плоскостью, параллельной плоскости x, y. Расстояние их r до оси u соответствует радиусу указанной сферы, а длина дуги, пройденной фотонами — расстоянию их от начала координат. В случае модели с нулевой энергией все происходит на плоскости и $l(\eta) = R_{\rm m}(\eta^3 - \eta_{\rm e}^3)/6, l_{\rm ph}(\eta) = R_{\rm m}\eta^2(\eta - \eta_{\rm e})/2.$

На рис. 5 представлена схема движения фотонов в замкнутой модели с пылевидным веществом. Радиус сферы сначала растет до $\eta = \pi$, а потом уменьшается и обращается в нуль при $\eta = 2\pi$. Точка $\chi = 0$ совпадает с верхней точкой сферы. Изображено сечение сферы, содержащее траектории фотонов. Фотоны, вышедшие из начала $\chi = 0$, все время движутся от исходной точки, но с уменьшением радиуса кривизны само пространство тянет их к началу. Фотон, вышедший в начальный момент $\eta_e = 0$, на рисунке располагается в точках, дуги до которых от верхней точки равны фазам расширения η , так что $\chi = \eta$. Этот фотон указывает на положение горизонта, так как до наблюдателя в момент η_0 доходят фотоны, вышедшие из точки с координатой η_0 в его сторону в начальный момент. В момент $\eta_e = \pi$ наблюдателю становится доступно все пространство, а после этого момента он начинает видеть излучение, вышедшее в противоположную от него сторону. Второй фотон, вышедший в момент $\eta = \pi/3$, все время отстает от первого на ту же фазу, но сначала отстает от него по расстоянию, а потом они вместе движутся к началу и сближаются, сливаясь в момент коллапса пространства.

На рис. 6*a* и 6*б* даны пройденные пути и расстояния от исходной точки до места, до которого дошли фотоны, вышедшие в разные моменты η_e из начала координат $\chi_e = 0$, в зависимости от η в замкнутой модели с пылевидным веществом. На рис. 7*a* и 7*б* приведены радиусы сфер, до которых дошли такие же фотоны в замкнутой и открытой моделях. Характер зависимости радиусов достигнутых фотонами сфер от координаты η совершенно различный. В замкнутой модели радиусы ограничены, причем при $\eta_e < \pi$ имеют два максимума, а при $\eta_e > \pi$ их значения совпадают с ветвью со вторым максимумом. В открытой же модели эти радиусы растут экспоненциально.

Рис. 6: Пути, пройденные фотонами, вышедшими из начала координат в разные моменты времени в замкнутой модели (a), и расстояния до этих фотонов от места их старта (b).

Рис. 7: Радиусы сфер, до которых дошли фотоны, вышедшие из начала координат в разные моменты времени в замкнутой (*a*) и открытой (*б*) моделях.

3. Видимая часть Вселенной. Множество точек, из которых излучение вышло в момент $t(\eta_e) = t(\eta_0 - \chi_e)$ и дошло до наблюдателя в начале координат в момент $t(\eta_0)$, образует во Вселенной в момент $t(\eta_e)$ сферу радиусом $R(\eta_e) \operatorname{sn}_k(\chi_e)$. Ее площадь $4\pi R^2(\eta_0 - \chi_e) \operatorname{sn}_k^2(\chi_e)$. Радиус сферы (а с ним и ее площадь) с удалением исходной точки от наблюдателя, то есть с ростом χ_e , сначала возрастает от нуля при $\chi_e = 0$ (то есть прямо от наблюдателя, здесь $\operatorname{sn}_k(0) = 0$) до некоторого максимума, а затем снова спадает до 0 при $\chi_e = \eta_0$ (здесь, как в начальный момент R(0) = 0, это горизонт). При модели с пылевидным веществом $R(\eta) = 2R_{\rm m} \operatorname{sn}_k^2(\eta/2)$, так что (используем первое равенство в (ПІ.11)) максимум радиуса сферы достигается при $\chi_e = \eta_0/3$ и равен $R(2\eta_0/3) \operatorname{sn}_k(\eta_0/3)$. Теоретически наблюдатель может видеть всю историю развития Вселенной (хотя не все составляющее ее пространство).

В частности, горизонт определяется фотонами, испущенными в момент $\eta_e = 0$ и имеет координату $\chi_0 = \eta_0$. Расстояние до частицы, которая в момент $t_0 = t(\eta_0)$ находится на горизонте, равно $R(\eta_0)\eta_0$, радиус сферы, на которой располагаются частицы горизонта, $R(\eta_0) \operatorname{sn}_k(\eta_0)$, а длина экватора есть $2\pi R(\eta_0) \operatorname{sn}_k(\eta_0)$. Площадь такой сферы уже приводилась выше, она равна $4\pi R^2(\eta_0) \operatorname{sn}_k^2(\eta_0)$. Наконец, объем доступного наблюдению пространства равен $V_0 = R^3(\eta_0)\pi|2\eta_0 - \operatorname{sn}_k(2\eta_0)|$, а масса заключенного в нем вещества $\rho_0 V_0$, где $\rho_0 = \rho(\eta_0)$.

Приведенные рассуждения справедливы, в частности, для всех моделей с пылевидным веществом. Замкнутая модель имеет особенности. Величина η в ней изменяется до 2π , а координата χ только до π . Поэтому при $\eta_0 > \pi$ координата χ_e будет пробегать значения в обратном порядке, что соответствует возврату лучей после прохождения ими наиболее удаленной точки сферы, ограничивающей вселенную. Соответственно и объем достигает своего предела при $\eta_0 = \pi$, а при дальнейшем увеличении координаты η_0 объем пространства будет учитываться повторно.

Хотя с точки зрения геометрии расширения можно увидеть все его этапы, на самом деле наблюдения электромагнитного излучения ранних этапов расширения Вселенной невозможны, ибо, как будет показано дальше, в начальный период вплоть до некоторого момента пространство было заполнено веществом, которое непрозрачно для излучения и экранирует все возможные источники, действовавшие до этого момента.

Таким образом, в настоящее время мы можем видеть только конечную часть Вселенной, причем это ограничение вызвано не несовершенством наших приборов, а принципиальной невозможностью наблюдать излучение от части Вселенной, находящейся за физическим горизонтом. Это заключение связано с расширением и не зависит от того, конечен или бесконечен объем трехмерного пространства, так что различие между замкнутыми и открытыми моделями в этом смысле сглаживается. Однако, как будет ясно из дальнейшего, посредством других агентов, отличных от прямого излучения, можно заглянуть и в более ранние эпохи.

§ 2. Красное смещение в космологии

Радиус кривизны, расстояние до горизонта и связанные с ними величины не могут быть непосредственно наблюдаемы. Поэтому особенный интерес представляют величины, доступные наблюдениям.

Одна из таких величин — красное смещение. Фотон, излученный в момент $t_e = t(\eta_e)$ в точке с координатой χ_e , согласно (1) дойдет до наблюдателя в точке $\chi = 0$ в момент $t_0 = t(\eta_0)$, где

$$\eta_0 = \eta_e + \chi_e. \tag{6}$$

Свяжем с моментом t_e произвольный гребень излучаемой электромагнитной волны. Пусть следующий гребень покидает точку излучения в момент $t_e + \tau_e$ и приходит к наблюдателю в момент $t_0 + \tau_0$, то есть через периоды колебаний волны, соответствующие точкам излучения и наблюдения. Эти периоды на много порядков меньше характерного времени расширения пространства. Поэтому можно считать, что радиус кривизны за время, равное периоду волны, не меняется, так что $t_e + \tau_e = t(\eta_e + d\eta_e) = t_e + R(\eta_e) d\eta_e/c$ и $t_0 + \tau_0 = t(\eta_0 + d\eta_0) = t_0 + R(\eta_0) d\eta_0/c$. Так как точки излучения и наблюдения фиксированы, то $\chi_e = \text{const}$ и согласно (6) $d\eta_0 = d\eta_e$. Поэтому

$$\frac{\tau_0}{\tau_{\rm e}} = \frac{\nu_{\rm e}}{\nu_0} = \frac{\lambda_0}{\lambda_{\rm e}} = \frac{R(\eta_0)}{R(\eta_{\rm e})} = \frac{R_0}{R_{\rm e}} = 1 + z.$$
(7)

Здесь наряду с соотношением для периодов написаны соотношения для частот (ν_e и ν_0) и длин волн (λ_e и λ_0) фотона, испущенного в точке с координатой χ_e и наблюдаемого в начале координат. Введена также величина $z \ge 0$, называемая красным смещением, так как в настоящее время происходит уменьшение частоты вследствие расширения пространства. Конечно, строго говоря, в красную сторону смещается только излучение с исходным спектром, имеющим частоты, большие, чем красный конец спектра, однако термин, исторически возникший по отношению к оптическому диапазону, применяется ко всему спектру.

§3. Космологические расстояния

1. *Различные типы расстояния*. Понятие расстояния, очевидное в случае евклидовой геометрии пространства, допускает неоднозначное толкование в искривленном и расширяющемся пространстве. Приведем несколько типов расстояний, различно определяемых [7].

1) Самое простое понятие — это расстояние между двумя точками на одном луче зрения ($\theta = \theta_0, \phi = \phi_0$) с координатами χ_1 и $\chi_2 > \chi_1$ в один и тот же момент времени $t = t(\eta)$. Его естественно назвать метрическим расстоянием, так как его выражение непосредственно следует из метрики (I.32):

$$l = R(\eta) \int_{\chi_1}^{\chi_2} d\chi = R(\eta)(\chi_2 - \chi_1).$$
(8)

Если одна точка совмещена с наблюдателем, а координата другой χ , то метрическое расстояние точки от наблюдателя $l = R(\eta)\chi$. Это расстояние уже было использовано. Метрическое расстояние — основное, но не единственное понятие расстояния. Остальные расстояния определяются так: находится выражение для некоторой зависящей от расстояния величины в условиях расширяющегося и искривленного пространства. Это выражение приравнивается к тому выражению, которое бы имела та же величина в стационарном плоском пространстве.

2) Расстояние по видимому размеру. Пусть к наблюдателю (в точку r = 0) приходят одновременно (в момент t_0) два фотона, испущенных в одно и то же время $t = t(\eta)$ из бесконечно близких точек с одинаковыми координатами χ . Расстояния до этих точек также одинаковы. Для обоих фотонов выполняется уравнение $\chi = \eta_0 - \eta$. Квадрат элемента линейного расстояния между точками согласно формуле (I.28) при $d\chi = 0$

$$\mathrm{d}D_{\mathrm{ad}}^2 = R^2(\eta)\,\mathrm{sn}_k^2(\chi)\mathrm{d}\omega^2.\tag{9}$$

При движении фотонов по лучу зрения их координаты θ и ϕ не меняются, так что не меняется видимое угловое расстояние между точками испускания d ω . Например, это может быть угловой размер некоторого объекта. В обычном пространстве линейный размер объекта, находящегося на расстоянии $l_{\rm ad}$, был бы $dD^2 = l_{\rm ad}^2 d\omega^2$. Таким образом, расстояние по видимому размеру (или угловому диаметру) определяется так:

$$l_{\rm ad} = R(\eta)\operatorname{sn}_k(\chi) = R(\eta_0 - \chi)\operatorname{sn}_k(\chi).$$
⁽¹⁰⁾

3) Расстояние по параллаксу. Пусть теперь начало координат помещено в точку, из которой исходят два фотона, принимаемые на концах другого объекта, также расположенных по отношению к точке испускания с одной координатой χ. Половина угла между направлениями указанных фотонов называется параллаксом исходной точки. Например, суточный параллакс — это угол, под которым из данной точки виден радиус Земли, а годичный — радиус земной орбиты. Оба радиуса перпендикулярны одной из линий наблюдения.

 Φ отоны будут зарегистрированы в момент $t_0 = t(\eta_0)$. Рассуждая так же, как и выше, найдем, что

$$l_{\rm pl} = R(\eta_0) \operatorname{sn}_k(\chi) = R_0 \operatorname{sn}_k(\chi). \tag{11}$$

Это просто радиус сферы, на которую расходятся вышедшие из одной точки фотоны.

4) Расстояние по числу фотонов. Параллаксом определяется телесный угол, под которым фотоны испускаются точечным источником. Поэтому параллактическое расстояние определяет площадь сферы с центром в точке испускания, проходящей через точку наблюдения. Если число фотонов, испускаемых некоторым изотропным источником в единицу времени, равно $N_{\rm ph}$, то количество фотонов, приходящих на единицу поверхности в единицу времени к наблюдателю, будет (время источника и время наблюдателя текут по-разному, так что и их единицы различны)

$$\tilde{N}_{\rm nb} = \frac{N_{\rm nb}}{4\pi l_{\rm pl}^2 [R_0/R]} = \frac{N_{\rm nb}}{4\pi l_{\rm nb}^2}.$$
(12)

Последний множитель в знаменателе учитывает различие хода времени наблюдателя и источника dt_0/dt , что согласно соотношению (I.31) равно отношению соответствующих радиусов кривизны. Таким образом, расстояние по числу фотонов

$$l_{\rm nb} = l_{\rm pl} \sqrt{\frac{R_0}{R}}.$$
(13)

5) Расстояние по болометрической яркости. При распространении в расширяющемся пространстве все фотоны изменяют свои частоты: частоты принимаемых фотонов в $R(\eta_0)/R(\eta)$ раз меньше, чем у исходных. Поэтому регистрируемая в точке наблюдения яркость объекта, то есть часть его полной (болометрической) энергии, дошедшая до наблюдателя, окажется уменьшенной в $(dt_0/dt)^2$ раз, так что соответствующее расстояние

$$l_{\rm bb} = l_{\rm nb} \sqrt{\frac{R_0}{R}}.$$
(14)

2. *Свойства расстояний*. Таким образом, все масштабы в трехмерном пространстве в определенный момент времени пропорциональны радиусу кривизны в тот же момент или, что то же самое, масштабному множителю.

Каждое из введенных здесь расстояний изменяется в соответствии с величиной, по которой оно определяется. Поскольку эти величины изменяются по-разному, соответствующие расстояния также различаются. Легко заметить, что они связаны равенствами

$$l_{\rm bb} = l_{\rm nb} \sqrt{\frac{R_0}{R}} = l_{\rm pl} \frac{R_0}{R} = l_{\rm ad} \left(\frac{R_0}{R}\right)^2 = R_0 \frac{R_0}{R} \operatorname{sn}_k(\chi).$$
(15)

В этой цепочке равенств каждое следующее расстояние меньше предыдущего. Так как отношение $R_0/R = 1 + z$, то все введенные расстояния можно выразить через красное смещение.

Отдельного обсуждения требует расстояние по видимому размеру. Очевидно, что при $\chi = 0$ второй, а при $\chi = \eta_0$ первый множители обращаются в нуль, то есть в месте наблюдения и на горизонте это расстояние равно нулю. Так как в промежуточных точках оно положительно, должен существовать максимум этого расстояния. Расстояние сначала увеличивается, а после максимума уменьшается. Парадоксальное на первый взгляд обстоятельство, следующее из приведенных рассуждений, означает, что угловой размер объектов одинакового линейного размера с удалением от наблюдателя сначала уменьшается, а затем начинает увеличиваться. Понять это можно, исходя из аналогии с передвижением дуги большого круга одного линейного размера вдоль меридиана на сфере. Действительно, пусть дуга размером $2R\phi_0$ (с небольшим ϕ_0) передвигается на сфере радиуса R. Тогда, как нетрудно вывести, она при расположении ее середины в точке ($R \sin \theta_0, 0, R \cos \theta_0$) с полюса будет видна под углом

$$\Theta_{\rm ad} = 2 \arcsin \frac{\sin \phi_0}{\sqrt{1 - \cos^2 \theta_0 \cos^2 \phi_0}}.$$
(16)

При $\theta_0 = 0$ этот угол равен π , затем он уменьшается, при $\theta_0 = \pi/2$ достигает минимума $2\phi_0$, а потом снова растет до исходного значения. Причина здесь заключается в том, что к полюсам меридианы сближаются.

Смена первоначального уменьшения угла, под которым виден объект одного линейного размера, ростом в космологии объясняется тем, что отдаленным областям пространства соответствуют более ранние эпохи расширения Вселенной, когда ее масштабы были меньше, так что лучи, между которыми заключен угол, располагались ближе друг к другу.

Не все расстояния используются одинаково часто. Наиболее употребительны помещенные здесь под номерами 2), 3) и 5) наряду с метрическим расстоянием, определенным равенством (8).

3. Расстояние до горизонта. Так как координата космологического горизонта $\chi = \eta$, то есть она равна конформному времени, определяющему возраст Вселенной в фиксированную эпоху, то метрическое расстояние до него от наблюдателя с координатой $\chi = 0$ согласно (8) равно

$$l_{\rm Hor} = R(\eta)\eta. \tag{17}$$

Найдем изменение этого расстояния, то есть скорость расширения горизонта. Она равна производной от (17) по времени:

$$\dot{l}_{\text{Hor}} = v_{\text{Hor}} = \dot{R}\eta + R(\eta)\dot{\eta} = HR\eta + R(\eta)\frac{\mathrm{d}\eta}{\mathrm{d}t} = HR\eta + c = Hl_{\text{Hor}} + c.$$
(18)

В частности, в случае плоской модели с пылевидным веществом

$$l_{\rm Hor} = R_{\rm m} \frac{\eta^2}{2} \eta = 3c \frac{R_{\rm m}}{c} \frac{\eta^3}{6} = 3ct, \quad v_{\rm Hor} = 3c, \tag{19}$$

то есть горизонт расширяется со скоростью, равной трем скоростям света.

Заметим, что согласно этой модели за год горизонт пройдет всего 3.9.46·10¹⁷ см=0.919 парсек. Более близкие к реальности модели, как мы увидим, дают величину того же порядка. Расстояния в пределах Галактики — это десятки килопарсек, космологические же расстояния — это сотни мегапарсек и гигапарсеки. Таким образом, существенное изменение положения горизонта в настоящую эпоху происходит за миллиарды лет.

В случае произвольной плоской модели расстояние до горизонта

$$l_{\rm Hor} = R_0 a\eta = \frac{R_0 H_0}{c} \frac{c}{H_0} \eta a = \frac{c}{H_0} \eta a = l_{\rm H}^0 \eta a.$$
(20)

Современное его значение

$$l_{\rm Hor}^0 = \frac{c}{H_0} \eta_0 = l_{\rm H}^0 \eta_0.$$
⁽²¹⁾

§ 5. Реликтовое излучение

1. Открытие реликтового излучения. В этом параграфе приведем некоторые сведения о состоянии излучения во Вселенной.

Несмотря на открытия квазаров, пульсаров и других интересных объектов, представления о формах вещества в современную эпоху в науке до конца последнего столетия коренным образом не изменились. Между тем, как оказалось, основной формой излучения в смысле, о котором скажем ниже, является не то излучение, которое испускают видимые объекты, а тепловое радиоизлучение с температурой около 3 K, называемое порусски реликтовым излучением (РИ), а по-английски космическим микроволновым фоновым (cosmic microwave background radiation — CMBR).

РИ было открыто случайно (serendipitously, то есть его открытие не планировалось). Подробная история открытия РИ содержится в книгах Пиблса [14] и Вайнберга [9]. Здесь изложим ее кратко.

Весной 1964 года два радиоастронома, сотрудники фирмы "Bell Telephone Laboratories" Арно Пензиас и Роберт Вилсон на территории научно-исследовательской фирмы "Crawford Hill Laboratory" в Холмделе (Holmdel, штат Нью Йорк) готовились к измерениям интенсивности непрерывного излучения Галактики на рупорной антенне высотой около 6 метров на длине волны 20 см (вблизи линии нейтрального водорода 21 см).

Аппаратура была высокочувствительная (по тому времени) с предельно низким уровнем шума. Первоначально эту аппаратуру предполагалось использовать для получения отраженных сигналов от спутников связи. Первая такая попытка была успешно произведена со спутником ЕСНО, который представлял собой просто шар диаметром около 30 метров, отражающий радиоизлучение.

Программа Пензиаса и Вилсона состояла в том, чтобы, исследовав шумы антенны и приемника, получить возможность абсолютных измерений. Было обнаружено, что регистрируемый шум на λ 12.5 см превосходит шум, наблюдавшийся в лаборатории. Шум был приписан излучению Земли, принимаемому обратными лепестками антенны. Э. Ом, который разрабатывал приемную систему для ЕСНО [13], указывал, что такое объяснение не проходит. Приглашенный в качестве третейского судьи Д. Вилкинсон высказал мысль, что, может быть, именно это излучение ожидают астрономы в связи с теорией горячей Вселенной.

Для уточнения уровня шума антенны Пензиас и Вилсон настроили приемник на волну 7.35 см и направили антенну на совершенно темный участок Галактики. Принятый сигнал оказался неожиданно большим. Около года открыватели перепроверяли свои наблюдения, пока не убедились в неаппаратурном происхождении сигнала, интенсивность которого не зависела ни от направления, ни от времени суток, ни от сезона, то есть положения Солнца и Земли, ни от места антенны. Тщательное изучение показало, что это фоновое излучение, не имеющее каких-либо локальных источников, а идущее равномерно со всех сторон.

О наблюдениях узнали участники другой группы, работавшей в соседнем штате Нью Джерси (Роберт Дикке, Филипп Пиблс и др.) и сознательно готовившейся к аналогичным наблюдениям для проверки выводов теории Большого Взрыва, основоположником которой был Георгий Антонович Гамов (1904–1968). Был установлен контакт между двумя группами. Теоретическая статья второй группы была опубликована в том же номере Astrophysical Journal, что и результаты наблюдений Пензиаса и Вилсона. В скором времени и эта, вторая группа получила наблюдения РИ на волне 3 см с теми же свойствами. Отождествление РИ с охладившимся и разреженным излучением первоначального огненного шара было принято астрофизиками сразу. За открытие РИ Пензиасу и Вилсону была присуждена Нобелевская премия по физике 1978 года.

2. Предшественники открытия. Интересно отметить, что обнаружение РИ обладает чертами других открытий, например, открытия Америки Колумбом. Авторы не понимали, что они открыли, природу явления пояснили другие, впоследствии оказалось, что существование РИ фактически было установлено раньше, но без осознания этого факта и без широкой известности о нем. В случае Колумба — Америго Веспуччи и викинги. В случае РИ — Дикке и более ранние наблюдения, о которых скажем отдельно.

Еще в 1941 году В. Адамс [12] выполнил наблюдения межзвездного поглощения в оптическом спектре звезды ξ Змееносца в линиях молекулы СN и обнаружил, что поглощают молекулы, находящиеся не только в основном, но и в первом возбужденном вращательном состоянии, отстоящем от основного на 2.6 мм. Мак-Келлар [15] в предположении, что относительные населенности уровней подчиняются формуле Больцмана, оценил температуру возбуждения в ≈ 2.3 К. Источником возбуждения не могли быть излучение звезд или столкновения, поэтому возбуждение было приписано какому-то космическому агенту. Наблюдения таких линий в спектрах других звезд подтвердили изотропность источника. У молекул с бо́льшими потенциалами возбуждения первого вращательного уровня такие линии поглощения на наблюдались. Только в 1966 году источник возбуждения был связан с РИ (подробнее см. [1]).

Прямая регистрация РИ была осуществлена на рупорной же антенне в Пулковской обсерватории на длине волны 3.2 см аспирантом С. Э. Хайкина Т. А. Шмаоновым. Его измерения, опубликованные в 1957 г. в техническом журнале [10], к сожалению, не обладали достаточной точностью и их значение оценено не было.

Спектр излучения в эволюционирующей Вселенной был впервые рассчитан в 1964 году А. Г. Дорошкевичем и И. Д. Новиковым [11]. Ими было предсказано, что РИ в радиообласти превосходит все остальные виды фоновых излучений и доступно наблюдениям с аппаратурой того времени. О работе Шмаонова они не знали. И их статья не была известна открывателям РИ, что и отметил А. А. Пензиас в своей лекции при получении Нобелевской премии.

3. Свойства РИ. К 1972 году свойства РИ были подтверждены наблюдениями более 15 групп наблюдателей на длинах волн от 0.27 до 73.5 см. В 1975 году наблюдения были продолжены до области длин волн около 0.1 мм, которая лежит ниже частоты максимума РИ $\nu_{\rm max} = 1.6 \cdot 10^{11}$ 1/с, что соответствует длине волны 1.87 мм.

Это излучение действительно заполняет все пространство и идет равномерно со всех сторон. Оно имеет чисто чернотельный спектр, то есть описывается функцией Планка с температурой $T_0 = 2.7277 \pm 0.002$ К и подчиняется всем его законам. В соответствии с законом смещения Вина располагается ее максимум, в 1 см³ находится $0.244(T_0k_{\rm B}/c\hbar)^3 = 411$ реликтовых фотонов с общей энергией $(8\pi^5k_{\rm B}/15h^3c^3)T_0^4 = 4.187 \cdot 10^{-13}$ эрг (или 0.25 эВ) и массой $\rho_{\rm r}^0 = 4.659 \cdot 10^{-34}$ г.

Поскольку современный спектр РИ с огромной точностью чисто чернотельный, а за большой промежуток времени оно ни с чем не могло реагировать, этот спектр должен был быть когда-то сформирован. Согласно теории горячей Вселенной на ранних стадиях эволюции все компоненты Вселенной взаимодействовали между собой и находились в состоянии термодинамического равновесия (ТДР) с единой температурой. В определенный период излучение оторвалось от вещества, то есть перестало с ним взаимодействовать и стало распространяться свободно.

За счет расширения пространства концентрация фотонов убывает пропорционально a^{-3} , то есть $n_{\rm r} = n_{\rm r}^0/a^3$, а плотность массы — пропорционально a^{-4} , то есть $\rho_{\rm r} = \rho_{\rm r}^0/a^4$ (вторая формула в (I.58)). В настоящую эпоху эти величины определяются формулами

$$n_{\rm r}^0 = \frac{8\pi}{c^3} \int_0^\infty \frac{\nu_0^2 d\nu_0}{e^{h\nu_0/(k_{\rm B}T_0)} - 1} = 16\pi\zeta(3) \left(\frac{k_{\rm B}}{ch}\right)^3 T_0^3, \quad \rho_{\rm r}^0 = \frac{8\pi h}{c^5} \int_0^\infty \frac{\nu_0^3 d\nu_0}{e^{h\nu_0/(k_{\rm B}T_0)} - 1} = \frac{a_{\rm SB}}{c^2} T_0^4, \tag{22}$$

где $\zeta(3) = 1.202$ — значение дзета-функции, а $a_{\rm SB} = (8\pi^5 h/15c^3)(k_{\rm B}/h)^4$ — постоянная Стефана).

Согласно формуле красного смещения $\nu_0 = a\nu$, так что

$$n_{\rm r}^0 = \frac{8\pi}{c^3} a^3 \int_0^\infty \frac{\nu^2 \mathrm{d}\nu}{e^{ah\nu/(k_{\rm B}T_0)} - 1} = a^3 n_{\rm r}, \quad n_{\rm r} = \frac{8\pi}{c^3} \int_0^\infty \frac{\nu^2 \mathrm{d}\nu}{e^{h\nu/(k_{\rm B}T)} - 1} = 16\pi\zeta(3) \left(\frac{k_{\rm B}}{ch}\right)^3 T^3, \quad T = \frac{T_0}{a}.$$
 (23)

Таким образом, в течение всего периода расширения пространства излучение оставалось чернотельным, а его температура уменьшалась так же, как и частота. Тот же вывод следует и из рассмотрения плотности массы.

4. *Сравнение с другими фоновыми излучениями*. Из данных табл. 7, извлеченной из книги [1], следует, что по плотности энергии и в особенности по концентрации фотонов РИ далеко превосходит все другие фоновые излучения, т. е. это основная форма существования излучения в современной Вселенной.

	Плотность	Концентрация
Диапазон	энергии,	фотонов,
	$ m ext{ >}B/c m^3$	$1/ \text{ cm}^{3}$
Длинноволновый радио	$\sim 10^{-7}$	~ 1
Сантиметровый и миллиметровый (РИ)	0.25	400
Инфракрасный	$\sim 10^{-2}$	~ 1
Оптический	$\sim 3 \cdot 10^{-3}$	$\sim 10^{-3}$
Мягкий рентгеновский (< 1 кэВ)	$10^{-5} \div 10^{-4}$	$3 \cdot 10^{-8} \div 10^{-8}$
Жесткий рентгеновский (>1 кэВ)	10^{-4}	$3 \cdot 10^{-9}$
Мягкий гамма (1÷6 МэВ)	$\leq 10^{-5}$	$\leq 3 \cdot 10^{-12}$
Жесткий гамма (> 10 МэВ)	$< 10^{-5}$	$< 10^{-12}$

Таблица 5. Фоновые излучения и их свойства.

5. Изотропия излучения. Реликтовое излучение, как уже говорилось, в высокой степени изотропно. Однако, как было предсказано [16, 17], имеется дипольная анизотропия $T = T_0 \left(1 + \frac{v}{c} \cos \theta\right)$. Наилучшее приближение к наблюдениям дает дипольный момент 3.343 ± 0.016 мкК в направлении $\alpha = 11.2^h, \delta = -7^\circ$ или $l = (264.4 \pm 0.3)^\circ, b = (48.4 \pm 0.5)^\circ$. После исправления за движение Земли вокруг Солнца, Солнца вокруг центра Галактики и Галактики по отношению к центру масс Местной Группы получается, что Местная Группа галактик движется со скоростью 627 ± 22 км/с по отношению к РИ в направлении $l = (276\pm3)^\circ, b = (30\pm3)^\circ$. По-пытки определить направление и скорость движения Местной Группы относительно других, более удаленных, галактик и скоплений галактик другими способами давали противоречивые результаты.

Имеется и квадрупольная составляющая анизотропии, вызываемая, как считается, неоднородностью распределения материи в Местной Группе галактик. На РИ влияют также различные источники, расположенные в Галактике и в Магеллановых облаках. Источники имеют различный спектр, максимум их излучения может располагаться в областях спектра, далеких от радио, но при очень точных наблюдениях их влияние необходимо учитывать и исключать.

Указанные анизотропии фактически не относятся к РИ, а возникают из-за движения системы отсчета относительно этого излучения. Таким образом, РИ играет роль эфира. Об искажениях изотропии собственно РИ скажем в дальнейшем.

Ввиду того, что нейтрино имеют очень малую массу и могут рассматриваться как ультрарелятивистские частицы, свойства которых близки к свойствам излучения, приведем некоторые сведения о них в этой главе.

§6. Нейтрино

1. История открытия. Существование нейтрино было предположено Вольфгангом Паули (1900–1958) в 1930 году. Причиной такого предположения явился факт кажущегося невыполнения закона сохранения энергии при бета-распаде нейтрона на протон и электрон. Среднее время жизни неподвижного нейтрона составляет $\bar{t}_{\rm N} = 15.3$ минуты (период полураспада $t_{1/2} = \ln(2)\bar{t}_{\rm N} = 10.6$ минуты). Вылетающий при таком процессе электрон уносит энергию, однако, ее оказывалось меньше, чем разность между энергиями покоя нейтрона и протона.

Некоторое время в начале становления квантовой механики физики думали, что законы сохранения могут в природе соблюдаться в среднем, аналогично тому, что величины в произвольных состояниях имеют только среднее значение. Последующее развитие теории установило, что это не так и законы сохранения должны выполняться точно. Нарушение закона сохранения энергии при бета-распаде было недопустимо. Это и стимулировало Паули предположить, что недостающую энергию уносит какая-то неизвестная нейтральная частица, названная нейтрино. При этом разрешалась еще одна трудность, а именно, соблюдение условия сохранения момента. Так как и протон, и нейтрон, и электрон имеют спин половина, то и гипотетической частице следовало приписать спин половина, тогда при определенной ориентации проекций спинов частиц общий спин сохранялся. Необнаружение нейтрино объяснялось его слабым взаимодействие с остальными частицами. Все подобные процессы составляют элементы так называемого слабого взаимодейстия.

Впоследствии гипотеза Паули полностью подтвердилась, нейтрино было зафиксировано в 1956 году. В настоящее время свойства нейтрино достаточно подробно изучены. При этом долгое время считалось, что масса нейтрино точно равна нулю, как у фотона.

2. Нейтрино в природе. Нейтрино относятся к так называемым лептонам, то есть к частицам, участвующим в слабых взаимодействиях и не участвующих в сильных. Они не имеют заряда, так что и в электромагнитных взаимодействиях не участвуют. Однако в начале 1970-х годов была построена теория, объединившая электромагнитное и слабое взаимодействия. Теория была подтверждена экспериментами и ее авторам, С.Вейнбергу, А.Саламу и С.Д.Глешоу в 1999 году была присуждена Нобелевская премия по физике.

При многих ядерных реакциях, например, при распаде нейтрона, как уже говорилось, образуются нейтрино. Изучение свойств этих частиц продолжается в экспериментальных установках (ядерных реакторах и ускорителях). Наблюдаются нейтрино и от астрономических объектов. Так как они с веществом взаимодействуют слабо, то большинство астрономических объектов для них прозрачно, так что выделившиеся нейтрино выходят из областей своего образования и летят свободно.

Так как выделение энергии в звездах происходит посредством термоядерных реакций, при которых излучаются нейтрино, для подтверждения основных положений теории внутреннего строения и эволюции звезд были предприняты попытки наблюдать солнечные нейтрино. В нескольких местах были построены нейтринные обсерватории, где основным веществом, с которым должны реагировать нейтрино, была вода, точнее ядра водорода — протоны, которых в каждую молекулу воды входит по паре.

Довольно долгое время не удавалось их обнаружить, а после обнаружения оказалось, что их поток меньше, чем предсказывала теория. Однако, после уточнения сечений реакций и решений уравнений теории строения звезд теорию с наблюдениями удалось согласовать.

Не прекращаются попытки зарегистрировать нейтрино от других небесных тел. Самыми вероятными источниками нейтрино являются сверхновые звезды. Во время вспышки выделяется большое количество нейтрино, причем в самом начале разлета вещества нейтрино в нем заперты и взаимодействуют многократно, так что при расчете взрывов сверхновых учитывался перенос нейтрино в расширяющейся оболочке. Для регистрации таких нейтрино также имеются установки, в частности, Ледяной Куб (IceCube) со стороной в 1 км в Антарктиде. В своем отчете в январе 2014 года [21] коллектив этого проекта (называемый коллаборация) сообщил, что за два года (май 2010 – май 2012) было зафиксировано 28 событий, которые можно интерпретировать, как регистрации нейтрино космических лучей (КЛ). Энергии E этих нейтрино заключены в диапазоне от 50 ТэВ (10^{12} эВ) до нескольких ПэВ (10^{15} эВ).

Согласно теории горячей Вселенной должны быть и космические (космологические) нейтрино. Однако, их существование — это чисто теоретическое заключение. Но так как из теории однозначно вытекает необходимость их присутствия во Вселенной, примем эту гипотезу (см. следующую главу).

3. *Проблема массы нейтрино*. Согласно современной теории в природе имеются три сорта нейтрино: электронные, мюонные и тау-нейтрино. Им обычно присваивают номера 1, 2 и 3 соответственно. Каждому сорту отвечает свое антинейтрино.

Нейтрино одного сорта, как показывают эксперименты, могут трансформироваться в нейтрино другого сорта. Такие переходы называются нейтринными осцилляциями. Переходы возможны только при условии, что массы нейтрино не равны нулю. Однако эти массы столь малы, что их измерить с уверенностью пока не удается. Устанавливаются лишь верхние пределы. 4. Космологическиеп нейтрино. Нейтрино, спин которых равен половине, подчиняются статистике Ферми— Дирака. При термодинамическом равновесии их распределение по энергиям определяется температурой и химическим потенциалом. Относительно космологических нейтрино считается, что в первые эпохи расширения Вселенной эти нейтрино находились в многократном взаимодействии с другими частицами и их химический потенциал равен нулю. Примем это значение.

Как и излучение, космологические нейтрино в определенный момент перестали взаимодействовать с остальным веществом и с тех пор распространяются свободно. Момент обособления нейтрино относится к более ранней эпохе, чем отрыв излучения от вещества. Хотя процесс их перехода к свободному полету занимает какой-то период времени, примем, что это произошло мгновенно. Разные типы нейтрино отделяются в разные периоды, но за каждым из них можно следить отдельно от других, так что рассмотрим какой-нибудь один тип нейтрино или антинейтрино.

В случае больших температур, то есть при $y_{\nu} \ll 1$ выполняется соотношение, характерное для ультрарелятивистских частиц $P_{\nu} \sim \frac{c^2}{3}\rho_{\nu}$, так что нейтринный газ ведет себя так же, как излучение. С уменьшением температуры нейтрино перестают быть ультрарелятивистскими, но тогда их доля в общей массе компонент мала. Поэтому примем, что массы всех сортов нейтрино равны нулю.

Рассмотрим поведение такого газа подробнее.

5. Эволюция космологических нейтрино. Температура отделения нейтрино T_{ν}^* достаточно высока и все компоненты вещества были ультрарелятивистскими, так что их энтропии были пропорциональны третьей степени температуры. Нас интересуют электроны, позитроны, нейтрино и фотоны. Энтропии трех газов фермионов в момент отделения нейтрино были одинаковы, а энтропия фотонного газа отличалась множителем. Указанные энтропии в объеме V_* тогда были

$$S_{e^{\pm}}^{*} = S_{\nu}^{*} = \frac{7}{6} a_{\rm SB} V_{*}(T_{\nu}^{*})^{3}, \quad S_{\rm r}^{*} = \frac{4}{3} a_{\rm SB} V_{*}(T_{\nu}^{*})^{3}.$$
(24)

Космологическое расширение происходит как адиабатический процесс, при котором энтропия определенного объема не меняется. Следовательно, температура всех ультрарелятивистских газов изменяется обратно пропорционально масштабному множителю.

После отделения нейтрино разлетались свободно, а электроны и позитроны продолжали взаимодействовать. Когда температура стала существенно ниже, чем 6 · 10⁹ К, все позитроны аннигилировали с электронами, и аннигилировавшие пары передали свою энергию, включая энергию покоя, фотонному газу. В результате этого и энтропия электрон-позитронных пар перешла к фотонам. Фотоны продолжали взаимодействовать с оставшимися электронами и газ фотонов пришел к равновесному состоянию, повысив свою температуру, которая впоследствии уменьшалась в соответствии с общим расширением пространства. Энтропия после повышения сохранялась:

$$S_{\rm r} = \left(\frac{4}{3} + 2\frac{7}{6}\right) a_{\rm SB} V_* (T_{\nu}^*)^3 = \frac{11}{3} a_{\rm SB} V_* (T_{\nu}^*)^3 = \frac{4}{3} a_{\rm SB} V T^3.$$
(25)

Энтропия нейтринного газа не изменялась, то есть сохранялась формула

$$S_{\nu} = \frac{7}{6} a_{\rm SB} V_* \left(\frac{a}{a_{\nu}^*}\right)^3 T_{\nu}^3 = \frac{7}{6} a_{\rm SB} V T_{\nu}^3 = \frac{7}{6} a_{\rm SB} V_* (T_{\nu}^*)^3.$$
(26)

Вследствие космологического расширения объемы в моменты, которым соответствуют значениям масштабного множителя a_{ν}^* и a, связаны соотношением $V_*(a_{\nu}^*)^3 = Va^3$.

Подставив в (25) произведение $V_*(T_{\nu}^*)^3$ из (26), получим связь между температурами фотонного и нейтринного газов после аннигиляции электрон-позитронных пар [23]:

$$\frac{11}{3}a_{\rm SB}VT_{\nu}^{3} = \frac{4}{3}a_{\rm SB}VT^{3}, \quad T^{3} = \frac{11}{4}T_{\nu}^{3}, \quad T_{\nu} = \sqrt[3]{\frac{4}{11}}T = 0.713765856T.$$
(27)

В частности, современная температура безмассовых нейтрино $T_{\nu}^0 = \sqrt[3]{\frac{4}{11}} T_0 = 1.95$ К, так что плотность их массы (всех типов вместе) и доля в критической плотности

$$6\rho_{\nu}^{0} = 6a_{\rho}(T_{\nu}^{0})^{4} = 6.35 \cdot 10^{-34} \frac{\Gamma}{\text{cM}^{3}}, \quad \Omega_{\nu}^{0} = 6\frac{\rho_{\nu}^{0}}{\rho_{c}^{0}} = 6.90 \cdot 10^{-5}.$$
 (28)

Глава III. Закон Хаббла и проблема выбора модели

§ 1. Соотношения Хаббла

1. Открытие Хаббла. Как уже говорилось выше, в 1929 году Э. Хаббл опубликовал свое открытие [8], заключавшееся в том, что скорости внегалактических туманностей, на самом деле являющихся галактиками, пропорциональны расстоянию до них, то есть

$$v = H_0 l. \tag{1}$$

Фактически, измерялись красные смещения линий в спектрах этих галактик. Наряду с собственными наблюдениями на 2.5-метровом телескопе обсерватории Маунт Вилсон Хаббл использовал измерения z, произведенные по спектрам галактик, которые были получены Весто Мелвином Слайфером (1875-1969) и Милтоном Хьюмасоном (1891–1972) на этом и на других, не столь мощных телескопах. Наибольшее значение красного смещения в его данных было z = 0.004.

Красные смещения линий Хаббл перевел в скорости, как это обычно делается до сих пор по отношению, например, к звездным спектрам, исходя из соотношения

$$\frac{\lambda_0 - \lambda_e}{\lambda_e} = \frac{v}{c} = \tilde{v}.$$
(2)

Отсюда с учетом определения (II.7) следует, что

$$\frac{v}{c} = \tilde{v} = z. \tag{3}$$

Принятые во внимание Хабблом галактики имели скорости, не превосходящие 1200 км/с.

Конечно, из приведенных соотношений вытекает, что

$$z = \frac{H_0}{c}l.$$
(4)

Расстояния до галактик Хаббл определил в несколько этапов. До ближайших галактик расстояния Хабблу удалось найти, обнаружив в них несколько цефеид. В этих же ближайших галактиках были определены светимости других, более ярких объектов — шаровых скоплений, которые видны также в галактиках близкого к нам скопления Девы. Относительные расстояния до далеких (по понятиям тех времен) скоплений Хаббл определял, считая, что пятые по яркости галактики в скоплении имеют одинаковую светимость. Тем самым удалось построить шкалу расстояний. В результате было найдено, что $H_0 \approx 500$ км/(с Мпк), где 1 Мпк (мегапарсек) = $3.086 \cdot 10^{24}$ см.

Техника измерений красных смещений, то есть положений смещенных линий в спектрах далеких галактик, отработана хорошо, проблема только в получении спектров слабых объектов и убедительном отождествлении линий.

Для определения значения H_0 необходимо знать расстояния до галактик. Их получение — очень серьезная проблема. Существует процедура установления масштаба расстояний в части Вселенной, доступной наблюдениям и называемой Метагалактикой. Опишем ее кратко.

2. Определение расстояний в Метагалактике. Измерения тригонометрических параллаксов возможно только по отношению к ближайшим звездам. Поэтому для определения расстоян ий до звезд используется соотношение между периодом и средней светимостью пульсирующих звезд — цефеид. Однако самые близкие цефеиды находятся довольно далеко, и их параллаксы были недоступны измерениям до последнего времени.

Ключевую роль в определении промежуточных расстояний играют рассеянные звездные скопления, в первую очередь Гиады. Можно принять, что все звезды этого скопления имеют одинаковую пространственную скорость. На небесной сфере они движутся в одном направлении к фиктивной точке — радианту ("падающие звезды" метеорных потоков, напротив, все исходят из своих радиантов). Это означает, что их скорости параллельны направлению на радиант (параллельные прямые сходятся на бесконечности). Обозначим угол между направления на радиант и некоторую звезду, которая как бы движется к нему, через α . Этот угол легко измерить. Можно измерить также лучевую скорость звезды v_r . Тогда ее полная скорость $v = v_r/\cos \alpha$, а тангенциальная $v_t = v_r tg \alpha$. Скопление Гиады находится достаточно близко, так что собственные движения его звезд, то есть угловое перемещение их в единицу времени, поддаются измерению. Пусть у выбранной звезды оно равно v_t/l_{Star} . Отсюда находим расстояние l_{Star} до этой звезды. Оказалось, что расстояния до звезд Гиад l_{Star} лежат в пределах от 27 до 47 пк.

Следующий шаг в этом направлении — определение групповых параллаксов входящих в скопления звезд одинакового цвета, то есть располагающихся в одном месте на диаграмме Герцшпрунга—Рессела "спектр-светимость" и, следовательно, имеющих примерно одинаковый возраст и светимость.

В ряде рассеянных скоплений имеются цефеиды. По ним устанавливается нуль-пункт соотношения периодсветимость для цефеид. Проблема эта сложная, нуль-пункт несколько раз пересматривался. По цефеидам находят, как уже говорилось, расстояния до шаровых звездных скоплений и ближайших галактик.

Потом получают связь найденных по цефеидам расстояний с определяемыми по самым ярким звездам и шаровым скоплениям в галактиках, а затем и по определенным галактикам в скоплениях галактик. Самыми яркими звездами могут считаться сверхновые или сверхгиганты. Самые яркие галактики в богатых скоплениях — гигантские эллиптические галактики. Считается, что они поглотили несколько других галактик. Поэтому предполагается, что одинаковые светимости имеют не они, а несколько меньшие по светимости галактики и они могут быть приняты в качестве эталонов (стандартных свечей).

Во всей этой процедуре имеются неопределенности и допущения. Один из источников неопределенностей — отсутствие теории эволюции наблюдаемых объектов, ведь наблюдая далекие объекты, мы смотрим в прошлое. Приходится делать какие-то предположения.

История определения расстояний пережила несколько раз изменения их масштаба. После введения в строй 5-метрового телескопа обсерватории Маунт Паломар оказалось, что цефеиды, использовавшиеся Хабблом, в 4 раза ярче, чем считалось. Еще одна ошибка заключалась в смешении звезд и шаровых скоплений с яркими областями ионизованного водорода, которые теперь называются областями НП. Они были открыты в радиодиапазоне как яркие неточечные источники. Затем радиоисточники были отождествлены с оптическими объектами, выглядевшими как туманности, так что это не были звезды. Завысив светимости опорных объектов, Хаббл занизил расстояния и, следовательно, завысил значение H_0 . В результате исправления ошибок значение H_0 снизилось до 75 км/(с Мп). Дальнейшая работа привела к значению $H_0 = 55$ км/(с Мпк).

Не все были согласны с этим значением. Многочисленные определения расстояний в 70-х годах привели к заключению, что наиболее вероятное значение постоянной Хаббла лежит в пределах $H_0 = (50 \div 75) \text{ км/(с Мпк)}$. Соответствующее значение критической плотности $\rho_c^0 = 5 \cdot 10^{-30} \div 10^{-29} \text{ г/см}^3$. Прямые измерения параллаксов цефеид стали доступны только в самое последнее время после запуска

Прямые измерения параллаксов цефеид стали доступны только в самое последнее время после запуска спутника Гиппаркос (HIPPARCOS), названного в честь древнегреческого астронома Гиппарха (в латинской транскрищии Hipparchus), составившего первый каталог положений звезд на небесной сфере. Одновременно название спутника является сокращением выражения, определяющего его основную функцию: High Precision PARallaxes COllection Satellite. Данные HIPPARCOS увеличили все расстояния на 10 %. Следующий шаг должен сделать недавно запущенный спутник Gaia.

По данным начала XXI века $H_0 = 74.37 \pm 2.27 \pm 4.92 \text{ км/(с Мпк)}$, где первая неопределенность вызывается случайными ошибками, определяемыми в пределах одного метода, а вторая — систематическими, то есть различием применяемых методов. Конечно, доли единиц и даже единицы имеют здесь чисто формальное значение.

По данным миссии WMAP астрономы склонялись к значению $H_0 = 70 \text{ км/(с Мпк)}$ и считали, что оно верно с точностью до 10 %. Последние определения миссии Planck несколько уменьшают значение до $H_0 = 68 \text{ км/(с Мпк)}$. Поставлена задача довести в ближайшее десятиление точность определения H_0 до 1 %.

3. Закон Хаббла. Хаббл открыл пропорциональность красного смещения и расстояния. Он сам и все космологи сразу же интерпретировали ее как пропорциональность скорости разбегания галактик тому же расстоянию. Это следовало из толкования красного смещения как следствия эффекта Доплера.

В произвольный момент соотношение (1) следует записать так:

$$v = Hl. \tag{5}$$

В равенстве (5) под скоростью v = dl/dt надо понимать скорость изменения в единый мировой момент расстояния между точками, жестко связанными с расширяющимся пространством. Таковыми точками считаются галактики в среднем, то есть после исключения их собственных движений и собственного движения нашей Галактики в Местной группе галактик. Надо исключить также все локальные движения Земли: вращение вокруг своей оси и по орбите вокруг Солнца, а также движение самого Солнца вместе с Солнечной системой вокруг центра Галактики, что всегда делается всеми исследователями, начиная с Хаббла. Соотношения (3) и (5) также называют законом Хаббла.

Понять соотношение (5) довольно просто исходя из той же двумерной модели трехмерного пространства, о которой говорилось в §2 Главы I и в §1 Главы II. Например, если на сфере проведена некоторая окружность и радиус сферы увеличивается, то каждая точка на окружности удаляется от любой другой точки на той же окружности со скоростью, пропорциональной длине дуги между ними, а от центра окружности со скоростью, пропорциональной расстоянию по большому кругу до этого центра. Обе скорости (и расстояния) пропорциональны увеличивающемуся радиусу сферы. Ясно, что если радиусы сферы и окружности велики, то могут быть велики и указанные скорости. Ясно также, что если расширяющаяся окружность находится далеко от своего центра на сфере (дальше горизонта), то ее удаление от этого центра очень быстрое и испущенный с нее фотон не может дойти до наблюдателя, находящегося в центре. При этом очевидно, что картина расширения не зависит от выбора центра окружности на сфере. Такая же интерпретация проходит и в случае плоской модели: вместо сферы надо взять плоскость. Для открытой модели надо брать окружность, центр которой лежит на оси гиперболоида, так как в других случаях геометрия Лобачевского не столь наглядна.

Заметим, что сами галактики и скопления галактик (по внутренней структуре) не участвуют в глобальном расширении, так как они связаны локальной силой тяжести. Тем более не расширяются структуры меньшего масштаба, не говоря уже об атомах и молекулах, связываемых электромагнитными силами.

Заметим также, что при замкнутой модели с пылевидным веществом произведение $Ht = \sin \eta (\eta - \sin \eta)/(1 - \cos \eta)^2$ при $0 \le \eta \le \pi$ строго убывает от 2/3 при $\eta = 0$ до 0 при $\eta = \pi$, затем постоянная Хаббла изменяет знак, так как расширение сменяется сжатием. Однако сейчас Вселенная еще расширяется, так что $\eta < \pi$ и указанное произведение не мало. При открытой модели $Ht = \sinh \eta (\sinh \eta - \eta)/(\cosh \eta - 1)^2$ и при изменении η от 0 до ∞ это произведение строго возрастает от 2/3 до 1. Для модели 'Эйнштейна—де Ситтера это произведение тождественно равно 2/3. Поэтому значение H характеризует возраст Вселенной. Современный ее возраст порядка $1/H_0 \approx 3 \cdot 10^{17}$ с = 10^{10} лет = 10 Г лет (гигалет). Такая величина согласуется с определениями возраста земной коры, Солнца, звезд, галактик и других объектов. Промежутки времени порядка миллиардов лет называются космологическими (геологические периоды, за которые заметно смещаются материки, — десятки миллионов лет). Для каждой из моделей можно вычислить возраст Вселенной по формулам, которые будут получены в следующем параграфе.

Как уже говорилось, скорость, вычисленная как произведение *Hl* согласно формуле (5), может превосходить скорость света. Расстояние, на котором она равна скорости света, называется хаббловским расстоянием. В произвольный момент и в настоящую эпоху это расстояние

$$l_{\rm H} = \frac{c}{H}, \quad l_{\rm H}^0 = \frac{c}{H_0}.$$
 (6)

Через него закон Хаббла записывается в виде

$$v = c \frac{l}{l_{\rm H}^0}.\tag{7}$$

Что касается сверхсветовых скоростей — это скорости расширения пространства, а не скорости движения тел в пространстве. Поэтому нет ничего страшного в сверхсветовой скорости этого расширения. Никакие сигналы с такой скоростью при этом не передаются.

§ 2. Интерпретации космологического красного смещения

1. Интерпретация соотношения (5). Таким образом, имеется три формулировки закона Хаббла. Две из них независимы, третья является их следствием. Покажем, что соотношение (5) может быть строго выведено в рамках космологических моделей.

Для доказательства продифференцируем расстояние в данный момент от начала координат ($\chi = 0$) до точки с координатой χ вдоль проведенного между ними луча, которое согласно метрике (I.32) и формуле (II.8) равно

$$l = R(\eta)\chi. \tag{8}$$

Так как координата точки, жестко связанной с пространством, с течением времени не изменяется, то скорость изменения метрического расстояния выражается через то же расстояние:

$$v = \frac{\mathrm{d}l}{\mathrm{d}t} = \dot{R}\chi = \dot{R}\frac{l}{R} = Hl. \tag{9}$$

2. Связь скорости с красным смещением. В отличие от своего следствия (5) равенство (4) не является точным. Действительно, будем исходить из той же формулы (5), связывающей скорость расширения с расстоянием до сопутствующего тела. Для упрощения выкладки для всех величин кроме красного смещения, относящихся к моменту наблюдения $t_0 = t(\eta_0)$, будем использовать обозначения с ноликом, а для относящихся к моменту выхода фотона $t_e = t(\eta_e)$ из источника используем индекс е. Без индекса обозначаются переменные, по которым ведется дифференцирование и интегрирование (для красного смещения приходится ставить штрих). Соответственно имеем ряд переменных со следующими связями:

$$\chi = \eta_0 - \eta, \ \chi_e = \eta_0 - \eta_e, \ \mathrm{d}\chi = -\mathrm{d}\eta, \ \mathrm{d}\eta = c\frac{\mathrm{d}t}{R(\eta)} = c\frac{\mathrm{d}R}{R}\frac{\mathrm{d}t}{\mathrm{d}R}.$$
(10)

Как отмечалось выше, интеграл, который входит в формулу (II.8), определяющую расстояние *l*, не зависит от времени. Его можно преобразовать следующим образом:

$$\chi_{\rm e} = \int_{0}^{\chi_{\rm e}} \mathrm{d}\chi = \int_{\eta_{\rm e}}^{\eta_{\rm 0}} \mathrm{d}\eta = c \int_{t_{\rm e}}^{t_{\rm 0}} \frac{\mathrm{d}t}{R(\eta(t))} = c \int_{R_{\rm e}}^{R_{\rm 0}} \frac{\mathrm{d}R}{R\dot{R}} = c \int_{R_{\rm e}}^{R_{\rm 0}} \frac{\mathrm{d}R}{HR^2} = \frac{c}{R_{\rm 0}} \int_{R_{\rm 0}}^{R_{\rm e}} \frac{\mathrm{d}(R_{\rm 0}/R)}{H} = \frac{c}{R_{\rm 0}} \int_{0}^{z} \frac{\mathrm{d}z'}{H(t(z'))}.$$
 (11)

Здесь $\eta(t)$ — функция, обратная по отношению к $t(\eta)$. Использовано также соотношение (II.7) между радиусами кривизны и красным смещением. В результате получаем связь скорости с красным смещением

$$v = \dot{R}_0 \int_0^{\chi_0} d\chi = c H_0 \int_0^z \frac{dz'}{H(t(z'))}.$$
(12)

Подставив эту связь в формулу (5), найдем соотношение между расстоянием и z [18]:

$$l = c \int_{0}^{\tilde{z}} \frac{\mathrm{d}z'}{H(t(z'))}.$$
(13)

Вычисление интеграла надо производить после принятия конкретной модели.

3. Интерпретация соотношения (12). Во многих руководствах по космологии, не говоря уже о популярных изданиях, равенство (4) связывают с продольным эффектом Доплера. Согласно этому эффекту частота фотона при излучении его удаляющимся со скоростью v источником уменьшается на множитель

$$1 + z = \frac{1 + v/c}{\sqrt{1 - v^2/c^2}} = \sqrt{\frac{1 + v/c}{1 - v/c}},$$
(14)

откуда

$$\tilde{v} = \frac{v}{c} = z \frac{2+z}{2+2z+z^2}.$$
(15)

Как показывает приведенная выкладка, в космологии дело обстоит сложнее. Действительно, эффект Доплера описывает изменение частоты при движении излучающего источника в пространстве-времени Минковского с евклидовым трехмерным пространством. Частота фотона (или волны́) изменяется одномоментно, непосредственно при излучении, затем фотон движется без изменения частоты. Космологические же модели соответствуют расширяющемуся пространству, так что частота фотона уменьшается в каждой точке его пути от источника до наблюдателя. Поэтому классический эффект Доплера зависит только от относительной скорости источника и наблюдателя, а космологическое красное смещение — от расстояния, пройденного фотоном, а через него и от скорости удаления источника.

Различие формул (12) и (15) проявляется в следующем. Во-первых, согласно формуле эффекта Доплера скорость не может превосходить скорость света, а в космологии это осуществляется. Во-вторых, формула (15) универсальна, то есть скорость и красное смещение связаны однозначно. Соотношение же (12), как говорят, модельно зависимо, так как для вычисления интеграла необходимо знать функцию H(t(z)), которая определяется только после принятия определенной космологической модели. Летящий фотон относительно каждой точки, в которой он в данный момент находится, летит со скоростью света, а точка удаляется от наблюдателя, при этом скорость ее удаления определяется моделью. Конечно, при желании и это явление можно назвать каким-то обобщенным или кумулятивным эффектом Доплера (хотя непонятно, как можно эту кумулятивность продемонстрировать), но не классическим.

Однако если z мало и зависимостью H от z можно пренебречь, то соотношение (12) переходит в равенство (2), которое при малых z тождественно равенству (15), а формула (13) совпадает с исходным законом (4), так что в приближении малых (по космологическим масштабам) расстояний закон (4) выполняется и интерпретация красного смещения как эффекта Доплера возможна.

§ 3. Проблема выбора модели

1. *Космологические тесты*. Для выбора модели, наиболее близкой к реальной Вселенной, необходимо разработать и применять методы, которые называются космологическими тестами. Отметим некоторые возможные варианты.

Казалось бы выбрать наиболее подходящую модель довольно просто. Надо измерить на некотором расстоянии l от наблюдателя длину окружности $2\pi r$ или площадь сферы $4\pi r^2$ с центрами в точке наблюдения и сравнить результаты с теми, которые справедливы для плоского пространства $2\pi l$ и $4\pi l^2$. Если окажется, что l > r, значит пространство замкнутое, если l < r — открытое, ну а если l = r, то плоское. Именно измерения длин на поверхности Земли методом триангуляции позволили в XVII–XIX веках окончательно убедиться в том, что Земля очень близка к шару, и уточнить ее форму.

Однако, такой способ не дает никаких результатов по отношению к космосу, так как радиус кривизны, даже если он конечен, настолько велик, что пространство с большой степенью точности можно считать плоским. Ведь даже земная поверхность долгое время человечеству представлялась плоской. Для выяснения геометрии космического пространства приходится привлекать не столь прямые (геометрические) методы. Другой прямой метод заключается в измерении плотности массы и сравнении ее с критической плотностью. Применяются также различные косвенные методы. О некоторых будет сказано ниже, но сначала расскажем подробнее о плотности массы.

2. Проблема массы во Вселенной. Долгое время астрономы, да и вообще человечество, думали, что основная масса Вселенной заключена в звездах, так как массы планет, спутников, комет и других тел Солнечной системы, а следовательно, и подобных тел в звездных системах, значительно меньше. Уже в XX веке выяснилось, что кроме звезд в Галактике имеется диффузное вещество, образующее светлые и темные туманности, газовые и пылевые, и его массу также надо учитывать.

Массы близких галактик определяют по кинематике звезд, основываясь на моделях звездной динамики. По ним устанавливаются средние значения для разных типов галактик, по ним рассчитывают общую массу видимых галактик и среднюю плотность их массы.

Если принимать во внимание только видимые части галактик, то есть светящееся вещество, то получается $\Omega_{\rm vis}^0 = 0.012$. Однако, это вещество не может объяснить кривые вращения нашей Галактики и других галактик. Скорости вращения должны были бы быстро уменьшаться с приближением к краям галактик, чего не наблюдается. Это истолковывается так, что в периферийных областях галактик имеется несветящаяся, темная материя (dark matter) и тем самым скрытая масса. Добавление темного вещества, обеспечивающего правильную кривую вращения, увеличивает критический параметр до $\Omega_{\rm gal}^0 = 0.04 \div 0.05$.

Следующий шаг — оценка масс скоплений галактик. Если допустить, что скопления галактик являются гравитационно связанными и для них выполняется теорема вириала, то оказывается, что масса скоплений также превышает массу составляющих его галактик. Добавление этой вириальной массы приводит к значению $\Omega_{\rm cls}^0 = 0.25$. Очевидно, до замкнутой или даже плоской модели все это не дотягивает.

В настоящее время принято, что барионная составляющая Вселенной, то есть фактически нуклоны, вносит в плотность массы $\rho_{\rm b}^0 = 2 \cdot 10^{-31}$ г/см³, что соответствует плотности числа нуклонов $\rho_{\rm b}^0/m_{\rm n} = 1.2 \cdot 10^{-7}$ 1/см³ и $\Omega_{\rm b} = 0.025$. (Напомним, что барионами называются адроны с полуцелым спином: нуклоны, гипероны и так называемые резонансы. Адроны — общее название семейства частиц, участвующих в сильном взаимодействии. Наряду с барионами это семейство содержит пи-мезоны.)

В связи с вопросами об устойчивости галактик и скоплений галактик, а также замкнутости или открытости Вселенной возникает проблема скрытой массы, то есть наличия во Вселенной темного вещества, которое не светится и мы его не видим. Обсуждались многие возможности. Это могла бы быть барионная материя, то есть многочисленные слабые и недоступные наблюдениям нейтронные звезды и потухшие звезды (коричневые или бурые карлики), тела типа планет и др. Такая возможность не подтверждается. Это могли бы быть нейтрино с ненулевой массой, однако их масса, даже если она не равна 0, столь мала, что почти не влияет на среднюю плотность. Предполагаются также особые элементарные частицы (аксионы, нейтралино, фотино и др.), пока не наблюдавшиеся ни в лаборатории, ни в космосе, или первичные черные дыры малых масс. Проблема остается нерешенной, ей посвящается много работ физиков и астрофизиков. Попытки обнаружить присутствие темного вещества в пределах Солнечной системы результатов не дали [22].

Напомним, что плотность излучения во Вселенной в настоящее время значительно меньше, чем плотность любых видов вещества, и ее вклад в общую массу не решает проблему выбора модели.

Если постоянная Хаббла определялась с разбросом примерно от 40 до 100 км/с/Мпк, а теперь известна с точностью около десяти процентов, то значения других параметров модели, которую можно было бы принять как наиболее близкую к реальности, до самого последнего времени оставались совершенно неопределенными. Следовательно, не было ясно, какая модель более адекватна Вселенной. Долгое время усилия наблюдателей были направлены на определение параметров критичности модели с пылевидным веществом Ω_0 и тем самым определения, какова Вселенная: замкнутая, открытая или плоская.

Два способа определения параметра Ω_0 из наблюдений называются классическими тестами. Один из них заключается в сопоставлении видимой полной светимости одинаковых источников и их красного смещения z, при применении другого с z сопоставляется угловой диаметр объектов. Эти тесты должны ответить на вопросы, замкнута или нет наша Вселенная, чему равны константы, характеризующие ее модели. Скажем об этом немного подробнее.

3. Тест видимая яркость — красное смещение. Пусть галактика имеет координату χ по отношению к нам и светимость (то есть полную мощность излучения) L. Мы ее наблюдаем в момент $t_0 = t(\eta_0)$. Тогда площадь сферы, на которую растекается излучение этой галактики, равна $4\pi R_0^2 \operatorname{sn}_k^2(\chi)$. Энергия излучения, испускаемого источником, в данном случае галактикой, как указывалось выше, ослабляется за счет уменьшения энергий (частот) всех фотонов в результате красного смещения в 1 + z раз и на тот же множитель за счет того, что отдельные фотоны реже приходят к наблюдателю, так как время наблюдателя и время источника текут поразному.

Таким образом, видимая полная светимость галактики на единицу площади

$$\widetilde{L} = \frac{L}{4\pi R_0^2 \operatorname{sn}_k^2(\chi)(1+z)^2}.$$
(16)

Эта величина и есть видимая болометрическая яркость, о которой говорилось выше. Соответствующее ей расстояние

$$l_{\rm bb} = R_0 \,{\rm sn}_k(\chi)(1+z). \tag{17}$$

Наблюдая далекие галактики и измеряя их видимые звездные величины, а затем переводя их в светимости (хотя бы относительные), а также определяя их красные смещения, можно было бы по тому, при какой модели наилучшим образом выполняется соотношение между этими величинами, судить о соответствии модели реальной Вселеннеой. Однако для этого надо знать настоящую светимость галактики, то есть выбрать стандартную свечу. На практике в качестве стандартной свечи выбирались либо вторая, либо пятая по яркости галактика в скоплении. Однако на этом пути оказываются значительные трудности. Одна из них уже упоминалась, это — отсутствие теории, описывающей эволюцию галактик и, в частности, их светимости. Другая трудность заключается в том, что при выборе стандартной свечи в удаленном скоплении галактик легко ошибиться, приняв за нее более яркую галактику, принадлежащую, возможно, не тому скоплению. Сама идея, что галактики определенного номера по порядку светимости светят одинаково, не имеет глубокого основания.

Согласно двум исследованиям этого теста либо $\Omega_0 = 2 \pm 2$, либо $\Omega_0 = 0.66 \pm 1.36$. Улучшить результаты удалось в последние годы, но не по галактикам, о чем скажем ниже.

4. *Тест видимый размер* — *красное смещение*. Другим способом уточнения величины Ω₀ может служить второй классический тест, заключающийся в измерении угловых диаметров источников в зависимости от их красных смещений.

Если источники имеют одинаковый размер D, то их видимый угловой диаметр

$$\vartheta = \frac{D}{l_{\rm ad}},\tag{18}$$

где расстояние l_{ad} дается формулой (II.10). Из соотношения (II.14) между двумя расстояниями находим

$$l_{\rm ad} = R(\eta_{\rm e}) \,{\rm sn}_k(\chi) = \frac{R_0}{1+z} \,{\rm sn}_k(\chi).$$
 (19)

В качестве источников одного размера брали ядра богатых скоплений галактик. Этот тест мог бы предоставить независимую возможность определить параметр q_0 , причем с использованием более удаленных объектов: не галактик, а их скоплений. Однако и здесь возникают трудности, аналогичные уже упомянутым, и улучшить результат не удается.

5. Современная диаграмма Хаббла. В последнее время в связи с технологическим прогрессом появилась возможность наблюдать более слабые, а следовательно, более далекие объекты, чем ранее. В частности, определены видимые яркости сверхновых звезд в сравнительно удаленных галактиках. Известно, что у некоторых сверхновых, а именно сверхновых типа Ia кривые блеска и, что более важно, светимости в максимуме блеска очень близки. Точнее, светимость в максимуме и скорость спада блеска довольно жестко связаны. Даже если пропускается момент максимума, скорость спада светимости определяется надежно. Следовательно, оказывается возможным довольно уверенно оценить светимость в максимуме и построить абсолютную кривую блеска. Такое свойство сверхновых типа Ia объясняется тем, что взрываются белые карлики, разброс масс которых невелик. Светимость этих сверхновых не зависит от возраста галактики, а определяется только звездами, в первую очередь их массой. Поэтому такие сверхновые можно рассматривать как стандартные свечи. Впрочем, работы по уточнению деталей взрывов и кривых блеска продолжаются.

Привлечение новой стандартной свечи позволило не только приблизиться к определению геометрии пространства, но и обнаружило новое обстоятельство.

На самых больших расстояниях, в настоящее время доступных наблюдениям на 2-метровом зеркальном космическом телескопе им. Хаббла (около сотни сверхновых в галактиках с красными смещениями $z \sim 1 \div 2$), наблюдается отклонение от моделей при $\Lambda = 0$. Наблюдения указывают на то, что эта постоянная отлична от 0. Две группы наблюдателей ([19] и [20]) пришли к одинаковым заключениям.

Современная диаграмма Хаббла представлена на рис. 8*a*, построенном по данным работы [19]. По осям отложены $\lg z$ и величина $D_{\rm bb} = 44.832 + 5 \lg (2H_0 q_0^2 l_{\rm bb}/c)$, где $l_{\rm bb}$ — расстояние по болометрической светимости. Величина $D_{\rm bb}$ равна разности наблюдаемой и абсолютной болометрических звездных величин, применяемых в астрономии.

Три кривые построены для моделей, содержащих пылевидное вещество и то, что мы называем вакуумом, с различными значениями Ω_d^0 и $\Omega_{\Lambda}^0 = c^2 \Lambda / 3H_0^2$. Нижняя и верхняя кривые соответствуют плоскому пространству,

Рис. 8: Диаграмма Хаббла по современным данным.

а средняя — открытому, причем средняя и нижняя построены без учета влияния вакуума, то есть для $\Omega_{\Lambda}^0 = 0$ и, соответственно, $\Omega_{d}^0 = 0.20$ и 1.00 (модель чисто пылевидного вещества). При расчете верхней кривой принято, что $\Omega_{M}^0 = 0.24$, $\Omega_{\Lambda}^0 = 0.76$.

На рис. 86 диаграмма дана в увеличенном и нормализованном по отношению к средней кривой виде. Там же указаны точки, соответствующие наблюдениям, и средние ошибки (усы или error boxes). В самой правой части диаграммы наблюдаемые точки, полученные по сверхновым, поднимаются над двумя нижними кривыми и больше соответствуют верхней кривой, что дает основания к выводу о большом влиянии космологического слагаемого и, следовательно, вакуума.

Напомним, что построенная Э. Хабблом в 1929 году первоначальная диаграмма составляет самую левую и нижнюю часть современной диаграммы до $z \approx 0.004 \ (\lg z \approx -2.7)$ и не поместилась на рисунке. К 1936 году диаграмма была продолжена до z = 0.1.

6. ACDM-*модель*. По данным наблюдений сверхновых и, как будет рассказано в дальнейшем, и по другим соображениям, моделью, наиболее адекватной нашей современной (реальной) Вселенной, является плоская двухкомпонентная модель, составляющими которой являются темное вещество (CDM - cold dark matter) и вакуум (или темная энергия), соответствующий лямбда-слагаемому уравнений тяготения Эйнштейна.

Однако, на ранних этапах эволюции Вселенной большую роль играли еще две компоненты материи, а именно, излучение и нейтрино. О них было сказано в главе II.

Глава IV. Наиболее адекватная модель

§ 1. Стандартная космологическая модель ACDM

1. Параметры модели. Современная космология стала наукой, основанной на данных наблюдений, которые теперь имеют достаточную точность для построения модели, наиболее адекватной настоящей Вселенной.

Самым существенным является обстоятельство, что пространство весьма близко к плоскому, поэтому принимается, что k = 0.

Единственной космической компонентой, плотность которой известна с большой точностью, является излучение. Современному значению температуры теплового реликтового фона (о нем рассказано в §5 Главы II) $T_r^0 = 2.7277 \pm 0.002$ К отвечает плотность числа фотонов 411 1/см³, а согласно закону Стефана—Больцмана плотность энергии 4.187 · 10⁻¹³ эрг/см³ и массовая плотность $\rho_r^0 = 4.659 \cdot 10^{-34}$ г/см³.

В произвольную эпоху температура реликтового излучения $T = T_0/a = T_0(1 + z)$. К ней привязана температура нейтрино. Согласно формуле (II.27) $T_{\nu} = \sqrt[3]{4/11}T = 0.71377T$, в частности, $T_{\nu}^0 = 1.9469$ К. Для шести типов нейтрино, которые являются не бозонами, а фермионами,

$$\rho_{\nu}^{0} = 6 \cdot \frac{7}{8} \cdot \frac{a_{\rm SB}}{c^{2}} (T_{\nu}^{0})^{4} = 6.35 \cdot 10^{-34} \,\,\mathrm{r/cm}^{3}. \tag{1}$$

Вместе излучение и нейтрино имеют плотность

$$\rho_{\rm r\nu}^0 = 1.10 \cdot 10^{-33} \,\,{\rm r/cm}^3. \tag{2}$$

Значение современной критической плотности известно менее точно, так как величина постоянной Хаббла по различным определениям довольно долго колебалась от 40 до 80 км/с/Мпк. Поэтому обычно ее представляли в виде $H_0 = h \cdot 100$ км/с/Мпк= $3.24 \cdot 10^{-18} h$ 1/с. В последнее время интервал возможных значений H_0 сузился, считается, что она известна с погрешностью $6 \div 10$ % и заключена в промежутке (68, 79) км/с/Мпк. Поставлена задача в недалеком будущем довести точность определения этой постоянной до 1 %.

Среднее и наиболее приемлемое значение постоянной $H_0 \approx 70 \text{ км/c/Mnk} = 2.268 \cdot 10^{-18} \text{ 1/c}$, то есть h = 0.70, для которого и будут производиться все оценки. Для этого значения H_0 все остальные величины будут приводиться с 4–5 значащими цифрами.

Критическая плотность в нашу эпоху тогда

$$\rho_{\rm c}^0 = \frac{3H_0^2}{8\pi G} = 1.879 \cdot 10^{-29} h^2 \,{\rm r/cm}^3 \approx 9.2071 \cdot 10^{-30} \,{\rm r/cm}^3. \tag{3}$$

Современная доля излучения весьма мала, а именно

$$\Omega_{\rm r}^0 = 2.4796 \cdot 10^{-5} h^{-2} \approx 5.0604 \cdot 10^{-5}.$$
(4)

Современные доли нейтрино и их суммы с излучением получаются такими:

$$\Omega^0_{\nu} = 6.90 \cdot 10^{-5}, \quad \Omega^0_{r\nu} = 1.196 \cdot 10^{-4}. \tag{5}$$

Следующий параметр, известный примерно с такой же относительной точностью, — это значение доли вакуума $\Omega_{\Lambda}^{0} \approx 0.72$ [20,19]. На долю вещества остается

$$\Omega_{\rm d}^0 = 1 - \Omega_{\rm r}^0 - \Omega_{\Lambda}^0 = 0.27995 \approx 0.28.$$
(6)

Плотности вакуума и вещества следовательно

$$\rho_{\Lambda} = \Omega_{\Lambda}^{0} \rho_{\rm c}^{0} = 6.6291 \cdot 10^{-30} \, {\rm r/cm}^{3}, \, \rho_{\rm d}^{0} = (1 - \Omega_{\rm r}^{0} - \Omega_{\Lambda}^{0}) \rho_{\rm c}^{0} \approx 2.5775 \cdot 10^{-30} \, {\rm r/cm}^{3}. \tag{7}$$

По плотности темной энергии находится современное значение космологической постоянной $\Lambda = 3 \frac{\Omega_{\Lambda}^0}{(l_{\rm H}^0)^2} = 1.24 \cdot 10^{-56}$

 10^{-56} 1/cm².

По плотностям можно рассчитать, какому числу атомов водорода (протонов) в одном кубическом метре сейчас они соответствуют. Получается, что критической плотности отвечает число 5.5, плотности вакуума около 4, плотности пылевого вещества 1.5, а плотности барионов всего 0.14. Совсем уж ничтожны содержания излучения $2.8 \cdot 10^{-4}$, нейтрино $3.8 \cdot 10^{-4}$ и даже их совместное содержание $6.6 \cdot 10^{-4}$. Все эти значения во много раз меньше тех, которые характерны для астрономических объектов: на Земле при нормальных условиях $2.7 \cdot 10^{19}$ (число Лошмидта), в атмосфере Солнца на его поверхности $\approx 10^{12}$, в планетарных туманностях 10^4 , в разреженной межзвездной среде ≈ 1 , но все это в одном кубическом сантиметре, а не метре. Из этих чисел следует, что большую часть космического пространства занимают пустоты, где плотность материи почти нулевая.

В то же время в 1 см³ содержится $n_{\rm ph}^0 = 412$ реликтовых фотонов и $6 \cdot \frac{3}{4} \cdot \frac{4}{11} n_{\rm ph}^0 = 674$ реликтовых нейтрино. 2. Основные зависимости Для плоской модели выполняются соотношения (I.79). Приведем их и здесь:

 $\int_{\alpha}^{a} \frac{a \mathrm{d}a}{\sqrt{\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0} a + \Omega_{\Lambda}^{0} a^{4}}} = H_{0}t, \quad \int_{\alpha}^{a} \frac{\mathrm{d}a}{\sqrt{\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0} a + \Omega_{\Lambda}^{0} a^{4}}} = \eta.$ (8)

Если ввести обозначения $(\Omega^0_{r\nu} + \Omega^0_d + \Omega^0_\Lambda = \Omega_t = 1)$

$$H_{\Lambda} = H_0 \sqrt{\Omega_{\Lambda}^0}, \quad x_0 = \left(\frac{\Omega_{\Lambda}^0}{\Omega_{r\nu}^0}\right)^{1/4}, \quad \beta = \frac{\Omega_{\rm d}^0}{(\Omega_{r\nu}^0)^{3/4} (\Omega_{\Lambda}^0)^{1/4}}, \quad \eta_* = \left(\Omega_{r\nu}^0 \Omega_{\Lambda}^0\right)^{-1/4}, \tag{9}$$

и сделать замену переменной $a = x/x_0$, то связи между переменными примут вид

$$H_{\Lambda}t = I_1(x,\beta), \quad \eta = \eta_* I_0(x,\beta), \quad I_j(x,\beta) = \int_0^x \frac{x^j dx}{\sqrt{1+\beta x + x^4}}.$$
 (10)

Приведем также дифференциальную форму первого уравнения:

$$H = \frac{\dot{x}}{x} = H_{\Lambda} \frac{\sqrt{1 + \beta x + x^4}}{x^2}.$$
 (11)

При принятых значениях параметров модели параметр интегралов с переменным верхним пределом $\beta = 265.69$. Значения постоянных $H_{\Lambda} = 59.397 \text{ км/c/Mnk} = 1.9249 \cdot 10^{-18} \text{ 1/c}, x_0 = 8.8088, \eta_* = 10.381$. Возраст Вселенной согласно Стандартной модели с принятыми значениями параметров составляет $t_0 = I_1(x_0, \beta)/H_{\Lambda} = 13.722 \Gamma$ лет.

3. Роли компонент в различные эпохи. Поскольку в полной и гравитирующей плотностях

$$\rho_{\rm t} = \rho_{\rm c} = \rho_{\rm d} + \rho_{\rm r\nu} + \rho_{\Lambda} = \rho_{\rm c}^0 \Omega_{\Lambda}^0 \frac{1 + \beta x + x^4}{x^4},\tag{12}$$

$$\rho_{\rm g} = \rho_{\rm d} + 2\rho_{\rm r\nu} - 2\rho_{\Lambda} = \rho_{\rm c}^0 \Omega_{\Lambda}^0 \frac{2 + \beta x - 2x^4}{x^4}$$
(13)

плотности компонент изменяются по-разному, в различные эпохи компоненты играли разные роли.

В определенные моменты плотности оказывалтсь равными. Так как в гравитационную плотность компоненты дают другие вклады, а именно, излучение — двойной положительный, а вакуум — двойной отрицательный, то их воздействие выравнивается в другие моменты. Все эти моменты приведены в табл. 5, где показаны значения параметра x, красного смещения и координаты η , доли полного возраста и сам возраст Вселенной в соответствующие моменты, а также время, прошедшее от этих моментов до настоящей эпохи. Гравитационная плотность обращается в нуль при значении x, определяемом уравнением $x^4 - (\beta/2)x - 1 = 0$. Моменты, когда $\rho_d = \rho_{\Lambda}$ и когда $\rho_g = 0$, почти совпадают, так как плотности излучения и нейтрино тогда малы. Моменту, когда $\rho_{r\nu} = \rho_{\Lambda}$, отвечает значение x, очень близкое к 1.

Таблица 6. Эпохи равенства плотностей и сил.

Эпоха	x	z	η	t/t_0	<i>t</i> Гигалет	$t_0 - t$
$\rho_{\rm d} = \rho_{\rm r}$	0.00159	5529	0.0151	$1.34 \cdot 10^{-6}$	$1.85 \cdot 10^{-5}$	13,7
$ \rho_{\rm d} = \rho_{\nu} $	0.00217	4057	0.0200	$2.41 \cdot 10^{-6}$	$3.31 \cdot 10^{-5}$	13.7
$\rho_{\rm d} = 2\rho_{\rm r}$	0.00319	2764	0.280	$4.90 \cdot 10^{-6}$	$6.72 \cdot 10^{-5}$	13.7
$ \rho_{\rm d} = \rho_{\rm r\nu} $	0.00376	2339	0.0324	$6.64 \cdot 10^{-6}$	$9.11\cdot10^{-5}$	13.7
$\rho_{\rm d} = 2\rho_{\nu}$	0.00434	2028	0.365	$8.59\cdot 10^{-6}$	$1.72\cdot 10^{-4}$	13.7
$\rho_{\rm d} = 2\rho_{\rm r\nu}$	0.00752	1169	0.0572	$2.27 \cdot 10^{-5}$	$3.11 \cdot 10^{-4}$	13.7
$ \rho_{\mathrm{r}\nu} = \rho_{\Lambda} $	1.0000	7.809	1.198	0.0488	0.669	13.0
$\rho_{\rm d} = 2\rho_{\Lambda}$	5.1025	0.7264	2.7138	0.5261	7.219	6.5
$\rho_{\rm g} = 0$	5.1050	0.7255	2.7144	0.5264	7.224	6.5
$ ho_{ m d} = ho_{ m \Lambda}$	6.4288	0.3702	2.983	0.7043	9.66	4.06
Соврем.	8.8088	0	3.32	1	13.7	0

Из приведенных оценок можно сделать заключение, что между моментами, когда плотности ультрарелятивистских компонент (излучения и нейтрино) сравниваются с плотностью вещества, а затем вакуума и вещества, проходит очень большое время. На протяжении большей части этого времени не играют роли или вакуум, или излучение с нейтрино. В связи с этим обстоятельством можно построить простую приближенную космологическую модель.

4. Приближенное описание модели. Применительно к сделанным выше оценкам современных значений долей составляющих плотности множитель при среднем слагаемом под корнем в знаменателе подинтегральных выражений интегралов в формулах (10) $\beta = 256.69$. В то же время, как уже отмечалось, в разные эпохи два других слагаемых, имеют разный порядок. При малых значениях аргумента x, то есть в ранние эпохи расширения Вселенной можно пренебречь слагаемым x^4 , что соответствует пренебрежимо малой роли вакуума в эти эпохи. Напротив, когда x достаточно велико, можно пренебречь единицей по сравнению с двумя другими слагаемыми, что отвечает малой роли излучения и нейтрино в эпохи, близкие к современной.

Вычислим интегралы в указанных противоположных случаях. При пренебрежени
и x^4 оба интеграла становятся табличными и указанные формулы принимают вид

$$I_1^{(1)}(x,\beta) = \frac{2}{\beta^2} \left[\frac{(1+\beta x)^{3/2}}{3} - \sqrt{1+\beta x} + \frac{2}{3} \right] = \frac{2}{3} \frac{x^2}{\sqrt{1+\beta x}+1} \left(\frac{1}{\sqrt{1+\beta x}+1} + 1 \right) = H_\Lambda t, \tag{14}$$

$$I_0^{(1)}(x,\beta) = \frac{2}{\beta} \left(\sqrt{1+\beta x} - 1\right) = \frac{2x}{\sqrt{1+\beta x} + 1} = \sqrt{\Omega_r^0 \Omega_\Lambda^0} \eta.$$
(15)

Из (15) следует соотношение

$$\sqrt{1+\beta x} = 1 + \frac{1}{2} \frac{\Omega_{\rm d}^0}{\sqrt{\Omega_{\rm r}^0}} \eta,\tag{16}$$

которое приводит к квадратичной зависимости масштабного множителя от времени η :

$$a = \sqrt{\Omega_{\rm r}^0} \eta + \frac{1}{4} \Omega_{\rm d}^0 \eta^2 = \frac{1}{1+z}.$$
(17)

Обратная формула

$$\eta = \frac{2a}{\sqrt{\Omega_{\rm r}^0 + \Omega_{\rm d}^0 a} + \sqrt{\Omega_{\rm r}^0}} = \frac{2}{\sqrt{1+z} \left[\sqrt{\Omega_{\rm r}^0 (1+z) + \Omega_{\rm d}^0} + \sqrt{\Omega_{\rm r}^0 (1+z)} \right]}.$$
(18)

Такая модель впервые рассматривалась в работе [36]. Подставив (16) в выражение (14), найдем

$$H_0 t = \frac{1}{2} \left(\sqrt{\Omega_{\rm r}^0} \eta^2 + \Omega_{\rm d}^0 \frac{\eta^3}{6} \right).$$
 (19)

Если в (10) отбросить 1, то интеграл в этой формуле тоже берется в элементарных функциях, достаточно заменить переменную интегрирования $x = \beta^{1/3} \operatorname{sh}^{2/3} y$:

$$I_1^{(2)}(x,\beta) = \int_0^x \sqrt{\frac{x}{\beta + x^3}} dx = \frac{2}{3} \operatorname{arsh} \sqrt{\frac{x^3}{\beta}}.$$
 (20)

Эту неявную зависимость масштабного множителя от времени можно обратить и сделать явной:

$$a = \left(\frac{\Omega_{\rm d}^0}{\Omega_{\Lambda}^0}\right)^{1/3} \operatorname{sh}^{2/3} \left(\frac{3}{2} H_0 \sqrt{\Omega_{\Lambda}^0} t\right) = \left(\frac{\Omega_{\rm d}^0}{\Omega_{\Lambda}^0}\right)^{1/3} \operatorname{sh}^{2/3} \left(\frac{3}{2} H_* t\right).$$
(21)

Возраст Вселенной, вычисленный по приближенной формуле, получается равным 13.730 Гига лет.

Интеграл $I_0(x,\beta)$ в этом случае не является элементарной функцией. Он представляется в виде интеграла с переменным верхним пределом без параметров:

$$I_0^{(2)}(x,\beta) = \frac{2}{\beta^{1/3}} \int_0^{\sqrt{x}/\beta^{1/6}} \frac{\mathrm{d}y}{\sqrt{1+y^6}} = 2\frac{x^{1/2}}{\beta^{2/3}} F\left(\frac{1}{2},\frac{1}{6},\frac{7}{6},-\frac{x^3}{\beta}\right).$$
(22)

Таким образом, интеграл выражается через гипергеометрическую функцию. При малых и больших значениях верхнего предела интеграл можно разложить в сходящиеся ряды.

§2. Вселенная согласно Стандартной модели

1. Скорость расширения и расстояния. Возьмем производную от функции Хаббла (11) по x:

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{H}{H_{\Lambda}} = -\frac{2}{x^3}\sqrt{1+\beta x+x^4} + \frac{1}{x^2}\frac{\beta+4x^3}{2\sqrt{1+\beta x+x^4}} = -\frac{3\beta x+4}{2x^3\sqrt{1+\beta x+x^4}}.$$
(23)

Эта производная отрицательна, так что функция при всех x убывает. При $x \to \infty$ она стремится к постоянной H_{Λ} , что отражает все возрастающую роль космологического слагаемого (вакуума). Производную по времени можно найти либо по формуле

$$\dot{H} = \frac{\mathrm{d}H}{\mathrm{d}x}\dot{x} = \frac{\mathrm{d}H}{\mathrm{d}x}H_*\frac{1+\beta x+x^4}{x} = -H_\Lambda^2\frac{3\beta x+4}{2x^4},$$
(24)

либо согласно уравнению (I.51) и выражению для гравитационной плотности (13):

$$\dot{H} = -H^2 + \frac{4\pi G}{3}\rho_{\rm g} = -H_*^2 \frac{1+\beta x+x^4}{x^4} - \frac{4\pi G}{3} \frac{3H_0^2}{8\pi G} \frac{H_*^2}{H_0^2} \frac{2+\beta x-2x^4}{x^4} = -H_*^2 \frac{3\beta x+4}{2x^4}.$$
(25)

Естественно, функция Хаббла строго убывает и со временем.

Найдем скорость расширения в зависимости от z. Точнее, найдем ее в функции от x, но x просто выражается через a, а следовательно, и через z:

$$x = \left(\frac{\Omega_{\Lambda}^{0}}{\Omega_{\rm r}^{0}}\right)^{1/4} a = \left(\frac{\Omega_{\Lambda}^{0}}{\Omega_{\rm r}^{0}}\right)^{1/4} \frac{1}{1+z}, \quad \mathrm{d}z = -\left(\frac{\Omega_{\Lambda}^{0}}{\Omega_{\rm r}^{0}}\right)^{1/4} \frac{\mathrm{d}x}{x^{2}}.$$
(26)

По формуле для скорости находим

$$\frac{v}{c} = H_0 \int_0^z \frac{\mathrm{d}z}{H} = \frac{1}{(\Omega_\Lambda^0 \Omega_\mathrm{r}^0)^{1/4}} \int_x^{x_0} \frac{\mathrm{d}x}{\sqrt{1 + \beta x + x^4}} = \frac{I_0(x_0, \beta) - I_0(x, \beta)}{(\Omega_\Lambda^0 \Omega_\mathrm{r}^0)^{1/4}} = \eta_0 - \eta, \tag{27}$$

то есть безразмерная скорость расширения пространства прямо выражается через конформное время, чем выявляется физический смысл этой переменной. В частности, η_0 — это скорость того места, где сейчас находится горизонт. Как показано в пункте 6 §2 Главы II, скорость самого горизонта на единицу больше.

Поскольку модель плоская, все типы расстояний и скорость расширения выражаются через метрическое расстояние:

$$\tilde{l}_{\rm pl} = \frac{v}{c} = \tilde{l}, \quad \tilde{l}_{\rm ad} = \frac{\tilde{l}}{1+z}, \quad \tilde{l}_{\rm nb} = \sqrt{1+z}\,\tilde{l}, \quad \tilde{l}_{\rm bb} = (1+z)\tilde{l}.$$
(28)

На рис. 9 показаны зависимости четырех типов расстояний от параметра x и красного смещения z.

Рис. 9: Расстояния в зависимости от x и z.

Отметим два момента, связанных с расстояниями: момент, когда расстояние по видимому размеру принимает максимальное значение (z = 1.6302), и когда метрическое расстояние оказывается равным хаббловскому (z = 1.4233). Само это расстояние равно $l_{\rm H}^0 = c/H_0 = 1.3215 \cdot 10^{28}$ см = 14.2 Г св. лет = 4.2828 Гпк.

Скорость расширения пространства на хаббловском расстоянии по определению равна скорости света. Скорость изменения самого хаббловского расстояния находится с использованием уравнения (51):

$$\dot{l}_{\rm H} = \frac{\rm d}{{\rm d}t}\frac{c}{H} = -\frac{c}{H^2}\dot{H} = \frac{c}{H^2}\left(H^2 + \frac{4\pi G}{3}\rho_{\rm g}\right) = c\left(1 + \frac{1}{2}\frac{\rho_{\rm g}}{\rho_c}\right) = \frac{c}{2}\frac{4+3\beta x}{1+\beta x + x^4}.$$
(29)

Из формулы следует, что в начале расширения эта скорость близка к двум световым, она уменьшается, а в отдаленном будущем устремится к нулю.

2. Ускорения. Ускорение космологического расширения находится с помощью первого уравнения в (І.41):

$$\dot{v} = \ddot{l} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} l_{\mathrm{H}}^0 a \chi = l_{\mathrm{H}}^0 \ddot{a} \chi = \frac{\ddot{a}}{a} l = -\frac{4\pi G}{3} \rho_{\mathrm{g}} l = H_{\Lambda}^2 \frac{x^4 - \beta x/2 - 1}{x^4} l.$$
(30)

Как уже говорилось, в гравитационной плотности $\rho_{\rm g} = \rho_{\rm d} + 2\rho_{\rm r} - 2\rho_{\Lambda}$ плотности $\rho_{\rm d}$ и $\rho_{\rm r}$ с ростом возраста Вселенной убывают, а $\rho_{\Lambda} = \rho_{\Lambda}^{0}$. Поэтому в числителе последней дроби в (30) роль первого слагаемого со временем возрастает. В настоящее время ($x = x_{0}$) гравитационная плотность отрицательна: $\rho_{\rm g}^{0} = \rho_{\rm d}^{0} + 2\rho_{\rm r}^{0} - 2\rho_{\Lambda}^{0} = -1.0677 \cdot 10^{-29}$ г/см³, так что расширение происходит с ускорением. Ускорение на современном хаббловском расстоянии, где по определению скорость равна скорости света, составляет весьма малую величину:

$$\dot{v}_{\rm H}^0 = -\frac{4\pi G}{3} \rho_{\rm g}^0 l_{\rm H}^0 = \frac{H_0 c}{2} (2\Omega_{\Lambda}^0 - \Omega_{\rm d}^0 - 2\Omega_{\rm r\nu}^0) = 3.94 \cdot 10^{-8} \,\,{\rm cm/c^2} \approx 4 \,\,\mathring{A}/c^2. \tag{31}$$

Ускорение на хаббловском расстоянии с течением времени возрастает, но остается конечным:

$$\dot{v}_{\rm H} = -\frac{4\pi G}{3}\rho_{\rm g}l_{\rm H} = -\frac{4\pi G}{3}\rho_{\rm g}\frac{c}{H} = H_{\Lambda}c\frac{x^4 - \beta x/2 - 1}{x^2\sqrt{1 + \beta x + x^4}} \to H_{\Lambda}c = 5.77 \mathring{A}/c^2.$$
(32)

Ускорение самого расстояния отрицательно:

$$\ddot{l}_{\rm H} = -\frac{c}{2} \frac{H_{\Lambda}}{x} \frac{\beta + 16x^3 + 9\beta x^4}{(1 + \beta x + x^4)^{3/2}} \sim -cH_{\Lambda} \frac{9}{2} \frac{\beta}{x^3}.$$
(33)

Величины, связанные с движением горизонта, определим позже.

Глава V. Физические процессы во Вселенной

§ 1. Состояние материи во Вселенной в разные эпохи

1. Стадии истории горячей вселенной. Приняв определенную космологическую модель, можно рассчитать, как протекали физические процессы в ходе эволюции Вселенной. В разных руководствах выделяют различное количество периодов, которын=е характеризуются своими процессами. Здесь выделено таких периодов (или статдий) для ровного счета 10.

Перечислим эти стадии в ретроспективном порядке.

1) Современная стадия. Она характеризуется низкой температурой основной составляющей излучения — реликтового — от нескольких градусов до 3 ÷ 4 тысяч градусов. В этот период вещество нейтрально, прозрачно для РИ, и они расширяются независимо.

2) Стадия частичной ионизации.

3) Стадия полной ионизации. При температурах, превышающих ~ 10^4 K, водород почти полностью ионизован, а при $4 \cdot 10^3$ K — почти полностью нейтрален. Соответствующие значения красного смещения z = 3600 и z = 1500. Последнее значение z называется эпохой рекомбинации. При T > 50000 K (z > 6000) полностью ионизован гелий.

4) Эра радиационно доминированной плазмы (РДП). Границы этой стадии широки: она начинается с температур, соответствующих энергии покоя электрона, когда еще возможны рождения пар электрон-позитрон, а заканчивается перед эпохой рекомбинации.

5) Лептонная стадия (лептоны — частицы, не участвующие в сильном взаимодействии). Температура еще более высокая, вплоть до соответствующей массе покоя пи-мезонов.

6) Адронная стадия. Здесь происходят рождения и аннигиляции нуклонов, электронов и позитронов, мезонов, нейтрино и других частиц. При $z = 5 \cdot 10^{10}$ плотность вещества достигает ядерной $2.8 \cdot 10^{14}$ г/см³.

7) Эпоха квантовой хромодинамики (КХД). Доминирует сильное взаимодействие.

8) Эпоха электро-слабого объединения (эл.-сл.). Здесь энергии достаточны для того, чтобы не различать лептоны.

9) Эпоха великого объединения (вел. об.) — всех квантовых взаимодействий. Лептоны и другие частицы приобретают энергии, характерные для сильного взаимодействия.

10) Эпоха сверхобъединения (сврхоб.) Объединяются все четыре типа мировых взаимодействий: электромагнитное, слабое, сильное и гравитационное.

Названия эпох по видам объединений объясняется тем, что константы связи физических взаимодействий слабо, но зависят от энергий взаимодействующих частиц и при энергиях, характерных для указанных эпох, уравниваются.

2. *Характеристики стадий*. В табл. приводятся величины, характеризующие перечисленные стадии эволюции Вселенной. Точнее, указаны границы, разделяющие соседние стадии. Не следует относиться слишком строго к численным значениям этих границ, но общую картину они демонстрируют.

T(K)	$ ho_{ m c}\left(rac{2}{c{\cal M}^3} ight)$	$k_{\rm B}T$	z	t(c)	N⁰	Эпохи
$\begin{array}{c} 2.7\\ 4\cdot 10^{3}\\ 4\cdot 10^{4}\\ 7\cdot 10^{4}\\ 6\cdot 10^{9}\\ 10^{12}\\ 5\cdot 10^{13}\\ 3\cdot 10^{15}\\ 10^{29}\\ 10^{32} \end{array}$	$\begin{array}{c} 8.7\cdot 10^{-30}\\ 3\cdot 10^{-20}\\ 3\cdot 10^{-17}\\ 2\cdot 10^{-16}\\ 1.1\cdot 10^4\\ 8\cdot 10^{13}\\ 5\cdot 10^{20}\\ 5\cdot 10^{27}\\ 5\cdot 10^{27}\\ 5\cdot 10^{79}\\ 5\cdot 10^{93} \end{array}$	$\begin{array}{c} 4\cdot 10^{-16} \; \text{spr} \\ 5.5\cdot 10^{-13} \; \text{spr} \\ 5\cdot 10^{-12} \; \text{spr} \\ 10^{-11} \; \text{spr} \\ 511 \; \text{k}\text{sB} \\ 0.1 \; \Gamma\text{sB} \\ 260 \; \Gamma\text{sB} \\ 10^3 \; \Gamma\text{sB} \\ 10^{16} \; \Gamma\text{sB} \\ 10^{19} \; \Gamma\text{sB} \end{array}$	$\begin{array}{c} 0\\ 1500\\ 15000\\ 25000\\ 2\cdot 10^9\\ 4\cdot 10^{11}\\ 2\cdot 10^{13}\\ 1\cdot 10^{14}\\ 4\cdot 10^{27}\\ 4\cdot 10^{31} \end{array}$	$\begin{array}{c} 3 \cdot 10^{17} \\ 5 \cdot 10^{12} \\ 1.7 \cdot 10^{11} \\ 4.6 \cdot 10^{10} \\ 10 \\ 10^{-3} \\ 10^{-7} \\ 10^{-11} \\ 10^{-37} \\ 10^{-43} \end{array}$	1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Современная Частич. иониз. Полная иониз. РДП Лептонная Адронная КХД Электрслаб. Великое объед. Сверхобъед.

Таблица 7. Эпохи эволюции горячей Вселенной.

Границами между стадиями являются характерные значения температуры T (и энергии $k_{\rm B}T$). Некоторые из них получаются как комбинации размерных величин, играющих существенную роль в каждой из стадий.

Соответствующие значения t и z вычисляются по приведенным выше формулам. Ориентировочные их значения приведены в табл. 6.

Граница между стадиями 4) и 5) определяется энергией покоя электрона $mc^2 = 0.511$ МэВ. Ей соответствует температура $6 \cdot 10^9$ К. Между 5) и 6) основная величина — энергия покоя пи-мезона, в 264 раз большая электронной у нейтрального и в 273 раза — у заряженных мезонов: 0.13 ГэВ = 10^{13} К. Далее, между 6) и 7) пограничная энергия составляет 5 ГэВ, а между 7) и 8) — 1000 ГэВ, соответствующие температуры — $5 \cdot 10^{13}$ и $3 \cdot 10^{15}$ К. Стадия 9) начинается на значительно бо́льших энергиях — 10^{14} ГэВ. Наконец стадии 10) отвечают фантастические значения величин, называемые планковскими. Они получаются комбинациями трех физических постоянных: скорость света, постоянные Планка и тяготения. Подробное перечисление планковских величин мы пока отложим.

3. Физические процессы в различные периоды. Теория физических процессов в ранней Вселенной тесно связана с физикой элементарных частиц и физикой высоких энергий. Эти три ветви физической науки развивались и развиваются параллельно.

Во все периоды расширения от самого начала до 4) включительно совокупность частиц и излучения находилась в состоянии ТДР. В период 10) (теория сверхобъединения еще не создана), ближайший к Большому Взрыву, все частицы имеют настолько большие энергии, что фактически не различаются. Все они участвуют во взаимных превращениях, причем не существенно, гравитон это или фотон, фермион или бозон. Первоначально все они имеют массу покоя, равную нулю, и подчиняются высокой степени симметрии. Постепенно, для некоторых из них условие симметрии нарушается, происходит, как говорят, спонтанное нарушение симметрии. Частицы приобретают массу и обособляются.

Первыми отрываются от общего взаимодействия частицы, связанные с гравитацией (гравитоны), с переходом к стадии 9). Они перестают участвовать в общем обмене. Выжившая их часть отрывается от остальных и в дальнейшем распространяется свободно. Остаются все "квантовомеханические" частицы.

Большинство элементарных частиц существуют парами частица-античастица (в это число не входят фотон, нейтральный пи-мезон и некоторые другие). Кроме того, согласно теории должно существовать множество тяжелых (в обычных условиях, то есть с большой массой покоя) частиц: фотино, гравитино, нейтралино, хиггсино и др.

В частности, на этой стадии должны существовать монополи, то есть магнитные заряды, имеющие только один полюс. Однако попытки обнаружить остаток их сейчас пока к успеху не привели.

По-видимому, уже на этой стадии, при энергиях порядка 10¹⁵ ГэВ, проявляется некоторая положительная разность между числом протонов и антипротонов, что впоследствии приводит к асимметрии нашего мира относительно вещества и антивещества. Доля этой нескомпенсированной части может быть всего 10⁻⁹ от общего числа нуклонов в ту эпоху.

Характерная энергия эпохи квантовой хромодинамики $\approx 10^{14}$ ГэВ. Чтобы разогнать заряженную частицу до таких энергий, имея в виду, что на наибольшем современном ускорителе длиной в 2 мили получают энергии в 50 ГэВ, нужно было бы построить линейный ускоритель длиной в 2 пк, то есть в 6.5 световых лет. Это расстояние больше, чем до ближайшей звезды — 1.3 пк. Поэтому единственная лаборатория для исследования таких частиц — Вселенная в ее горячей стадии. Дело осложняется тем, что такие частицы в большом количестве были давно, а потом почти полностью исчезли, так что для их обнаружения сейчас нужно затрачивать очень большие средства. Тем не менее физики и астрофизики надеются найти их реликтовые количества.

В течение этой эпохи, согласно теории того же названия, кварки, имеющие дробный заряд (1/3 и 2/3), объединяются в частицы с целым зарядом.

Постепенно, в течение стадий 8), 7) и 6), обособляются все новые частицы, сначала адроны, потом лептоны, обнаруживаются их характерные признаки. Многие из них перестают существовать в заметных количествах.

С понижением температуры вымирают и другие частицы. В течение стадии 6), адронной, сначала исчезают пи-мезоны, в конце аннигилируют протоны и антипротоны, нейтроны и антинейтроны. Если бы числа протонов и антипротонов, а также других частиц и античастиц были абсолютно одинаковы, то сейчас привычного для нас вещества не было бы совсем. Все частицы аннигилировали бы и создали мощное поле излучения.

Лептонная эпоха 5) содержит события, связанные с легкими частицами. При энергии 10^{-2} ГэВ аннигилируют мю-мезоны, при 10^{-3} ГэВ от вещества отрываются нейтрино и антинейтрино, которые в дальнейшем летят свободно, не взаимодействуя ни с чем. Зарегистрировать их очень трудно и пока не удается. К исходу стадии 5) аннигилируют электроны и позитроны, их энергия превращается в энергию фотонов, как и энергия аннигилировавших ранее протонов и антипротонов. Термодинамические соображения показывают, что температура реликтового излучения за счет произошедшей аннигиляции частиц и античастиц должна быть выше, чем температура реликтовых нейтрино, оторвавшихся от остального вещества раньше (сейчас примерно 2 К). На этой же стадии, при температурах $T = 10^{11} \div 10^9$ К, происходит первичный нуклеосинтез, который обсудим в следующем пункте.

В конце стадии 4) излучение также отрывается от вещества, и плотность его становится ниже плотности вещества. А с эпохи рекомбинации излучение распространяется свободно, так как вещество прозрачно для это-

го излучения. Наступает время, когда излученные фотоны становятся доступны наблюдениям в неизмененном виде, подвергаясь только красному смещению. До этого все они испытывали взаимодействие с веществом посредством, в основном, томсоновского рассеяния, а также тормозных процессов. Фотоны изменяли свои импульсы, а значит направление и (в меньшей степени) энергию, так что информация, которую они несли, в значительной мере замывалась. Этим взаимодействием определяется тот физический горизонт, о котором упоминалось в связи с геометрическим горизонтом. Сфера радиусом, равным расстоянию до физического горизонта, называется также сферой последнего рассеяния.

Все же некоторые сведения о Вселенной до эпохи рекомбинации могут быть получены из данных о первичном нуклеосинтезе, из флуктуаций РИ, из реликтовых нейтрино и гравитационных волн. Первые два источника уже дали такие сведения (см. ниже), на два последних ассигнуются значительные суммы и возлагаются большие надежды.

Тогда же начинают образовываться атомы водорода. Незадолго до этого развиваются неоднородности, приводящие в дальнейшем к образованию галактик и их скоплений.

Многие вопросы этой теории разработаны еще недостаточно. Но ряд недостатков удалось преодолеть в рамках теории инфляции, о которой скажем отдельно.

§ 2. Образование химических элементов

Химические элементы с порядковыми номерами, большими 2, образуются, в основном, в звездах в ходе ядерных и термоядерных реакций. Процесс же образования самых распространенных в природе элементов — водорода и гелия — начинается до создания звезд.

После аннигиляции протонов и антипротонов вещество становится обычным по ассортименту частиц. Однако состояние его еще очень специфично. Не только нейтральные атомы, но даже ядра при температурах, превышающих десять миллиардов кельвинов, не могут существовать, они разбиваются окружающими частицами. Основными частицами в таком веществе являются электроны, протоны, нейтроны, фотоны, нейтрино и антинейтрино.

Равновесие между протонами и нейтронами устанавливается за счет реакций слабого взаимодействия

$$p + e^- \longleftrightarrow n + \nu, \ p + \overline{\nu} \longleftrightarrow n + e^+, \ p + \overline{\nu} + e^- \longleftrightarrow n.$$
 (1)

При температуре $T \gg 10^{10}$ К ($E \gg 0.8$ МэВ) числа протонов и нейтронов приблизительно равны. При меньших температурах доля протонов возрастает, так как отношение их равновесных концентраций $n/p = \exp(-Q/k_{\rm B}T)$, где Q = 1.293 МэВ, а Q/c^2 — разность масс нейтрона и протона. По мере расширения и охлаждения Вселенной активность реакций (1) падает, равновесие нарушается, и отношение n/p стабилизируется, немного уменьшившись за счет распада нейтронов. Доля нейтронов остается на уровне 0.15.

При уменьшении температуры ниже десяти миллиардов кельвинов (E < 0.8 МэВ) начинают образовываться простейшие ядра. В дальнейшем все нейтроны соединяются с протонами. В результате образуются ядра ⁴Не, небольшие доли ³Не, дейтерия и лития. Некоторые более сложные ядра также образуются, но в количествах, меньших на несколько порядков. Эти процессы заканчиваются через ≈ 300 с после начала расширения. После этого температура уже недостаточна для протекания ядерных реакций.

Так как почти все нейтроны попали в ядра изотопа гелия ⁴He, причем каждый нейтрон там соединился с протоном, то на гелий пошла доля $2 \cdot 0.15 = 0.3$ от всего остального вещества. Точнее говоря, эта доля заключена между 0.26 и 0.32. Остальное, в основном, протоны и небольшая добавка дейтерия.

Впоследствии дейтерий идет на образование гелия, так что остается его очень мало. Количество оставшегося дейтерия зависит от плотности и, следовательно, жестко связано с плотностью в современную эпоху.

Описание хода первичного нуклеосинтеза сильно зависит от скоростей ядерных реакций при высоких температурах. Эти скорости все время уточняются, так что первичные содержания элементов приходится пересчитывать. Наблюдения современного содержания гелия и дейтерия также очень сложны. Необходимо уметь отделить первоначальные элементы от образовавшихся в звездах позднее. В старых звездах нашей Галактики содержание ⁴Не очень близко к 0.3. Дейтерий составляет долю 10^{-5} от водорода, чем отвергаются многие модели Вселенной и подтверждается ее стандартная модель. Определенные из наблюдений содержания ⁷Li и ³Не также находятся в хорошем согласии со стандартной моделью и служат ее подтверждением.

На рис. 10, построенном по данным статьи [25], представлены относительные (по отношению к водороду) содержания первичных гелия ⁴He/H, дейтерия вместе с более легким изотопом гелия (D+³He)/H и лития ⁷Li/H, рассчитанные в зависимости от современных значений плотности вещества и отношения чисел нуклонов и фотонов, умноженного на 10^{10} , η_{10} (точнее, от lg η_{10}). Все величины даны с указанием доверительных интервалов в два стандартных отклонения. Две вертикальные прямые показывают границы допустимых значений аргумента η_{10} , согласующихся с данными наблюдений. Результаты статьи [25] воспроизведены и уточнены в обзоре [26].

После синтеза гелия расширение проходит почти без изменений состава вещества. Так продолжается миллион лет, пока температура не упадет до значения 4000 К. К тому времени протоны захватывают электроны и

Рис. 10: Содержания первичных гелия, дейтерия и лития в зависимости от значения $\eta_{10}.$

образуются атомы. Основной элемент Вселенной — водород — становится нейтральным (впоследствии межгалактический газ ионизуется образующимися звездами, галактиками и квазарами). Тогда, во-первых, возникает возможность образования структур Вселенной, а во-вторых, возможность для нас изучать протекавшие процессы через наблюдения свечения объектов, расположенных ближе физического горизонта, так как излучение именно с этого места перестает взаимодействовать с веществом.

Глава VI. Образование крупномасштабной структуры Вселенной

§1. Теория Джинса

1. Основные уравнения теории Джинса. Впервые вопрос о поведении возмущений стационарного однородного вещества в создаваемом им гравитационном поле (самогравитация) рассмотрел Джинс в 1902 году. Он исходил из системы уравнений нерелятивистской газодинамики, а именно, уравнений неразрывности, движения и Пуассона. Добавим к этим уравнениям условие сохранения энтропии и напишем получившуюся систему в форме, приведенной в книге Я. Б. Зельдовича и И. Д. Новикова [1]:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0, \tag{1}$$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v}\vec{\nabla})\vec{v} + \frac{1}{\rho}\vec{\nabla}P + \vec{\nabla}\varphi = 0, \qquad (2)$$

$$\Delta \varphi = 4\pi G \rho, \tag{3}$$

$$\frac{\partial S}{\partial t} + (\vec{v}\vec{\nabla})S = 0. \tag{4}$$

Здесь использованы обычные обозначения: ρ — плотность вещества, \vec{v} — его скорость, P — давление, φ — гравитационный потенциал, G — постоянная тяготения, Δ — оператор Лапласа, S — энтропия единицы массы. Градиенты и дивергенции берутся по координатам, составляющим радиус-вектор \vec{r} , t — время. Вакуум Джинс учитывать не мог.

Стационарными (невозмущенными) решениями уравнений (1)-(4) принимались

$$\rho = \rho_{\rm o} = \text{const}, \ S = S_{\rm o} = \text{const}, \ \vec{v} = 0, \ \varphi = \varphi_{\rm o} = \text{const}, \ P = P_{\rm o} = P(\rho_{\rm o}, S_{\rm o}).$$
(5)

Здесь и далее индекс о относится к невозмущенным величинам.

(10), очевидно.

Сразу же отметим притиворечие в рассуждениях Джинса. Он считал, что гравитационный потенциал φ_0 постоянен, то есть не зависит от координат, что может быть принято в уравнении движения (2), но не согласуется с уравнением Пуассона (3).

Примем, что возмущения всех величин имеют гармонический характер, то есть

$$\rho(\vec{r},t) = \rho_{\rm o} + \rho_1(t)e^{ik\vec{r}},\tag{6}$$

$$\vec{v}(\vec{r},t) = \vec{v}_1(t)e^{ik\vec{r}},\tag{7}$$

$$\varphi(\vec{r},t) = \varphi_0 + \varphi_1(t)e^{ik\vec{r}},\tag{8}$$

$$S(\vec{r},t) = S_0 + S_1(t)e^{i\vec{k}\vec{r}}.$$
(9)

Такое представление равносильно разложению произвольных возмущений в интегралы Фурье и выбору моды с одним волновым числом. Волновой вектор будем считать закрепленным.

Комплексный вид возмущений не приводит ни к каким трудностям. Можно считать, что физический смысл имеют вещественные части решений, как это делается в электродинамике при рассмотрении распространения монохроматических или плоских волн.

Поскольку давление является функцией плотности и энтропии, разложим его согласно формуле Тейлора первого порядка:

$$P = P_{\rm o} + \frac{\partial P}{\partial \rho}(\rho - \rho_{\rm o}) + \frac{\partial P}{\partial S}(S - S_{\rm o}) = P_{\rm o} + \left[c_{\rm s}^2 \rho_1(t) + b^2 S_1(t)\right] e^{i\vec{k}\vec{r}}.$$
(10)

Здесь $c_{\rm s} = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)}_{S}$ — скорость звука. Присутствие обозначения S у знака частной производной указывает на то, что эта производная вычисляется при постоянной энтропии. Какие переменные закреплены в равенстве

2. *Линейное приближение*. Подставим равенства (6)–(10) в уравнения (1)–(4) и ограничимся слагаемыми только первого порядка по возмущениям. Уравнения для возмущений получаются, конечно, линейными, точкой обозначается производная по времени:

$$\dot{\rho}_1 + i\rho_0 \vec{v}_1 \vec{k} = 0, \tag{11}$$

$$\dot{\vec{v}}_1 + i\vec{k}\left(\varphi_1 + c_{\rm s}^2\frac{\rho_1}{\rho_2} + b^2\frac{S_1}{\rho_2}\right) = 0,\tag{12}$$

$$-k^2\varphi_1 = 4\pi G\rho_1,\tag{13}$$

$$\dot{S}_1 = 0.$$
 (14)

Наиболее просто интегрируется последнее уравнение: $S_1 = S_1^* = \text{const.}$

Предположим далее, что возмущения всех величин от времени зависят одинаково, а именно — экпоненциально:

$$\rho_1(t) = \rho_1^* e^{\omega t}, \ \vec{v}_1(t) = \vec{v}_1^* e^{\omega t}, \ \varphi_1(t) = \varphi_1^* e^{\omega t}, \ S_1(t) = S_1^* e^{\omega t}.$$
(15)

При подстановке этих формул в уравнения (11)–(14) производные по времени заменяются на ω , экспоненциальный множитель сокращается и уравнения принимают форму:

$$\omega \rho_1^* + i\vec{k}\vec{v}_1^*\rho_0 = 0, \tag{16}$$

$$\omega \vec{v}_1^* + i\vec{k} \left(\varphi_1^* + c_{\rm s}^2 \frac{\rho_1^*}{\rho_{\rm o}} + b^2 \frac{S_1^*}{\rho_{\rm o}} \right) = 0, \tag{17}$$

$$-k^2\varphi_1^* = 4\pi G\rho_1^*,\tag{18}$$

$$\omega S_1^* = 0. \tag{19}$$

Последнее уравнение написано в общей форме, хотя его решение уже известно. Однако, такая запись позволяет разграничить случаи, когда S_1^* равно и не равно нулю. Рассмотрим эти случаи отдельно.

3. Случай $S_1^* = 0$. Возмущения являются адиабатическими, так как энтропия не изменяется. Все остальные возмущения могут зависеть от времени, то есть $\omega \neq 0$. Из уравнения (17) следует, что амплитуда возмущения скорости параллельна волновому вектору, так что можно положить

$$\vec{v}_1^* = v_1^* \frac{\vec{k}}{k}.$$
(20)

Обозначим для краткости $\delta = \frac{\rho_1^*}{\rho_{\rm o}}.$ Система (16)–(18) перейдет в

$$\omega\delta + ikv_1^* = 0, (21)$$

$$ikc_{\rm s}^2\delta + \omega v_1^* + ik\varphi_1^* = 0, \qquad (22)$$

$$4\pi G\rho_0 \delta + k^2 \varphi_1^* = 0. \tag{23}$$

Это система трех линейных алгебраических уравнений. Так как она однородна, для существования ее нетривиального (ненулевого) решения необходимо обращение в нуль определителя системы, то есть

$$\det \begin{vmatrix} \omega & ik & 0\\ ikc_{s}^{2} & \omega & ik\\ 4\pi G\rho_{o} & 0 & k^{2} \end{vmatrix} = \omega^{2}k^{2} - 4\pi G\rho_{o}k^{2} + c_{s}^{2}k^{4} = 0.$$
(24)

Сокращая на k^2 , находим, что решение существует при выполнении равенства

$$\omega^2 = 4\pi G\rho_{\rm o} - k^2 c_{\rm s}^2. \tag{25}$$

Характер решения зависит от знака правой части. Рассмотрим два случая. 1) $4\pi G\rho_{\rm o}>k^2c_{\rm s}^2.$ Это может быть, когда $k< k_{\rm J},$ где

$$k_{\rm J} = \frac{\sqrt{4\pi G\rho_{\rm o}}}{c_{\rm s}}.\tag{26}$$

Тогда показатель ω вещественен и имеет два значения

$$\omega = \pm \sqrt{4\pi G \rho_{\rm o} - k^2 c_{\rm s}^2}.\tag{27}$$

Отрицательный показатель означает экспоненциальное убывание возмущений, а положительный — экспоненциальный рост со временем до тех пор, пока возмущения становятся не малыми и теория, следовательно, неприменимой. При отрицательности показателя его модуль называется декрементом, положительный показатель называют инкрементом.

При заданном значении вещественного показателя ω амплитуды возмущений могут быть комплексными. Физический смысл имеют вещественные части этих комплексных выражений:

$$\rho_1 = \Re\left(\rho_1^* e^{\omega t + i\vec{k}\vec{r}}\right) = |\rho_1^*| \cos(\vec{k}\vec{r} + \arg(\rho_1^*))e^{\omega t}, \quad \varphi_1 = -\frac{4\pi G}{k^2}\rho_1, \quad (28)$$

$$\vec{v}_1 = \frac{\omega}{k} \frac{k}{k} |\delta| \cos\left(\vec{k}\vec{r} + \arg(\rho_1^*) + \frac{\pi}{2}\right) e^{\omega t} = -\frac{\omega}{k} \frac{k}{k} |\delta| \sin\left(\vec{k}\vec{r} + \arg(\rho_1^*)\right) e^{\omega t}.$$
(29)

Амплитуда $|\rho_1^*|$ и фаза $\arg(\rho_1^*)$ могут быть произвольными, так что при каждом ω существует два решения, а всего — с отрицательным и положительным ω — четыре. Все такие возмущения имеют характер стоячих волн. Возмущения потенциала имеют ту же фазу, что и возмущения плотности, а фаза возмущений скорости отличается на $\pi/2$.

2) $4\pi G\rho_{\rm o} < k^2 c_{\rm s}^2$. Этот случай осуществляется при $k > k_{\rm J}$. Показатель ω — чисто мнимое число, обозначим его в соответствии с принятым в электродинамике соглашением

$$\omega = -i\omega_*, \ \omega_* = \sqrt{k^2 c_{\rm s}^2 - 4\pi G \rho_{\rm o}} > 0.$$
(30)

Тогда возмущения примут вид плоских волн:

$$\rho_1 = \rho_1^* e^{-i\omega_* t + i\vec{k}\vec{r}}, \ \vec{v}_1 = \frac{\omega_*}{k} \frac{\vec{k}}{k} \frac{\rho_1}{\rho_0}, \ \varphi_1 = -\frac{4\pi G}{k^2} \rho_1.$$
(31)

Здесь амплитуда ρ_1^* может быть комплексной, что обеспечивает наличие двух линейно независимых решений уравнений. Для их выявления необходимо взять вещественную часть решений (31):

$$\rho_1 = |\rho_1^*| \cos\left(i\omega_* t - i\vec{k}\vec{r} - \arg(\rho_1^*)\right), \ \vec{v}_1 = \frac{\omega_*}{k}\frac{\vec{k}}{k}\frac{\rho_1}{\rho_0}, \ \varphi_1 = -\frac{4\pi G}{k^2}\rho_1.$$
(32)

Изменение знака ω_* равносильно изменению направления вектора \vec{k} и фазы волны на противоположные.

В пределе больших волновых чисел $k \gg k_{\rm J}$ (малых длин волн) оказывается $\omega_* = c_{\rm s}k$. Возмущения (32) обращаются в звуковые волны с фазовой скоростью $c_{\rm s}$.

Таким образом, в первом случае, при волновых числах $k < k_J$, происходит либо сжатие, либо рост возмущений, а во втором, когда эти числа больше k_J возмущения колеблются.

Заметим, что фазу $\arg(\rho_1^*)$ при фиксированном \vec{k} можно устранить изменением начала отсчета времени, однако этого нельзя сделать для всех \vec{k} сразу.

4. Случай энтропийных возмущений. Если $S_1^* \neq 0$, то $\omega = 0$, то есть все возмущения не зависят от времени. Уравнения (17)–(18) переходят в

$$\vec{v}_1^* \vec{k} = 0, \ \varphi_1^* + c_{\rm s}^2 \delta + b^2 \frac{S_1^*}{\rho_{\rm o}} = 0, \ \varphi_1^* = -\frac{4\pi G}{k^2} \rho_1^* = -\frac{4\pi G}{k^2} \rho_{\rm o} \delta.$$
(33)

Здесь опять возможны два подслучая.

1) $v_1^* = 0$. Тогда

$$\delta = -\frac{S_1^*}{\rho_{\rm o}} \frac{b^2}{c_{\rm s}^2 - 4\pi G \rho_{\rm o}/k^2}, \quad \rho_1^* = S_1^* \frac{b^2}{c_{\rm s}^2} \frac{1}{k_{\rm J}^2/k^2 - 1}.$$
(34)

Если при этом $k \gg k_{\rm J}$, то

$$c_{\rm s}^2 \rho_1^* + b^2 S_1^* = 0$$
 или $\rho_1^* = -S_1^* \frac{b^2}{c_{\rm s}^2}.$ (35)

Как видно из формулы (10), при выполнении такого условия давление остается постоянным: $P = P_0$.

2) $v_1^* \neq 0$. Тогда вектор скорости $\vec{v}_1 = \vec{v}_1^* e^{i\vec{k}\vec{r}}$ перпендикулярен волновому вектору: $\vec{v}_1 \perp \vec{k}$. Дивергенция скорости

$$\vec{\nabla}\vec{v}_1 = i\vec{k}\vec{v}_1 = 0,\tag{36}$$

в то же время ее ротор нулю не равен:

$$\vec{\nabla} \times \vec{v}_1 = i\vec{v}_1 \times \vec{k} \neq 0,\tag{37}$$

поэтому такие возмущения называются вихревыми. Так как имеется две перпендикулярных вектору \vec{k} компоненты скорости, существует два линейно независимых вихревых возмущения.

5. Типы возмущений и критерий Джинса. Итак, существуют следующие типы возмущений и их развития: по два набора линейно независимых растущих и убывающих со временем возмущений, а также два колеблющихся, всего шесть адиабатических возмущений, одно энтропийное возмущение с неизменяющейся скоростью и два вихревых — всего три типа. Общее число — девять независимых возмущений пяти типов.

Граничное значение k_J , определяемое формулой (26) и разделяющее два подслучая, рассмотренных в пункте 3, называется волновым числом Джинса. Ему соответствуют длина волны Джинса

$$\lambda_{\rm J} = \frac{2\pi}{k_{\rm J}} = c_{\rm s} \sqrt{\frac{\pi}{G\rho_{\rm o}}} \tag{38}$$

и джинсовская масса

$$M_{\rm J} = \left(\frac{\lambda_{\rm J}}{2}\right)^3 \rho_{\rm o} = \left(\frac{c_{\rm s}}{2}\right)^3 \left(\frac{\pi}{G}\right)^{3/2} \rho_{\rm o}^{-1/2} = \mathcal{B} \frac{c_{\rm s}^3}{\sqrt{\rho_{\rm o}}}, \quad \mathcal{B} = \frac{1}{8} \left(\frac{\pi}{G}\right)^{3/2} = 4.0368 \cdot 10^{10} e^{3/2} c^3 / c M^{9/2}. \tag{39}$$

Длина волны характеризует тот размер области, который является критичным по отношению к характеру поведения возмущений. Критерий Джинса по отношению к массе звучит так: если масса больше джинсовской, возмущения растут или схлопываются, при массе, меньшей джинсовской, — колеблются.

Нерассмотренный случай $k = k_{\rm J}$ выделяется во всех пунктах. При таком значении волнового числа обращается в нуль частота ω и обращаются в бесконечность амплитуды возмущений при тождественном обращении ω в нуль. Рассмотрим поэтому отдельно случай $k = k_{\rm J}$, когда $4\pi G\rho_{\rm o} = c_{\rm s}^2 k^2$. Начнем с исходных уравнений для возмущений (11)–(14) при этом условии и заменим в третьем из них $4\pi G$ на $c_{\rm s}^2 k^2/\rho_{\rm o}$. Тогда $\varphi_1 = -c_{\rm s}^2 \rho_1/\rho_{\rm o}$, второе уравнение после подстановки в него φ_1 упрощается (согласно четвертому $S_1 = S_1^*$) и уравнения интегрируются:

$$\dot{\vec{v}}_1 = -i\vec{k}b^2 \frac{S_1^*}{\rho_0}, \quad \vec{v}_1 = -i\vec{k}b^2 \frac{S_1^*}{\rho_0}t, \quad \rho_1 = -k^2 b^2 S_1^* \frac{t^2}{2} = -4\pi G\rho_0 \frac{b^2}{c_s^2} S_1^* \frac{t^2}{2}.$$
(40)

Таким образом, в этом предельном случае волнового числа возмущения энтропийные и растут неограниченно при $t \to \infty$ (конечно, до тех пор, пока возмущения остаются малыми), но не экспоненциально, а степенным образом: возмущение скорости линейно, а плотности квадратично.

6. Критические массы Джинса. Оценим величины критической массы Джинса в различные эпохи расширения Вселенной. В этом пункте снова ноликом отмечаются значения величин в современную эпоху, в частности, $T = T_0(1+z)$, $\rho = \rho_0(1+z)^3$, где z — космологическое красное смещение.

1) Эра радиационно доминированной плазмы (РДП). Основные величины, в частности давление $P = P_r$ и плотность $\rho_0 = \rho_r$, определяются излучением. Скорость звука при этом

$$c_{\rm s}^2 = \frac{\partial P_{\rm r}}{\partial \rho_{\rm r}} = \frac{\partial}{\partial \rho_{\rm r}} \frac{1}{3} c^2 \rho_{\rm r} = \frac{c^2}{3}, \quad c_{\rm s} = \frac{c}{\sqrt{3}}.$$
(41)

Плотность массы излучения определяется формулой $\rho_0 = (a_{\rm SB}/c^2)T^4$, так что

$$M_{\rm J} = \mathcal{B} \frac{c_{\rm s}^3}{\sqrt{\rho_{\rm o}}} = \mathcal{B} \frac{c^3}{3\sqrt{3}\sqrt{a_{\rm SB}}T_0^2(1+z)^2} = \frac{9.6976 \cdot 10^{57}}{(1+z)^2} \approx \frac{10^{58}}{(1+z)^2} = \frac{5 \cdot 10^{24}}{(1+z)^2} M_{\odot},\tag{42}$$

где $M_{\odot} = 2 \cdot 10^{33} \ s$ — масса Солнца. Красное смещение в течение эры РДП изменяется от ≈ 25000 до $2 \cdot 10^9$, так что $M_{\rm J} = 8 \cdot 10^{15} M_{\odot} \div 1.25 \cdot 10^6 M_{\odot}$. Верхняя граница соответствует массе богатого скопления галактик, нижняя — ядру нашей Галактики.

2) Эпоха пылевидного вещества. Как отмечалось в первом разделе, давление вещества не вносит вклада в плотность энергии и массы, однако в эпохи, близкие к эре РДП, давление существенно в других вопросах. Вещество можно считать идеальным газом с давлением, плотностью массы и энтропией на единицу массы

$$P = \frac{N}{V} k_{\rm B} T, \quad \rho = m_{\rm H} \frac{N}{V}, \quad S = \frac{k_{\rm B}}{m_{\rm H}} \left[\frac{5}{2} - \ln \left(\frac{N}{V} \frac{h^3}{(2\pi m_{\rm H} k_{\rm B} T)^{3/2}} \right) \right]. \tag{43}$$

Здесь N — полное число частиц в объеме V, $m_{\rm H}$ — масса атома водорода (протона). Поскольку процесс космологического расширения адиабатический, энтропия должна быть постоянной, то есть постоянны (числитель и знаменатель дроби под знаком логарифма в (43)) N и произведение $s = VT^{3/2} = s(S)$, являющееся функцией от энтропии. Выражение давления через плотность и s представляет уравнение адиабаты

$$P = \frac{\rho}{m_{\rm H}} k_{\rm B} \left(\frac{s}{V}\right)^{2/3} = \frac{\rho}{m_{\rm H}} k_{\rm B} \left(\frac{s\rho}{m_{\rm H}N}\right)^{2/3} = \mathcal{A}(S)\rho^{5/3}, \quad \mathcal{A}(S) = \frac{k_{\rm B}}{m_{\rm H}^{5/3}} \left(\frac{s(S)}{N}\right)^{2/3}.$$
 (44)

Коэффициент $\mathcal{A}(S)$ называется энтропийной константой.

Скорость звука согласно формуле после равенства (10) получается

$$c_s^2 = \frac{5}{3}\mathcal{A}(S)\rho^{2/3} = \frac{5}{3}\frac{P}{\rho} = \frac{5}{3}\frac{k_{\rm B}T}{m_{\rm H}}, \quad c_{\rm s} = \sqrt{\frac{5}{3}\frac{k_{\rm B}T}{m_{\rm H}}}.$$
(45)

Таким образом, масса Джинса

$$M_{\rm J} = \frac{1}{8} \left(\frac{5\pi}{3} \frac{k_{\rm B}T}{Gm_{\rm H}}\right)^{3/2} \frac{1}{\rho^{1/2}} = \frac{1}{8} \left(\frac{5\pi}{3} \frac{k_{\rm B}T_0}{Gm_{\rm H}}\right)^{3/2} \frac{1}{\rho_0^{1/2}},\tag{46}$$

где ρ_0 — современная плотность пылевидного вещества. Согласно наиболее адекватной космологической модели $\Omega^0_{\rm d}=0.23,~\rho_0=\Omega^0_{\rm d}\rho^0_{\rm c}=0.23\cdot 8\cdot 10^{-30}=1.84\cdot 10^{-30}~\varepsilon/cm^3,$ так что

$$M_{\rm J} = 2 \cdot 10^{38} \, s = 10^5 M_{\odot}. \tag{47}$$

Это характерная масса шарового скопления звезд.

В теории образования крупномасштабной структуры задается спектр начальных возмущений плотности и тем самым спектр масс отдельных объектов.

§2. Возмущения космологического вещества

1. Невозмущенное состояние при космологическом расширении. Откажемся от постоянства невозмущенных решений и примем, что плотность, скорость, потенциал и давление в невозмущенном состоянии зависят от времени, подчиняясь космологическому расширению. Возьмем эти величины в форме

$$\rho = \rho_{\rm o}(t), \ \vec{v}_{\rm o} = H(t)\vec{r}, \ \varphi_{\rm o} = \frac{2\pi G}{3}\rho_{\rm g}^{0}(t)r^{2}, \ P = P_{\rm o} = 0, \ \rho_{\rm g}^{\rm o} = \rho_{\rm o} - \frac{c^{2}}{4\pi G}\Lambda.$$
(48)

Равенство нулю давления означает, что излучение во внимание не принимается, а вещество считается пылевидным (индекс d не пишем). В то же время космологическое слагаемое учитывается. Без космологического слагаемого теория была развита В. Боннором [42].

Убедимся, что так выбранные величины действительно соответствуют космологическим решениям. Для этого подставим (48) в уравнения вида (1)–(2), переписав их с учетом вакуума:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla}(\rho \vec{v}) = 0, \tag{49}$$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v}\vec{\nabla})\vec{v} + \frac{1}{\rho}\vec{\nabla}P + \vec{\nabla}\varphi = 0, \tag{50}$$

$$\Delta \varphi = 4\pi G \rho_{\rm g}, \ \rho_{\rm g} = \rho + 3 \frac{P}{c^2} - \frac{c^2}{4\pi G} \Lambda.$$
(51)

Здесь принято, что энтропия не изменяется. Из (49) и (50) получим соответственно

$$\dot{\rho}_{\rm o} + \vec{\nabla}(\rho_{\rm o}H\vec{r}) = \dot{\rho}_{\rm o} + \rho_{\rm o}H\vec{\nabla}(\vec{r}) = \dot{\rho}_{\rm o} + \rho_{\rm o}H3 = 0$$
 или $\dot{\rho}_{\rm o} = -3\rho_{\rm o}H,$ (52)

$$\dot{\vec{v}}_{\rm o} + H^2(\vec{r}\vec{\nabla})\vec{r} + \frac{1}{\rho_{\rm o}}0 + \frac{2\pi G}{3}\rho_{\rm g}^{\rm o}2\vec{r} = 0$$
 или $\dot{H} = -H^2 - \frac{4\pi G}{3}\rho_{\rm g}^{\rm o}.$ (53)

Уравнение (52) совпадает с соотношением (48) при P = 0. Равенство (53) следует из уравнения (51).

Проверим уравнение Пуассона:

$$\Delta\varphi_{\rm o} = \frac{2\pi G}{3}\rho_{\rm g}^{\rm o}(t)\Delta r^2 = 4\pi G\rho_{\rm g}^{\rm o}(t).$$
(54)

При преобразовании уравнений (53) и (54) были использованы тождества $(\vec{r}\vec{\nabla})\vec{r} = \vec{r}$ и $\Delta r^2 = 6$.

Проделанные выкладки показывают, что космологическую модель можно было бы построить, исходя из ньютоновской гидродинамики и уравнения Пуассона.

2. Возмущения в эйлеровых и лагранжевых координатах. Возмущения плотности, скорости и потенциала возьмем в том же виде, что и в теории Джинса (6)–(8), но будем считать, что пространственный масштаб со временем меняется: все расстояния пропорциональны радиусу кривизны:

$$\vec{r} = R(t)\vec{x}.\tag{55}$$

Поэтому производные по координатам надо вычислять с учетом изменения их со временем. Строго говоря, для искривленного пространства это не такая простая процедура. В ньютоновском приближении \vec{r} — это эйлеровы, а \vec{x} — лагранжевы координаты. Следовало бы пересчитать величины (48) и производные в уравнениях (49)–(51) к лагранжевым координатам, что сделать очень просто. Закон стационарного расширения от этого не изменится.

Далее представим снова возмущения в гармоническом виде через лагранжевы координаты, то есть будем их считать пропорциональными экспоненте от $i \vec{ex} \vec{x}$. Однако вместо использования лагранжевых координат, ограничиваясь ньютоновским приближением, оставим реальные (измеряемые) расстояния \vec{r} как бы неизменными, а зависимость от времени перенесем на волновой вектор, считая, что его длина обратно пропорциональна R(t), то есть положим

$$\vec{k}(t) = \frac{\vec{x}}{R(t)}, \quad \vec{x} = \text{const}, \quad \dot{\vec{k}} = -\vec{k}H, \quad \vec{x}\vec{x} = \vec{k}\vec{r}, \quad \frac{k}{k} = \frac{\vec{x}}{a}.$$
(56)

Нетрудно убедиться, что такой прием в данном случае равносилен использованию лагранжевых координат, но позволяет не пересчитывать производные в уравнениях.

Итак, распишем наши возмущенные величины, для простоты приняв, что возмущение скорости параллельно волновому вектору, то есть это продольные волны:

$$\rho(\vec{r},t) = \rho_{\rm o}(t) + \rho_1(t)e^{i\vec{k}\vec{r}},\tag{57}$$

$$\vec{v}(\vec{r},t) = \vec{v}_{\rm o}(t) + v_1(t) \frac{\vec{x}}{a} e^{i\vec{k}\vec{r}},$$
(58)

$$\varphi(\vec{r},t) = \varphi_0(t) + \varphi_1(t)e^{i\vec{k}\vec{r}}.$$
(59)

Подчеркнем еще раз, что хотя экспонента написана в виде $e^{i\vec{k}\vec{r}}$, однако надо не забывать, что \vec{k} зависит от времени.

Несмотря на то, что в невозмущенном состоянии пылевое вещество не оказывает давления, возмущение давления вслед за изложенным в книге [1] примем во внимание. При этом изменениями энтропии пренебрежем, так что давление возьмем в виде $P = c_{\rm s}^2 \rho_1 e^{i\vec{k}\vec{r}}$. Введем еще обозначение для отношения $\delta(t) = \frac{\rho_1(t)}{\rho_0(t)}$, несколько отличающееся от прежнего, так как здесь и числитель и знаменатель зависят от времени.

3. Уравнения для возмущений. Подстановка разложений (57)–(59) в уравнения (1)–(3) приводит к уравнениям для возмущений. Получим их, приведя выкладки. Для слагаемых уравнения неразрывности получаем

$$\dot{\rho} = \frac{\partial}{\partial t} (\rho_{\rm o} + \rho_1 e^{i\vec{k}\vec{r}}) = \dot{\rho}_{\rm o} + \dot{\rho}_1 e^{i\vec{k}\vec{r}} - \rho_1 e^{i\vec{k}\vec{r}}i\vec{k}\vec{r}H, \quad \rho_1 = \rho_0\delta, \quad \dot{\rho}_1 = \dot{\rho}_0\delta + \rho_0\dot{\delta}, \tag{60}$$

$$\vec{\nabla}(\rho\vec{v}) = \vec{\nabla} \left(\rho_0\vec{v}_0 + \rho_1\vec{v}_0e^{i\vec{k}\vec{r}} + \rho_0v_1\frac{\vec{w}}{\varpi}e^{i\vec{k}\vec{r}}\right) = \vec{\nabla} \left(\rho_0H\vec{r} + \rho_1H\vec{r}e^{i\vec{k}\vec{r}} + \rho_0v_1\frac{\vec{w}}{\varpi}e^{i\vec{k}\vec{r}}\right) = 3\rho_0H + 3\rho_1He^{i\vec{k}\vec{r}} + \left(\rho_1H\vec{r} + \rho_0v_1\frac{\vec{w}}{\varpi}\right)e^{i\vec{k}\vec{r}}i\vec{k}. \tag{61}$$

Учитывая уравнение для невозмущенной плотности, находим

$$\dot{\rho} + \vec{\nabla}(\rho \vec{v}) = -3\rho_{\rm o}H + (-3\rho_{\rm o}H\delta + \rho_{\rm o}\dot{\delta})e^{i\vec{k}\vec{r}} - \rho_{\rm o}\delta e^{i\vec{k}\vec{r}}i\vec{k}\vec{r}H + 3\rho_{\rm o}H + 3\rho_{\rm o}\delta H e^{i\vec{k}\vec{r}} + \left(\rho_{\rm o}\delta H\vec{r} + \rho_{\rm o}v_1\frac{\vec{x}}{a}\right)e^{i\vec{k}\vec{r}}i\vec{k} = 0, \quad \text{так что } \dot{\delta} = -ikv_1.$$

$$(62)$$

Уравнение для возмущения скорости из уравнения движения выводится аналогично. Его слагаемые

$$\dot{\vec{v}} = \frac{\partial}{\partial t} \left(\vec{v}_{\rm o} + v_1 \frac{\vec{e}}{w} e^{i\vec{k}\vec{r}} \right) = -\left(H^2 + \frac{4\pi G}{3} \rho_{\rm g}^{\rm o} \right) \vec{r} + \dot{v}_1 \frac{\vec{e}}{w} e^{i\vec{k}\vec{r}} - v_1 \frac{\vec{e}}{w} e^{i\vec{k}\vec{r}} i(\vec{k}\vec{r})H, \tag{63}$$

$$(\vec{v}\vec{\nabla})\vec{v} = (\vec{v}_{o}\vec{\nabla})\vec{v}_{o} + v_{1}\left[e^{i\vec{k}\vec{r}}\left(\frac{\vec{x}}{a}\vec{\nabla}\right)\vec{v}_{o} + (\vec{v}_{o}\vec{\nabla})\left(\frac{\vec{x}}{a}e^{i\vec{k}\vec{r}}\right)\right] = H^{2}\vec{r} + v_{1}He^{i\vec{k}\vec{r}}\frac{\vec{x}}{a} + Hv_{1}\frac{\vec{x}}{a}e^{i\vec{k}\vec{r}}i(\vec{k}\vec{r}), \tag{64}$$

$$\vec{\nabla}\varphi = \vec{\nabla}\left(\varphi_{\rm o} + \varphi_1 e^{i\vec{k}\vec{r}}\right) = \frac{2\pi G}{3}\rho_{\rm g}^{\rm o}2\vec{r} + \varphi_1 e^{i\vec{k}\vec{r}}i\vec{k}, \quad \vec{\nabla}P = \vec{\nabla}\left(P_{\rm o} + c_{\rm s}^2\rho_1 e^{i\vec{k}\vec{r}}\right) = c_{\rm s}^2\rho_1 e^{i\vec{k}\vec{r}}i\vec{k}.$$
(65)

Подстановка всего этого в левую часть уравнения (2) дает

$$\dot{\vec{v}} + (\vec{v}\vec{\nabla})\vec{v} + \frac{1}{\rho}\vec{\nabla}P + \vec{\nabla}\varphi = -\left(H^2 + \frac{4\pi G}{3}\rho_{\rm g}^{\rm o}\right)\vec{r} + \dot{v}_1\frac{\vec{w}}{\varpi}e^{i\vec{k}\vec{r}} - v_1\frac{\vec{w}}{\varpi}e^{i\vec{k}\vec{r}}i(\vec{k}\vec{r})H + H^2\vec{r} + v_1He^{i\vec{k}\vec{r}}\frac{\vec{w}}{\varpi} + Hv_1\frac{\vec{w}}{\varpi}e^{i\vec{k}\vec{r}}i(\vec{k}\vec{r}) + c_{\rm s}^2\delta e^{i\vec{k}\vec{r}}i\vec{k} + \frac{4\pi G}{3}\rho_{\rm g}^{\rm o}\vec{r} + \varphi_1e^{i\vec{k}\vec{r}}i\vec{k} = \frac{\vec{w}}{\varpi}e^{i\vec{k}\vec{r}}(\dot{v}_1 + v_1H + c_{\rm s}^2ik\delta + \varphi_1ik) = 0.$$
(66)

Из уравнения Пуассона находим

$$\Delta \varphi = \Delta (\varphi_{\rm o} + \varphi_1 e^{i\vec{k}\vec{r}}) = 4\pi G \rho_{\rm g}^{\rm o} - \varphi_1 k^2 e^{i\vec{k}\vec{r}} = 4\pi G \rho_{\rm g}^{\rm o} + e^{i\vec{k}\vec{r}} \frac{P_1}{c^2} + 4\pi G \rho_1 e^{i\vec{k}\vec{r}},\tag{67}$$

$$\varphi_1 = -\frac{4\pi G}{k^2} \left(\rho_1 + 3\frac{c_{\rm s}^2}{c^2} \rho_1 \right) = -\frac{4\pi G \rho_{\rm o}}{k^2} \delta \left(1 + 3\frac{c_{\rm s}^2}{c^2} \right). \tag{68}$$

Отношением скорости звука к скорости света можно пренебречь. Окончательно, уравнение движения сводится к

$$\dot{v}_1 + v_1 H = \frac{i}{k} (4\pi G \rho_0 - c_s^2 k^2) \delta.$$
(69)

Из двух уравнений (62) и (69) исключим скорость

$$v_1 = \frac{i}{k}\delta = \frac{i}{\omega}R(t)\delta, \quad \dot{v}_1 = \frac{i}{k}\dot{\delta} + \frac{i}{\omega}\dot{R}\delta = \frac{i}{k}\dot{\delta} + \frac{i}{k}H\delta \tag{70}$$

и получим одно уравнение второго порядка для δ :

$$\ddot{\delta} + 2H\dot{\delta} - (4\pi G\rho_{\rm o} - c_{\rm s}^2 k^2)\delta = 0.$$
⁽⁷¹⁾

Коэффициенты уравнения содержат $\rho_{\rm o}, H$ и $c_{\rm s},$ то есть зависят от выбранной космологической модели и от уравнения состояния вещества.

4. Критерий устойчивости в частном случае. Для прояснения принципиального вопроса, насколько близки критерии устойчивости Джинса и рассматриваемый в этом разделе, в книге [1] предложены два упрощения.

Во-первых, принято уравнение состояния вида $P \propto \rho^{4/3}$. Тогда скорость звука $c_{\rm s} = \left(\frac{\mathrm{d}P}{\mathrm{d}\rho}\right)^{1/2} \propto \rho^{1/6}$. Во-вторых, принята плоская модель пылевидного вещества, при которой выполняются зависимости

$$\rho_{\rm o} = \frac{1}{6\pi G} \frac{1}{t^2}, \quad R = R_* t^{2/3}, \quad k = k_* t^{-2/3}, \quad H = \frac{2}{3} \frac{1}{t}, \quad c_{\rm s} = c_* t^{-1/3}. \tag{72}$$

Тогда уравнение (71) приводится к виду уравнения Эйлера

$$t^{2}\ddot{\delta} + \frac{4}{3}t\dot{\delta} - \left(\frac{2}{3} - c_{*}^{2}k_{*}^{2}\right)\delta = 0,$$
(73)

которое подстановкой $t = e^u$ сводится к уравнению с постоянными коэффициентами. Решением уравнения (73) являются степенные функции:

$$\delta = \delta_* t^n, \ v_1 = v_1^0 t^{n-1/3}, \ n = -\frac{1}{6} \pm \sqrt{\frac{25}{36}} - c_*^2 k_*^2.$$
(74)

Вещественным показатель nявляется при $k_* < k^*_{\rm cr}$ и $k < k_{\rm cr},$ где

$$k_{\rm cr}^* = \frac{5}{6} \frac{1}{c_*}, \ k_{\rm cr} = k_{\rm cr}^* t^{-2/3} = \frac{5}{6} \frac{1}{c_*} t^{-2/3}.$$
 (75)

Соответствующая критическая длина волны

$$\Lambda_{\rm cr} = \frac{2\pi}{k_{\rm cr}} = \frac{6}{5} 2\pi c_* t^{2/3} = \frac{6}{5} 2\pi c_{\rm s} t.$$
(76)

Длина волны Джинса в рассматриваемом случае согласно формуле (38)

$$\lambda_{\rm J} = c_{\rm s} \sqrt{\frac{\pi}{G\rho_{\rm o}}} = c_* t^{-1/3} \sqrt{\frac{\pi 6\pi G t^2}{G}} = c_* t^{-1/3} t \pi \sqrt{6} = \sqrt{\frac{3}{2}} 2\pi c_* t^{2/3} = \sqrt{\frac{3}{2}} 2\pi c_{\rm s} t.$$
(77)

Величины λ_{cr} и λ_{J} различаются только численными коэффициентами, причем эти коэффициенты очень близки: $\frac{6}{5} = 1.2$, а $\sqrt{\frac{3}{2}} = 1.224745$. Таким образом, неточная теория Джинса дает в рассмотренном случае почти то же, что и точная теория: относительное различие критических размеров составляет 2%.

5. Большие λ . Заметим, что в пределе больших длин волн, то есть малых волновых чисел k, уравнение (71) переходит в

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_{\rm o}\delta = 0. \tag{78}$$

Его решения могут быть найдены в аналитической форме, а именно в квадратурах. Действительно, одним из его решений является $\delta = H$. Это следует из соотношения (51), дифференцируя которое по времени, находим

$$\ddot{H} = -\frac{4\pi G}{3}\dot{\rho}_{\rm o} - 2H\dot{H} = 4\pi G\rho_{\rm o}H - 2H\dot{H}.$$
(79)

Второе решение, линейно не зависимое от первого, находим методом вариации постоянной и получаем

$$\delta \propto H \int_{0}^{t} \frac{\mathrm{d}t}{\dot{R}^2} = H \int_{0}^{R(t)} \frac{\mathrm{d}R}{\dot{R}^3}.$$
(80)

Входящая сюда производная от радиуса кривизны находится из уравнения (34). Она же определяет неявную зависимость радиуса кривизны от времени.

Функции $\delta = H$ и (80) представляют фундаментальную систему решений однородного уравнения (78), поведение которой обсудим ниже.

§3. Теория блинов Зельдовича

1. Способ описания возмущений. В линейной теории возмущений предполагается, что возмущенные величины мало отличаются от невозмущенных и уравнения (1)–(3) линеаризуются по возмущениям. Однако, плотность в возмущенных областях, каковыми являются объемы, занимаемые галактиками и скоплениями галактик, во много раз превосходит среднюю плотность вещества во вселенной. Поэтому линейная теория недостаточна. В то же время нелинейные уравнения долго с трудом поддавались решению, тем более аналитическими методами.

Я.Б.Зельдович предложил подход, позволивший получить качественные результаты аналитически, не накладывая ограничений на величину возмущений. Он предположил, что возмущения происходят в координатах частиц вещества, то есть возмущенные декартовы координаты следует искать в виде

$$x = R(t)x_1 + \delta_{\mathbf{x}}(t, x_1), \quad y = R(t)x_2, \quad z = R(t)x_3, \tag{81}$$

где R(t) — невозмущенный радиус кривизны, зависящий от времени, δ_x — возмущение абсциссы, $\vec{x} = (x_1, x_2, x_3)$ — вектор новых пространственных координат, которых при возмущении необходимо три, в то время как в однородном пространстве достаточно было одной. Напомним: в стандартной модели обычно полагают $r = R(t)a_k(\chi)$, что возможно, так как расширение пространства происходит во всех направлениях одинаково и угловые переменные не меняются. Три координаты x_1, x_2, x_3 могут принимать любые значения, положительные и отрицательные.

Физический смысл координат \vec{x} в том, что они стоят множителями при определяющей ход расширения величине R(t), то есть в данный момент времени фиксированные их значения связываются с определенной точкой пространства и при отсутствии возмущений декартовы координаты точки пропорциональны R(t), а координаты \vec{x} не меняются. Их можно считать лагранжевыми координатами в отличии от эйлеровых декартовых координат \vec{r} .

Возмущение координат приводит к возмущениям других величин. Теория основана на тех же ньютоновских уравнениях гидродинамики (49)–(51), но давление не учитывается совсем, то есть возмущается пылевидное вещество. Прежде чем пытаться решать уравнения, сделаем замену переменных, а именно, вместо эйлеровых декартовых координат используем лагранжевы координаты.

2. Преобразование координат. Время при замене координат (81) не изменяется. Однако производные по времени при эйлеровых и лагранжевых координатах различаются. Действительно, закрепление эйлеровых координат означает, что закреплена определенная точка в пространстве и время относится к ней. Точка же с закрепленными лагранжевыми координатами движется, ее эйлеровы координаты изменяются согласно уравнениям (81). Поэтому удобно ввести два времени, совпадающие между собой, но относящиеся к разным наборам координат и имеющие разные обозначения.

Таким образом, для выполнения преобразования координат к уравнениям, связывающим эйлеровы \vec{r} и лагранжевы \vec{x} координаты, добавим еще одно уравнение, связывающее времена, соответствующие старым t и новым t' координатам. Таким образом, полная замена переменных выглядит так:

$$x = R(t')x_1 + \delta_{\mathbf{x}}(t', x_1), \quad y = R(t')x_2, \quad z = R(t')x_3, \quad t = t'.$$
(82)

Здесь координаты \vec{r} не зависят от времени t, но зависят от времени t', а координаты \vec{x} не изменяются со времением t', как будто прикрепленные к "частице", вовлеченной в расширение пространства, но зависят от времени t.

Пересчитаем производные от старых переменных к новым. Для краткости производную по времени отмечаем по-прежнему точкой, а производную по координате x_1 — штрихом.

Сначала продифференцируем равенства (82) по времени t:

$$0 = R(t')\frac{\partial x_1}{\partial t} + x_1\dot{R}(t') + \dot{\delta}_{\mathbf{x}}(t', x_1) + \delta_{\mathbf{x}}'(t', x_1)\frac{\partial x_1}{\partial t}, \quad 0 = R(t')\frac{\partial x_2}{\partial t} + x_2\dot{R}(t'), \quad 0 = R(t')\frac{\partial x_3}{\partial t} + x_3\dot{R}(t').$$
(83)

Отсюда находим

$$\frac{\partial x_1}{\partial t} = -\frac{\dot{R}(t')x_1 + \delta_{\mathbf{x}}(t', x_1)}{R(t') + \delta_{\mathbf{x}}'(t', x_1)}, \quad \frac{\partial x_2}{\partial t} = -H(t')x_2, \quad \frac{\partial x_3}{\partial t} = -H(t')x_2. \tag{84}$$

С помощью этих равенств выражаем производную по старому времени через новые (лагранжевы) координаты и время

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t'} + \frac{\partial}{\partial x_1}\frac{\partial x_1}{\partial t} + \frac{\partial}{\partial x_2}\frac{\partial x_2}{\partial t} + \frac{\partial}{\partial x_3}\frac{\partial x_3}{\partial t} = \frac{\partial}{\partial t'} - \frac{\dot{R}(t')x_1 + \dot{\delta}_x(t', x_1)}{R(t') + \delta'_x(t', x_1)}\frac{\partial}{\partial x_1} - H(t')x_2\frac{\partial}{\partial x_2} - H(t')x_3\frac{\partial}{\partial x_3}.$$
 (85)

Производные по координатам связаны проще. Дифференцируя равенства (82) соответственно по x, y и z, находим

$$1 = [R(t') + \delta'_{\mathbf{x}}(t', x_1)] \frac{\partial x_1}{\partial x}, \quad 1 = R(t') \frac{\partial x_2}{\partial y}, \quad 1 = R(t') \frac{\partial x_3}{\partial z}, \tag{86}$$

и таким образом

$$\frac{\partial}{\partial x} = \frac{1}{R(t') + \delta'_{\mathbf{x}}(t', x_1)} \frac{\partial}{\partial x_1}, \quad \frac{\partial}{\partial y} = \frac{1}{R(t')} \frac{\partial}{\partial x_2}, \quad \frac{\partial}{\partial z} = \frac{1}{R(t')} \frac{\partial}{\partial x_3}.$$
(87)

Производные от эйлеровых координат по времени t' являются компонентами скорости:

$$v_1 = \frac{\mathrm{d}x}{\mathrm{d}t'} = \dot{R}(t')x_1 + \dot{\delta}'_{\mathbf{x}}(t', x_1), \quad v_2 = \frac{\mathrm{d}y}{\mathrm{d}t'} = \dot{R}(t')x_2, \quad v_3 = \frac{\mathrm{d}z}{\mathrm{d}t'} = \dot{R}(t')x_3.$$
(88)

3. *Преобразование уравнений*. Хотя производные по времени в двух системах различаются, само время в обеих системах, как уже говорилось, течет одинаково. Поэтому после пересчета производных для времени сохраним прежнее обозначение.

Запишем в новых переменных уравнение неразрывности (49). Его составляющие будут следующими.

$$\frac{\partial\rho}{\partial t} = \dot{\rho} - \frac{\dot{R}x_1 + \dot{\delta}_x}{R + \delta'_x} \frac{\partial\rho}{\partial x_1} - Hx_2 \frac{\partial\rho}{\partial x_2} - Hx_3 \frac{\partial\rho}{\partial x_3}, \quad \rho \vec{\nabla} \vec{v} = \rho \left(\frac{\dot{R} + \dot{\delta}'_x}{R + \delta'_x} + 2H\right),\tag{89}$$

$$(\vec{\nabla}\rho)\vec{v} = \left(\frac{1}{R+\delta_{\mathbf{x}}'}\frac{\partial\rho}{\partial x_1}, \frac{1}{R}\frac{\partial\rho}{\partial x_2}, \frac{1}{R}\frac{\partial\rho}{\partial x_3}\right)(\dot{R}x_1 + \dot{\delta}_{\mathbf{x}}, \dot{R}x_2, \dot{R}x_3) = \frac{\dot{R}x_1 + \dot{\delta}_{\mathbf{x}}}{R+\delta_{\mathbf{x}}'}\frac{\partial\rho}{\partial x_1} + Hx_2\frac{\partial\rho}{\partial x_2} + Hx_3\frac{\partial\rho}{\partial x_3}.$$
 (90)

В результате уравнение неразрывности примет простой вид:

$$\frac{\dot{\rho}}{\rho} + \frac{\dot{R} + \dot{\delta}'_{\mathrm{x}}}{R + \delta'_{\mathrm{x}}} + 2H = 0.$$
(91)

Уравнение (91) легко проинтегрировать и получить связь плотности с радиусом кривизны и возмущением

$$\rho = \frac{R_1^3}{R^2} \frac{\rho_1}{R + \delta_{\rm x}'}.$$
(92)

Здесь R_1 и ρ_1 — значения радиуса кривизны и плотности в момент, когда $\delta'_x = 0$. Если возмущения нет, то невозмущенная плотность

$$\rho_{\rm o} = \frac{R_1^3}{R^3} \rho_1, \tag{93}$$

так что

$$\delta\rho = \rho - \rho_{\rm o} = -\frac{R_1^3}{R^3} \frac{\delta_{\rm x}'}{R + \delta_{\rm x}'} \rho_1, \quad \delta = \frac{\delta\rho}{\rho} = -\frac{\delta_{\rm x}'}{R}.$$
(94)

Займемся уравнением движения (50). Выпишем его слагаемые.

$$\frac{\partial \vec{v}}{\partial t} = (\ddot{R}x_1 + \ddot{\delta}_x, \ddot{R}x_2, \ddot{R}x_3) - \left((\dot{R} + \dot{\delta}_x) \frac{\dot{R}x_1 + \dot{\delta}_x}{R + \delta'_x}, \dot{R}\frac{\dot{R}}{R}, \dot{R}\frac{\dot{R}}{R} \right),\tag{95}$$

$$(\vec{v}\vec{\nabla})\vec{v} = \left(\frac{\dot{R}x_1 + \dot{\delta}_x}{R + \delta'_x}\frac{\partial}{\partial x_1} + H\frac{\partial}{\partial x_2} + H\frac{\partial}{\partial x_3}\right)(\dot{R}x_1 + \dot{\delta}_x, \dot{R}x_2, \dot{R}x_3) = \left((\dot{R} + \dot{\delta}_x)\frac{\dot{R}x_1 + \dot{\delta}_x}{R + \delta'_x}, H\dot{R}, H\dot{R}\right).$$
(96)

После подстановки получим

$$\vec{\nabla}\varphi = -\dot{\vec{x}} = -\ddot{R}\vec{x} - \ddot{\delta}_{\mathbf{x}}(1,0,0). \tag{97}$$

Подставим полученное соотношение (97) в уравнение Пуассона (51). Получится

$$\triangle \varphi = \vec{\nabla}(\vec{\nabla}\varphi) = -\left(\frac{1}{R+\delta'_{\mathbf{x}}}\frac{\partial}{\partial x_1}, \frac{1}{R}\frac{\partial}{\partial x_2}, \frac{1}{R}\frac{\partial}{\partial x_3}\right)(\ddot{R}x_1 + \ddot{\delta}_{\mathbf{x}}, \ddot{R}x_2, \ddot{R}x_3) = -\frac{\ddot{R}+\ddot{\delta}'_{\mathbf{x}}}{R+\delta'_{\mathbf{x}}} - 2\frac{\ddot{R}}{R} = 4\pi G(\rho - 2\rho_{\Lambda}). \tag{98}$$

4. Уравнение для относительного возмущения плотности. Умножим уравнение (98) на знаменатель $R+\delta'_{\rm x}$. Получится

$$-3\ddot{R} - \ddot{\delta}'_{\mathbf{x}} - 2\frac{\ddot{R}}{R}\delta'_{\mathbf{x}} = 4\pi G\rho(R + \delta'_{\mathbf{x}}) - 8\pi G\rho_{\Lambda}(R + \delta'_{\mathbf{x}}).$$
⁽⁹⁹⁾

Теперь воспользуемся уравнением стандартной космологической модели (I.33) (при P = 0 и с заменой ρ на $\rho_{\rm o}$)

$$\ddot{R} = -\frac{4\pi G}{3}(\rho_{\rm o} - 2\rho_{\Lambda})R, \quad \rho_{\Lambda} = \frac{c^2}{8\pi G}\Lambda, \tag{100}$$

и соотношениями (92) и (93). Тогда найдем, что

$$4\pi GR\left(\frac{R_1^3}{R^3}\rho_1 - 2\rho_\Lambda\right) - \ddot{\delta}'_{\rm x} + \frac{8\pi G}{3}\left(\frac{R_1^3}{R^3}\rho_1 - 2\rho_\Lambda\right)\delta'_{\rm x} = 4\pi G\frac{R_1^3}{R^2}\rho_1 - 8\pi G\rho_\Lambda(R+\delta'_{\rm x}).$$
(101)

После сокращений получится сравнительно простое линейное соотношение

$$\ddot{\delta}_{\mathbf{x}}' = \frac{8\pi G}{3} \left(\rho_{\mathbf{o}} + \rho_{\Lambda}\right) \delta_{\mathbf{x}}'.$$
(102)

Сделаем замену искомой функции согласно второму соотношению в (94):

$$-\ddot{R}\delta - 2\dot{R}\dot{\delta} - R\ddot{\delta} = \frac{8\pi G}{3} \left(\rho_{\rm o} + \rho_{\Lambda}\right) R\delta.$$
(103)

Снова воспользовавшись уравнением (100) и поделив на R, найдем

$$\frac{4\pi G}{3}(\rho_{\rm o} - 2\rho_{\Lambda})\delta - 2H\dot{\delta} - \ddot{\delta} = -\frac{8\pi G}{3}(\rho_{\rm o} + \rho_{\Lambda})\delta \tag{104}$$

или после сокращений

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi G\rho_0\delta. \tag{105}$$

Уравнение совпадает по виду с уравнением (78).

Таким образом, нелинейная теория Зельдовича приводит точно к такому же уравнению для возмущения плотности, что и линейная теория при отсутствии давления. Воспользуемся решениями этого уравнения, полученными в пункте 5 §2.

5. Исследование решений. Решение полученного уравнения было приведено в (80). Легко проверить, что это решение, а также решение H(t) с точностью до множителя можно записать в следующем виде:

$$\delta_1(t) = \delta_2(t) J_{3/2}(y, A), \quad \delta_2(t) = \frac{Y^{1/2}(y, A)}{y^{3/2}}, \quad t = \frac{1}{\alpha} J_{1/2}(y, A).$$
(106)

Здесь использованы обозначения

$$J_{\nu}(y,A) = \int_{0}^{y} \left(\frac{y'}{Y(y;,A)}\right)^{\nu} \mathrm{d}y', \quad Y(y,A) = 1 + Ay + y^{3}.$$
 (107)

Действительно, из общего уравнения

$$H^{2} = \frac{H_{0}^{2}}{a^{4}} (\Omega_{\mathrm{r}\nu}^{0} + \Omega_{\mathrm{d}}^{0} a + \Omega_{k}^{0} + \Omega_{\Lambda}^{0} a^{4}),$$
(108)

для рассматриваемого случая, когда $\Omega_{r\nu}^0 = 0$, после замен

$$y = \left(\frac{\Omega_{\Lambda}^{0}}{\Omega_{\rm d}^{0}}\right)^{1/3} a, \quad A = \frac{\Omega_{k}^{0}}{(\Omega_{\rm d}^{0})^{2/3} (\Omega_{\Lambda} * 0)^{1/3}},\tag{109}$$

получается

$$H_2 = \frac{H_0^2}{a^3} (\Omega_d^0 + \Omega_k^0 a + \Omega_\Lambda^0 a^2) = H_0^2 \Omega_\Lambda^0 \left(\frac{1}{y^3} + \frac{A}{y^2} + 1\right), \quad H = H_\Lambda \frac{\sqrt{1 + AY + y^3}}{y^{3/2}}.$$
 (110)

Таким образом, решения получены в параметрической форме, причем возмущения и время выражаются через элементарные функции и семейство безразмерных интегралов, зависящих от одного безразмерного аргумента и одного параметра. Вообще говоря, приведенные интегралы *J* выражаются через неполные эллиптические интегралы, однако эти выражения довольно сложны и не помогают при вычислениях. Посмотрим, каков характер решений и как он зависит от параметра.

Из определений (107) видно, что если $y \to 0$, то $J_{\nu}(y, A) \sim y^{\nu+1}/(\nu+1)$. Из этого и из (106) следует, что при $t \to 0$ аргумент $y \sim (3\alpha t/2)^{2/3} \to 0$, а решения $\delta_1 \sim 2y/5 \sim 2(3\alpha t/2)^{2/3}/5 \to 0$, $\delta_2 \sim y^{-3/2} \sim 2/(3\alpha t) \to \infty$. В теории без учета вакуума первая, растущая со временем, мода была найдена Я.Б.Зельдовичем [38], а вторая, убывающая от бесконечности, А.С.Зенцовой и А.Д.Черниным [40]. На малых временах вакуум роли не играет.

Если A > 0, что отвечает замкнутой модели с k = 1, то многочлен третьей степени Y(y, A) может иметь положительный корень. Действительно, корень возникает тогда, когда прямая z = -Ay пересекает кривую $z = 1 + y^3$. На рис. 1 представлены кривая и пучок прямых (значения A указаны около прямых). Граничное

Рис. 11: Кривая $1 + y^3$ и прямые Ay Зависимость корней от параметра A при некоторых значениях A.

значение параметра A_* , при котором корень y_* кратный, находится из условия, что прямая касается кривой, то есть

$$1 + A_* y_* + y_*^3 = 0, \quad A_* + 3y_*^2 = 0, \quad 1 - 2y_*^3 = 0, \quad y_* = 2^{-1/3}, \quad A_* = -3 \cdot 2^{-2/3}.$$
 (111)

При $A < A_*$ существует два положительных корня, один y_1 меньший y_* , а другой y_u — бо́льший этого значения. На рис. 2 показана зависимость корней от величины A. При $A < A_*$ имеется два положительных корня, отрицательный корень y_m существует при всех A.

Когда $A < A_*$, радиус кривизны R ограничен сверху или снизу. Если расширение начинается с сингулярности, то оно продолжается до конечного радиуса ($0 \le y \le y_1$), который достигается за конечное время $t_1 = (1/\alpha)J_{1/2}(y_1, A)$. Напротив, если расширение начинается с конечного значения радиуса, то продолжается до бесконечности ($y_u \le y \le \infty$). Таким образом, при учете влияния вакуума оказываются возможными модели без сингулярности. При $A > A_*$ расширение продолжается до бесконечности и бесконечное время.

Граничное значение параметра A связано с соотношением между параметрами Ω_d вещества и вакуума Ω_Λ , которые согласно их определениям

$$\Omega_{\rm d}^0 = \frac{8\pi G}{3} \frac{\rho_0}{H_0^2}, \quad \Omega_{\Lambda}^0 = \frac{\Lambda c^2}{3H_0^2}, \quad \Omega_k^0 = -\frac{kc^2}{R_0^2 H_0^2} = 1 - \Omega_{\rm d}^0 - \Omega_{\Lambda}^0.$$
(112)

Последнее соотношение является следствием уравнения (І.34), записанного для современной эпохи:

$$H_0^2 = \frac{8\pi G}{3}\rho_0 + \frac{\Lambda c^2}{3} - \frac{kc^2}{R_0^2}.$$
(113)

Исключив из выражения для A величины ρ_0 , Λ и k, найдем, что

$$\frac{1 - \Omega_{\Lambda}^{0} - \Omega_{d}^{0}}{(\Omega_{\Lambda}^{0})^{1/3} (\Omega_{d}^{0})^{2/3}} = A.$$
(114)

Поведение решений на больших временах зависит от того, ограничен или нет радиус кривизны. Решение δ_2 стремится к 1, когда $R(\infty) = \infty$, и к 0, когда R стремится к своему конечному пределу (тогда $Y(y_1, A) = 0$). Решение δ_1 стремится к $J_{1/2}(\infty, A)$ в случае бесконечного расширения и к $2y_1/(2y_1^3 - 1)$ — в случае конечного. Если $A = A_* = -3 \cdot 2^{-2/3}$ точно, то $\delta_2 \to \infty$, когда $y \to y_* = 2^{-1/3}$.

Если $A > A_*$, то интеграл $J_{3/2}(\infty, A)$ сходится и существует решение

$$\delta_3(t) = \delta_2(t) [J_{3/2}(\infty, A) - J_{3/2}(y, A)].$$
(115)

Это решение пропорционально δ_2 при $y \to 0$ и $\delta_3(t) \sim 1/(2y^2)$ при $y \to \infty$. При $A \leq A_*$ такое решение не существует.

6. Явное аналитическое решение. Для важного случая плоской модели, когда A = 0 (k = 0), оказывается возможным найти явное решение и выразить его через стандартные специальные функции. Неявную зависимость времени от R можно обратить и найти явное выражение

$$y = \sinh^{2/3}\left(\frac{3}{2}\alpha t\right), \ R(t) = R_0 \left(\frac{8\pi G\rho_o}{3\alpha^2}\right)^{1/3} y.$$
 (116)

Рис. 12: Возмущения $\delta_1(t)$, $\delta_2(t)$ и $\delta_3(t)$ в зависимости от y.

Для возмущений получается

$$\delta_2(t) = \frac{\sqrt{1+y^3}}{y^{3/2}}, \quad \delta_1(t) = \delta_2(t) J_{3/2}(y,0). \tag{117}$$

Первая мода $\delta_1(t)$ представляется через гипергеометрические функции:

$$\delta_{1}(t) = \begin{cases} \frac{2}{5}yF\left(1,\frac{1}{3},\frac{11}{6};-y^{3}\right) & \text{при} \quad 0 \le y < 1, \\ \frac{2}{5}\frac{y}{1+y^{3}}F\left(1,\frac{3}{2},\frac{11}{6};\frac{y^{3}}{1+y^{3}}\right) & \text{при} \quad y \sim 1, \\ c_{0}\delta_{2}(t) - \delta_{3}(t) & \text{при} \quad y > 1, \end{cases}$$
(118)

где $c_0 = \Gamma(5/6)\Gamma(5/3)/\sqrt{\pi}$ и

$$\delta_3(t) = \frac{1}{2y^2} F\left(1, \frac{1}{6}, \frac{5}{3}; -\frac{1}{y^3}\right) = c_0 \delta_2(t) - \delta_1(t).$$
(119)

Все гипергеометрические функции представлены так, что их можно вычислить по гипергеометрическому ряду

$$F(a,b,c,z) = 1 + \frac{ab}{c}\frac{z}{1!} + \frac{a(a+1)b(b+1)}{c+1}\frac{z^2}{2!} + \dots + \frac{a(a+1)\dots(a+n-1)b(b+1)\dots(b+n-1)}{c(c+1)\dots(c+n-1)}\frac{z^n}{n!} + \dots$$
(120)

Рис. 4 демонстрирует поведение δ_1 , δ_2 и δ_3 как функций R(t), точнее пропорциональной ему величины y. Зависимость трех мод от времени такова, что δ_1 и δ_2 практически постоянны после y = 1. Перед этой точкой они могут быть аппроксимированы степенными законами $\delta_1 \propto y$, $\delta_2 \propto y^{-3/2}$, которые отражают их поведение при малых t. Частная мода δ_3 близка к δ_2 при y < 1 и убывает при y > 1 пропорционально y^{-2} .

Полученное решение описывает эволюцию слабых линейных возмущений произвольной пространственной формы:

$$\delta(\vec{x},t) = f_1(\vec{x})\delta_1(t) + f_2(\vec{x})\delta_2(t), \tag{121}$$

где $f_1(\vec{x})$ и $f_2(\vec{x})$ — произвольные функции (не слишком большие) трех лагранжевых координат. Частный случай $f_3(\vec{x})\delta_3(t)$ соответствует специальному соотношению двух мод $c_0f_1 = -f_2 = -c_0f_3$.

То же решение справедливо и для эволюции нелинейного плоского возмущения в приближении Зельдовича

$$\delta_{\mathbf{x}}(t, x_1) = R(t)[F_1(x_1)\delta_1(t) + F_2(x_1)\delta_2(t)].$$
(122)

Здесь $F'_i(x_1) = -f_i(x_1)$, i = 1, 2, 3, так как в нелинейном случае функции f_i могут зависеть только от одной лагранжевой координаты. Третья мода соответствует $c_0F_1 = -F_2 = -c_0F_3$.

Интересно проследить зависимость скорости изменения координат. Невозмущенная скорость расширения $\vec{v} = \dot{R}(t)\vec{x}$. Возмущение скорости координаты x_1 , а только эта координата возмущается, согласно моде i равна $\delta v_1^{(i)} = F_i(\chi_1)[\dot{a}(t)\delta_i(t) + a(t)\dot{\delta}_i(t)]$. Относительное возмущение скорости

$$\frac{\delta v_1^{(i)}}{v_1} = \frac{\delta v_1^{(i)}}{\dot{a}(t)\chi_1} = \frac{F_i(\chi_1)}{\chi_1} \delta_i(t) \left[1 + \frac{\mathrm{d}\ln\delta_i}{\mathrm{d}\ln y} \right].$$
(123)

В таблице даны асимптотики $\frac{\delta v_1^{(i)}}{v_1} \frac{x_1}{F_i(x_1)}$ для трех мод возмущений на малых и больших временах расширения.

Таблица 8. Асимптотическое поведение $\delta_i(t) \left[1 + \frac{\mathrm{d}\ln\delta_i}{\mathrm{d}\ln y}\right]$.

		L am
	$t \rightarrow 0$	$t \to +\infty$
Мода	$y \sim (3 \alpha t/2)^{2/3} \times$	$y\sim 2^{-2/3}e^{\alpha t}\times$
	$\times \left(1 + \frac{1}{4}\alpha^2 t^2\right)$	$\times \left(1 - \frac{2}{3}e^{-3\alpha t}\right)$
1	$\frac{4}{5}y\left(1-\frac{5}{11}y^3\right)$	$c_0 + \frac{1}{2}y^{-2}$
2	$-\frac{1}{2}y^{-3/2}\left(1-\frac{5}{2}y^3\right)$	$1 - y^{-3}$
3	$-\frac{c_0}{2}y^{-3/2} + \frac{6}{5}y$	$-\frac{1}{2}y^{-2}\left(1-\frac{2}{5}y^{-3}\right)$

7. Современная теория. Эта теория напоминает теорию блинов Зельдовича, но значительно сложнее. Возмущения вносятся в метрику пространства, то есть к метрике ФРУ добавляются малые возмущения. Возмущения подразделяются на скалярные, векторные и тензорные. Затем возмущения метрики связываются с возмущениями физических характеристик материи, таких, как плотность массы, скорость движения и другие.

Глава VII. Космологическая инфляция

§ 1. Успехи и трудности космологии

1. *Успехи*. Описанные космологические модели известны уже с тридцатых годов XX века. Их называют классическими. Открытие реликтового излучения привело к тому, что модель горячей Вселенной является теперь общепризнанной. Ее подтверждают также теории первичного нуклеосинтеза и образования крупномасштабной структуры.

Последние данные наблюдений, ставшие возможными благодаря современному технологическому прогрессу, позволили выбрать наиболее адекватную модель, которую называют моделью ΛCDM , то есть модель с основной роль холодного темного вещества и космологического слагаемого. Большая роль космологического слагаемого, то есть вакуума или темной энергии, в частности, проявляется в том, что гравитационное воздействие этой субстанции приводит к ускоряющемуся расширению пространства, начавшемуся примерно 7.5 миллиардов лет назад.

Космологи утверждают, что они хорошо представляют историю горячей Вселенной, начиная с момента от начала расширения в 10^{-3} секунды, и более или менее определенно, начиная с 10^{-11} *с*. Более ранние мгновения не столь определенны вследствие неясностей в теории элементарных частиц, так как выбрать наиболее адекватную теорию не позволяет невозможность достичь таких энергий, которые требуются для этого (см. табл.).

Однако, основные вопросы возникают по отношению к самым ранним этапам эволюции Вселенной, примыкающим к планковской эпохе. Неясности физических условий в эти этапы проявляются в виде проблем классических космологических моделей в современную эпоху. Укажем некоторые из них.

2. Проблема плоскостности. В настоящее время кривизна пространства Вседенной оценивается как очень малая. По нескольким тестам, включающим построенную по сверхновым диаграмму Хаббла, ход нуклеосинтеза и формирования крупномасштабной структуры, значение полного параметра кривизны оценивается как очень близкое к единице: $\Omega_{\rm u}^0 \approx 1.0 \pm 0.05$. Неясна причина такой близости. Тем более этот параметр был близок к единице в более ранние эпохи. Оценим зависимость $\Omega_{\rm u}$ от красного смещения.

Для оценки эволюции параметра критичности кривизны применим соотношение (63). Из него вытекает, что

$$\Omega_k = 1 - \Omega_u = 1 - \Omega_{r\nu} - \Omega_d - \Omega_\Lambda = -\frac{kc^2}{\dot{H}^2} = -\frac{kc^2}{H^2R^2},$$
(1)

в частности,

$$\Omega_k^0 = 1 - \Omega_u^0 = 1 - \Omega_{r\nu}^0 - \Omega_d^0 - \Omega_\Lambda^0 = -\frac{kc^2}{\dot{R}_0^2} = -\frac{kc^2}{H_0^2 R_0^2}.$$
(2)

Из двух равенств следует отношение

$$r = \frac{1 - \Omega_{\rm u}}{1 - \Omega_{\rm u}^0} = \frac{H_0^2}{H^2} \frac{R_0^2}{R^2} = \frac{H_0^2}{H^2} \frac{1}{a^2} = \frac{H_0^2}{H^2} (1 + z)^2, \tag{3}$$

а с учетом зависимости функции Хаббла от красного смещения

$$r = \frac{1 - \Omega_{\rm u}}{1 - \Omega_{\rm u}^0} = \frac{1}{1 + \Omega_{\rm r\nu}^0 z(2+z) + \Omega_{\rm d}^0 z - \Omega_{\Lambda}^0 \frac{z(2+z)}{(1+z)^2}}.$$
(4)

Следствием последнего равенства является утверждение, что при $z \to \infty$ отличие параметра критичности от единицы стремится к нулю, каким бы ни было это отличие в настоящее время, то есть Вселенная на ранних этапах своей эволюции была с большой точностью плоской. Например, согласно принятым нами значениям $\Omega_{\Lambda}^{0} = 0.72$, $\Omega_{d}^{0} \approx 0.28$, $\Omega_{r\nu}^{0} \approx 10^{-4}$. С этими значениями величина отношения (4) при различных характерных красных смещениях принимает значения, приведенные в табл. 9.

Т	а б	Л	И	ц	\mathbf{a}	9.	C	Этличия	\mathbf{OT}	плоскостности	В	различные эпохи
---	-----	---	---	---	--------------	----	---	---------	---------------	---------------	---	-----------------

z	r
0	1
1500	$1.77 \cdot 10^{-02}$
15000	$6 \cdot 10^{-04}$
25000	$2.6 \cdot 10^{-05}$
$2\cdot 10^9$	$5 \cdot 10^{-15}$
$4\cdot 10^{11}$	$1.25 \cdot 10^{-19}$
$4\cdot 10^{13}$	$1.25 \cdot 10^{-23}$
$4\cdot 10^{24}$	$1.25 \cdot 10^{-45}$
$4\cdot 10^{27}$	$1.25 \cdot 10^{-51}$
$4\cdot 10^{31}$	$1.25 \cdot 10^{-59}$

Данные таблицы показывают, что для того, чтобы в настоящее время отличие от плоскостности составляло даже несколько единиц или десятков в любую сторону, в ранние эпохи эволюции это отличие должно было бы быть на много порядков меньше. Каким образом установилось такое начальное значение, в рамках стандартной модели совершенно непонятно.

Можно этот вывод проиллюстрировать еще одним способом. Пусть в планковскую эпоху параметр критичности $\Omega_u^{\rm Pl} > 1$, тогда из соотношения $\Omega_u^0 = 1 + 10^{59}(\Omega_u - 1)$ видно, насколько близким к единице должен быть этот параметр, чтобы Ω_u^0 не очень сильно превосходило единицу. Если же $\Omega_u^{\rm Pl} < 1$, то чтобы было $\Omega_u^0 > 0$, необходимо выполнение условия $\Omega_u^{\rm Pl} > 1 - 10^{-59}$.

Рассмотрим, как расстояния в пространстве соотносятся с горизонтом. При этом пренебрежем влиянием космологического слагаемого.

3. Проблема горизонта. В §3 Главы II было показано, что расстояние до геометрического горизонта определяется формулой

$$l_{\rm Hor} = R(\eta)\eta. \tag{5}$$

В частности, для плоской модели пылевидного вещества получается $l_{\text{Hor}} = 3ct$, для плоской же модели ультрарелятивистской материи соответственно $l_{\text{Hor}} = 2ct$, а для Стандартной модели $l_{\text{Hor}} = 4.35c$.

Рис. 13: Расстояния до горизонта в моделях: а — пылевидных, б — ультрарелятивистских.

Рис. 14: Скорость расширения горизонта в моделях: a — пылевидных, δ — ультрарелятивистских. Исходя из соотношения $cdt = R(\eta)d\eta$, формулу (5) можно переписать так:

$$l_{\rm Hor} = ca(t) \int_{0}^{t} \frac{dt'}{a(t')}.$$
 (6)

Найдем скорость удаления горизонта от наблюдателя, то есть

$$\dot{l}_{\rm Hor} = \dot{R}\eta + R(\eta)\frac{\mathrm{d}\eta}{\mathrm{d}t} = Hl_{\rm Hor} + c.$$
(7)

Таким образом, скорость расширения горизонта на скорость света больше скорости удаления того места, на котором находится горизонт, то есть горизонт при таких моделях обгоняет все точки с фиксированными координатами.

На рис. приведены графики расстояния до горизонта, а на рис. — скоростей расширения горизонта в зависимости от времени при различных кривизнах в пылевидной модели (рисунки *a*) и в модели излучения (рисунки *б*). Рисунки построены по данным таблиц 1–4. Все величины обезразмерены, множители $R_{\rm m}$ на рис. *a* и *б* различаются.

Расстояние до горизонта (или хаббловское расстояние, отличающееся на множитель) часто называют размером Вселенной. В планковскую эпоху, если считать, что осуществляется плоская модель излучения (ультрарелятивистского вещества), это расстояние было равно двум планковским $l_{\text{Hor}}^{\text{Pl}} = 2ct_{\text{Pl}} = 2l_{\text{Pl}} = 2 \cdot 1.6 \cdot 10^{-33}$ см. В то же время, современное расстояние до горизонта, когда можно принять плоскую модель с пылью, $l_{\text{Hor}}^0 = 3ct_0 = 3 \cdot 3 \cdot 10^{10} \cdot 3.15 \cdot 10^7 \cdot 13.5 \cdot 10^9 = 3.8 \cdot 10^{28}$ см. Если исходить из этого значения, то современный размер Вселенной произошел из размера $l = l_{\text{Hor}}^0/(1+z_{\text{Pl}}) = 3.8 \cdot 10^{28}/(5 \cdot 10^{31}) = 10^{-3}$ см. Различие в 29 порядков необъяснимо.

4. Проблема однородности. Еще одним недостатком теории было следующее обстоятельство. РИ, как показывают наблюдения, исключительно однородно, во всех направлениях температура его одинакова. При этом температура РИ в разные эпохи была разной, но однородность сохранялась всегда, так как ничто не могло ее нарушить. Какой-то процесс должен был изначально выравнять свойства различных объемов.

Области однородности столь велики, что отдельные их части причинно не связаны, то есть они никогда не обменивались энергией, импульсом и вообще информацией. Действительно, современное хаббловское расстояние $l_{\rm H}^0 = 3 \cdot 10^{10} / (2.27 \cdot 10^{-17}) = 1.3 \cdot 10^{28}$ см. В планковскую эпоху это расстояние было $l_{\rm H}^0 / z_{\rm Pl} = 1.3 \cdot 10^{28} / 4 \cdot 10^{31} = 0.32 \cdot 10^{-3}$ см. Планковское же расстояниена, котором возможен был обмен информацией, так как планковскую длину свет проходит за планковское время, составляет $l_{\rm Pl} = ct_{\rm Pl} = 1.6 \cdot 10^{-33}$ см. Если не предположить одинаковых начальных условий для каждой из несвязанных частей всего пространства, такая однородность непонятна.

5. Зарядовая асимметрия. Наш мир, как говорят, зарядово асимметричен. Действительно, вещество состоит из протонов, нейтронов и электронов, позитроны образуются в некоторых объектах и даже в значительных количествах, однако, почти сразу же аннигилируют с электронами. Антипротоны наблюдаются только в реакторах и ускорителях.

Как отмечалось выше, в ранней Вселенной частиц и античастиц было почти поровну, преобладание частиц было незначительным, однако, оно как-то должно было образоваться.

6. Другие трудности. Имеются и некоторые другие неясности теории расширяющейся Вселенной. Например, массовая плотность в планковскую эпоху была равна $\rho_{\rm Pl} = \frac{c^5}{G^2\hbar} = 5.16 \cdot 10^{92} \ s/cm^3$. Если бы ее эволюция происходила согласно модели излучения, то современное ее значение было бы $\rho_0 = \rho_{\rm Pl}/z_{\rm Pl}^3 = 7 \cdot 10^{-34}$, что примерно соответствует плотности РИ. Если же исходить из того, что сохраняется энергия, то получилось бы $\rho_0 = \rho_{\rm Pl} * (2l_{\rm Pl}/(3.8 \cdot 10^{28})^4 = 1.7 \cdot 10^{-152}$ (обе величины в s/cm^3).

Наконец, неясны причины появления малых возмущений, приводящих впоследствии к образованию галактик и их скоплений, а также вообще причина расширения пространства.

Итак, фридмановская теория космологического расширения, называмая классической, позволила объяснить многие наблюдаемые факты и в целом является теорией, адекватной существующей Вселенной. Однако, ее нельзя распространять на самые ранние периоды расширения ввиду указанных неясностей и противоречий.

В начале 80-х годов была создана теория инфляции, устраняющая указанные недостатки.

§2. Теория инфляции

1. *Немного истории*. Теория космологической инфляции основана на моделях с основной (единственной) ролью космологического слагаемого. Эти модели были описаны в § , причем для всех этих моделей характерно экспоненциальное расширение (что и объясняет название "инфляция", если месячная инфляция 5%, то годовая инфляция не 60%, а 80%).

Впервые космологическое слагаемое в конце шестидесятых годов истолковал как проявление некоторой гравитирующей компоненты Б.Э.Глинер [44]. Он перенес это слагаемое из левой части уравнений Эйнштейна в правую и интерпретировал его как проявление некой сущности, назовем ее субстанцией, имеющей плотность и создающую давление. Действительно, это слагаемое может быть представлено как пропорциональное тензору

энергии-импульса:

$$\Lambda\left\{\delta_{j}^{i}\right\} = \begin{pmatrix} \Lambda & 0 & 0 & 0\\ 0 & \Lambda & 0 & 0\\ 0 & 0 & \Lambda & 0\\ 0 & 0 & 0 & \Lambda \end{pmatrix} = \frac{8\pi G}{c^{4}}\left\{T_{j}^{i}\right\} = \frac{8\pi G}{c^{4}}\left(\begin{array}{ccc} c^{2}\rho_{\Lambda} & 0 & 0 & 0\\ 0 & -P_{\Lambda} & 0 & 0\\ 0 & 0 & -P_{\Lambda} & 0\\ 0 & 0 & 0 & -P_{\Lambda} \end{array}\right).$$
(8)

Отсюда получаются выражение для плотности массы вакуума и уравнение состояния (36). Применение к космологии не производилось.

Следующий существенный шаг был сделан А.Гутом [45] в 1981 году, хотя у него были предшественники. Именно он ввел термин "инфляция" и разрешил большую часть трудностей классической космологии.

Новую, более совершенную формулировку теории придал А.Д.Линде [46] в 1982 году (см. его книгу [47]).

Теория инфляции основана на моделях де Ситтера и на тесной связи с развивающейся теорией элементарных частиц. Эта связь привела к созданию нового раздела космологической науки (и вообще физики), который получил название космомикрофизика.

Принимается, что инфляция начинается с момента, когда возраст Вселенной равен планковскому времени. Поэтому приведем сведения о планковских величинах.

2. Планковские величины. Планковские величины формируются из трех констант: скорости света, постоянной Планка и постоянной тяготения.

Величина	Обозначение	Размерность	Выражение	Численное значение
		CM	Dispanienne	
Скорость света	c	$\frac{CM}{C}$	c	$2.9979 \cdot 10^{10}$
Постоянная Планка	\hbar	$\frac{\Gamma \mathrm{CM}^2}{\mathrm{C}}$	\hbar	$1.0544 \cdot 10^{-27}$
Постоянная тяготения	G	$\frac{\mathrm{CM}^3}{\Gamma \ \mathrm{C}^2}$	G	$6.672 \cdot 10^{-8}$
Длина	$l_{ m Pl}$	СМ	$\sqrt{\frac{G\hbar}{c^3}}$	$1.6158 \cdot 10^{-33}$
Время	$t_{ m Pl}$	с	$\sqrt{\frac{G\hbar}{c^5}}$	$5.3898 \cdot 10^{-44}$
Macca	$m_{ m Pl}$	Г	$\sqrt{\frac{c\hbar}{G}}$	$2.1766 \cdot 10^{-5}$
Энергия	$E_{\rm Pl}$	$\frac{\Gamma \text{CM}^2}{\text{C}^2}$	$\sqrt{\frac{c^5\hbar}{G}}$	$1.9562 \cdot 10^{16}$
Плотность массы	$ ho_{ m Pl}$	$\frac{\Gamma}{CM^3}$	${c^3\over G_7^2\hbar}$	$5.1593 \cdot 10^{93}$
Плотность энергии	$c^2 ho_{ m Pl}$	$\frac{\Gamma}{CMC^2}$	$\frac{c'}{G^2\hbar}$	$4.6369 \cdot 10^{114}$
Температура	$T_{ m Pl}$	К	$\frac{1}{k_{\rm B}}\sqrt{\frac{c^5\hbar}{G}}$	$1.4172 \cdot 10^{32}$

Таблица 10. Планковские величины.

3. Разрешение проблемы плоскостности. Теория инфляции утверждает, что в самом начале расширения решающую роль играл вакуум: расширение происходило так, как это описывается космологическим слагаемым, то есть уравнением (I.91). Его решение — экспоненциальное: $R = R_* \exp(\sqrt{\Lambda/3}ct)$. Так как при этом $H = H_* =$ $\frac{\dot{R}}{R} = \sqrt{\frac{\Lambda}{3}}c$, то закон раздувания можно записать и виде, следующем из уравнения (I.92), $R = R_* \exp(H_* t)$. Критическая плотность равна плотности вакуума, так как $\rho_c^{\text{Pl}} = \frac{3H_*^2}{8\pi G} = \frac{\Lambda c^2}{8\pi G} = \rho_{\Lambda}$. Таким образом, в планков-скую эпоху равенство вакуумной и критической плотностей выполнялось точно, что объясняет близость плоской

модели во все последующее время к реальной Вселенной.

 $5.159 \cdot 10^{93}$ г/см³. Так как это вакуумная плотность, то

$$\rho_{\rm Pl} = \rho_{\Lambda} = \frac{\Lambda c^2}{8\pi G}, \quad \Lambda = 8\pi \frac{c^3}{G\hbar} = \frac{8\pi}{l_{\rm Pl}^2} = 9.626 \cdot 10^{66} {\rm cm}^{-2}, \quad H_* = \sqrt{\frac{\Lambda}{3}}c = \sqrt{\frac{8\pi}{3}}\frac{c}{l_{\rm Pl}} = \sqrt{\frac{8\pi}{3}}\frac{1}{t_{\rm Pl}} = 5.370 \cdot 10^{43} {\rm 1/c}.$$
(9)

4. Разрешение проблемы горизонта. В то время как плотность (вакуума) при инфляции оставалась практически неизменной, размеры Вселенной быстро увеличивались. Пусть в момент $t = t_{\rm Pl}$ радиус $R = l_{\rm Pl}$. Тогда в последующие моменты

$$R = l_{\rm Pl} \exp(H_*(t - t_{\rm Pl})) = l_{\rm Pl} \exp\left(\sqrt{\frac{8\pi}{3}} \left(\frac{t}{t_{\rm Pl}} - 1\right)\right).$$
 (10)

Раздувание пространства происходит от "планковских" масштабов до "хаббловских". При энергии частицы $E_{\rm Pl} = 1.956 \cdot 10^{16}$ эрг, температура должна быть $T_{\rm Pl} = E_{\rm Pl}/k_{\rm B} = 1.417 \cdot 10^{32}$ К. Такая температура соответствует красному смещению $1 + z_{\rm Pl} = T_{\rm Pl}/T_0 = 5.195 \cdot 10^{31}$. При современном значении постоянной Хаббла $H_0 = 70$ (км/с/Мпк = $2.268 \cdot 10^{-18}$ 1/с современное хаббловское расстояние $l_{\rm H}^0 = c/H_0 = 1.322 \cdot 10^{28}$ см. Хаббловское расстояние планковской эпохи $l_{\rm H}^{\rm Pl} = l_{\rm H}^0/(1+z_{\rm Pl}) = 1.322 \cdot 10^{28}/(5.195 \cdot 10^{31}) = 2.544 \cdot 10^{-4}$ см при таком расширении будет достигнуто в момент $t_{\rm H}$, определяемый соотношениями

$$l_{\rm H}^{\rm Pl} = l_{\rm Pl} \exp\left(\sqrt{\frac{8\pi}{3}} \left(\frac{t_{\rm H}}{t_{\rm Pl}} - 1\right)\right), \quad \frac{t_{\rm H}}{t_{\rm Pl}} = 1 - \sqrt{\frac{3}{8\pi}} \ln \frac{l_{\rm H}^{\rm Pl}}{l_{\rm Pl}} = 49.46, \quad t_{\rm H} = 2.666 \cdot 10^{-42} \text{c.}$$
(11)

Можно сделать вывод, что для достижения хаббловского (фридмановского) размера Вселенной требуется примерно 50 планковских промежутков времени. За это время Вселенная еще не попадает в следующую эпоху (КХД), помещенную в таблице под номером 8.

Раздувается и горизонт. Расстояние до горизонта в планковскую эпоху

$$l_{\rm Hor} = \eta R = \frac{c}{R_* H_*} (1 - e^{-H_* t}) R_* e^{H_* t} = \frac{c}{H_*} (e^{H_* t} - 1) = \sqrt{\frac{3}{8\pi}} l_{\rm Pl} \left(\exp\left(\sqrt{\frac{8\pi}{3}} \frac{t}{t_{\rm Pl}}\right) - 1 \right).$$
(12)

Нетрудно проверить, что соотношение (7) выполняется.

5. Разрешение проблемы однородности. Первоначальная однородность создавалась именно на планковском масштабе. При планковской температуре даже самые массивные частицы будут ультрарелятивистскими. Действительно, например, протон с массой покоя $m_{\rm P} = 1.672 \cdot 10^{-24}$ г будет иметь в среднем массу с учетом движения, равную планковской, то есть $m_{\rm P}\gamma = m_{\rm Pl}$. Лоренцевский множитель оказывается при этом равным $\gamma = m_{\rm Pl}/m_{\rm P} = 1.302 \cdot 10^{19}$, так что все частицы движутся со скоростями, очень близкими к скорости света. Планковский объем такая частица пересечет за время $t_{\rm Pl} = 5.3898 \cdot 10^{-44}$ с.

Если все же остаются какие-то неоднородности в пределах планковского объема, то они растягиваются экспоненциальным расширением.

6. *Распад вакуума и начальный толчок*. Как говорилояь, теория инфляции связана с теорией элементарных частиц, которая основана на принципах симметрии и ее нарушения. Считается, что до и в начале планковской эпохи все частицы были безмассовыми и совершенно одинаковыми, то есть симметричными. С течением времени для некоторых из них симметрия нарушается, частицы приобретают массу и выделяются из общего ансамбля, происходят, как говорят, фазовые переходы. Последовательно выделяются сначала адроны, затем лептоны.

В конце инфляционного периода вакуум распадается, и его энергия передается веществу, которое тем самым приобретает очень высокую температуру. Распад вакуума является квантовым процессом, так что возникновение неоднородностей плотности и зарядовой асимметрии рассматриваются как проявление обычных квантовых флуктуаций.

Наконец, отрицательное давление вообще объясняет причину начала расширения.

§3. Вторая инфляции

1. Экспоненциальное расширение. Мы живем в эпоху второй инфляции. Этот вывод, как уже говорилось, был сделан на основании наблюдений, приведших к построению новой хаббловской диаграммы. Как показано в § 7 Главы III, согласно Стандартной модели Вселенной, начиная с красного смещения $z_{\rm g} = 0.7260$, происходит ее ускоренное расширение и, хотя вплоть до настоящего времени ускорение весьма мало, через несколько десятков миллиардов лет наступит экпоненциальное расширение.

Напомним приведенные ранее формулы. Экспоненциально растет масштабный множитель (асимтотически):

$$a \sim \left(\frac{\Omega_{\rm d}^0}{\Omega_{\Lambda}^0}\right)^{1/3} {\rm sh}^{2/3} \left(\frac{3}{2} H_* t\right) \sim 0.45979 e^{H_* t}.$$
(13)

Расстояние до горизонта в произвольную эпоху

$$l_{\rm Hor} = l_H^0 \eta a = l_{\rm H}^0 \frac{I_0(x_0/(1+z),\beta)}{(\Omega_{\rm r\nu}^0 \Omega_{\Lambda}^0)^{1/4}} \frac{1}{1+z}.$$
(14)

При z = 0 получается современное расстояние до горизонта: $l_{\text{Hor}}^0 = \frac{c}{H_0} \eta_0 = l_{\text{H}}^0 \eta_0 = 3.3488 \, l_{\text{H}}^0 = 4.4261 \cdot 10^{28}$ см = 14.342 Гпк, а при $t \to \infty, a \to \infty, z \to -1$ асимптотика этого расстояния:

$$l_{\rm Hor} \sim l_{\rm H}^0 \frac{I_0(\infty,\beta)}{(\Omega_{r\nu}^0 \Omega_{\Lambda}^0)^{1/4}} a = 5.9175 \cdot 10^{28} a \sim 2.7208 \cdot 10^{28} e^{H_* t} \to \infty,$$
(15)

а также скорости и ускорения его расширения:

$$\dot{l}_{\text{Hor}} \sim c e^{H_* t}, \quad \ddot{l}_{\text{Hor}} \sim c H_* e^{H_* t}.$$
(16)

2. Второй горизонт. Посмотрим, к какой картине мира приведет экспоненциальное расширение. Проследим за движением излучения в те будущие отдаленные эпохи. Для краткости будем говорить о моментах η и местах χ .

Пусть фотон излучен в месте с координатой χ_e в момент $t = t(\eta_e)$, которому соответствует временная координата η_e . Уравнение его движения, как было показано в §1 Главы II, $\chi = \chi_e + \eta_e - \eta$. Найдем связанные с движением фотона расстояния, формулы для которых были приведены в §3 и рассчитывались для плоской модели пылевидного вещества в п. 2 §4 Главы III.

Расстояние от наблюдателя до места излучения фотона $l_{\rm e} = l_{\rm H}^0 a(\eta)\chi_{\rm e}$, а от фотона до наблюдателя $l_{\rm rs} = l_{\rm H}^0 a(\eta)(\chi_{\rm e} + \eta_{\rm e} - \eta)$, так что фотон удалился от места своего излучения на расстояние $l_{\rm mv} = l_{\rm e} - l_{\rm rs} = l_{\rm H}^0 a(\eta)(\eta_{\rm e} - \eta)$. Вспомним еще расстояния: до горизонта $l_{\rm Hor} = R(\eta)\eta = l_{\rm H}^0 a(\eta)\eta$, от фотона до горизонта $l_{\rm Hor}^{\rm ph} = l_{\rm H}^0 a(\eta)(2\eta - \chi_{\rm e} - \eta_{\rm e})$ и пройденный фотоном путь $l_{\rm ph} = c(t - t_{\rm e})$.

Казалось бы, ничто не мешает фотону долететь до наблюдателя, когда бы и где бы он ни излучился, как это было при принятии модели с пылевидным веществом. Однако, та модель, которая считается наиболее адекватной, приводит к другим заключениям.

Дело в том, что временная координата η ограничена сверху, ее крайнее значение

$$\eta_{\infty} = \frac{I_0(\infty,\beta)}{(\Omega_{r\nu}^0 \Omega_{\Lambda}^0)^{1/4}} = 4.45.$$
(17)

Обрашение $l_{\rm rs} = 0$ возможно лишь при $\chi_{\rm e} + \eta_{\rm e} < \eta_{\infty}$. Фотон все же дойдет до наблюдателя, пусть даже почти за бесконечное время, если сумма

$$\chi_{\rm e} + \eta_{\rm e} < \eta_{\infty}.\tag{18}$$

Граница, так сказать, видимости Вселенной определяется уравнением

$$\chi_{\rm e} + \eta_{\rm e} = \eta_{\infty}.\tag{19}$$

Вспомним, что согласно понятию геометрического горизонта должно выполняться условие $\chi_e \leq \eta_0$. Уравнение (19) задает сферу, которую назовем вторым горизонтом.

Крайние решения неравенства (18) очевидны и не зависят от модели. Если $\chi_e = 0$, то есть фотоны излучаются в том же месте, где находится наблюдатель, то момент испускания может быть любым, так как наблюдатель такие фотоны "видит" в момент их излучения. В другом крайнем случае, при $\eta_e = \eta_0 = 0$, что соответствует началу расширения, когда вся Вселенная заключалась в одной точке, все вообще точки входили в нее и все, так сказать, наблюдатели могли сразу же увидеть излученные фотоны. Посмотрим промежуточные случаи в рамках Стандартной модели.

Пусть излучение исходит в сторону наблюдателя в момент η_{\uparrow} с разных расстояний от него, то есть с мест с разными координатами $\chi_{\rm e}$. Уравнение движения фотона такого излучения имеет вид

$$\chi = \chi_{\rm e} + \eta_{\uparrow} - \eta. \tag{20}$$

Координата χ обратится в нуль, то есть фотон дойдет до наблюдателя в момент η_{\downarrow} , если этот момент и крайнее значение пространственной координаты места излучения $\chi_{\rm e}$, из которого фотон придет в этот момент к наблюдателю, будут определяться соответственно неравенством и уравнением

$$\chi_{\rm e} + \eta_0 < \eta, \quad \eta = \eta_0 + \chi_{\rm e}. \tag{21}$$

3. Два горизонта. В произвольную эпоху η первый и второй горизонты соответственно определяются уравнениями

$$\chi = \eta, \quad \chi = \eta_{\infty} - \eta. \tag{22}$$

Из-за первого горизонта излучение не успело дойти до наблюдателя, второй отделяет область времени и точек, из которых излучение не может прийти к наблюдателю, так как эти точки удаляются со скоростями,

бо́льшими скорости света и все время увеличивающимися. Сейчас мы видим Вселенную вплоть до красных смещений $z \approx 10$, но это ее прошлое.

Первый горизонт называют геометрическим (физический горизонт — сфера последнего рассеяния при $z \approx 1000$), второй горизонт может быть назван кинематическим или динамическим.

Применяются и другие названия, заимствованные из терминологии черных дыр. Геометрический горизонт называют горизонтом частиц PHor, а кинематический — горизонтом событий EHor. Они определяются их расстояниями. В плоских моделях

$$\chi_{\rm PHor} = H_0 \int_0^a \frac{\mathrm{d}a}{a^2 H} = \eta, \quad \chi_{\rm EHor} = H_0 \int_a^\infty \frac{\mathrm{d}a}{a^2 H} = \eta_\infty - \eta, \tag{23}$$

что равносильно определениям (22).

Рис. 15: Видимая и невидимая части Вселенной.

Положения геометрического горизонта указаны на оси ординат, кинематического — на прямой, соединяющей точки на осях $\eta = 0, \chi = \eta_{\infty}$ и $\eta = \eta_{\infty}, \chi = 0$. Пути фотонов — прямые, параллельные $\chi_e = \eta_0 - \eta_e$. При $\eta_e + \chi_e < \eta_{\infty}$, то есть фотоны движущиеся по прямым, лежащим ниже указанной прямой, рано или поздно дойдут до места, где расположен наш наблюдатель, а при $\eta_e + \chi_e \ge \eta_{\infty}$ — не дойдут никогда.

На рис. 6 и 7 представлена связь между временем t и координатой x. На рисунках 6 показаны расстояния $l_{\rm rs}$ до фотонов, приходящих к наблюдателю в эпоху, когда $\eta = 2$ (рис. 6a), и в современную эпоху (рис. 6b), и кривые, отражающие соотношения между временем $\eta_{\rm e}$ и местом $\chi_{\rm e}$ выхода фотона. На рис. 7 даны координаты времени и места выхода фотона, сумма которых равна η_{∞} и больше (равна 6), также в зависимости от значений x. На рис. 7a видно, что фотон, который должен был бы прийти к наблюдателю в бесконечно удаленный момент, на самом деле никогда не приблизится к нему ближе, чем 5 Гпк, а фотон, вышедший при $\eta_{\rm e} + \chi_{\rm e} > \eta_{\infty}$, от наблюдателя будет только удаляться.

Излучение, испущенное в настоящий момент с z > 1.725 до нас никогда не дойдет.

4. *Расстояния, скорости и ускорения горизонтов*. Для сравнения приведем еще раз расстояния до горизонтов:

$$l_{\text{Hor}} = l_{\text{H}}^0 a(\eta) \eta = \frac{c}{H_*} x I_0(x,\beta), \qquad (24)$$

$$l_{\rm Horr} = l_{\rm H}^0 a(\eta)(\eta_{\infty} - \eta) = \frac{c}{H_0} \left(\frac{\Omega_{\rm r\nu}^0}{\Omega_{\Lambda}^0}\right)^{1/4} x \frac{I_0(\infty,\beta) - I_0(x,\beta)}{(\Omega_{\rm r\nu}^0 \Omega_{\Lambda}^0)^{1/4}} = \frac{c}{H_*} x [I_0(\infty,\beta) - I_0(x,\beta)]$$
(25)

Современное расстояние до второго горизонта $l_{\text{Horr}}^0 = 4.83$ Гпк, асимптотика $l_{\text{Horr}} \rightarrow \frac{l_{\text{H}}^0}{\sqrt{\Omega_{\Lambda}^0}} = \frac{c}{H_*} = 5.02$ Гпк. В этих пределах все будет видно всегда.

Скорости горизонтов и их асимптотики при $t \to \infty, x \sim 5.0 \cdot e^{H_* t} \to \infty$:

$$\dot{l}_{\rm Hor} = l_{\rm H}^0(\dot{a}\eta + a\dot{\eta}) = H l_{\rm Hor} + c = c \left[\frac{\sqrt{1 + \beta x + x^4}}{x} I_0(x,\beta) + 1\right] \sim c x I_0(\infty,\beta),$$
(26)

$$\dot{l}_{\rm Horr} = c \left[\frac{\sqrt{1 + \beta x + x^4}}{x} [I_0(\infty, \beta) - I_0(x, \beta)] - 1 \right] \sim \frac{3}{8} \frac{\beta}{x^3} c.$$
(27)

Аналогично ускорения:

$$\begin{split} \ddot{l}_{\rm Hor} &= l_{\rm H}^{0} \left(\ddot{a}\eta + 2\dot{a}\dot{\eta} + a\ddot{\eta} \right) = \frac{\ddot{a}}{a} l_{\rm Hor} + l_{\rm H}^{0} \left(2\dot{a}\frac{H_{0}}{a} - a\frac{H_{0}}{a^{2}}\dot{a} \right) = -\frac{4\pi G}{3} \rho_{\rm g} l_{\rm Hor} + cH = \\ &= cH_{*} \left[\frac{\sqrt{1 + \beta x + x^{4}}}{x^{2}} - \frac{1}{2}\frac{2 + \beta x - 2x^{4}}{x^{3}} I_{0}(x,\beta) \right] \sim cH_{*} I_{0}(\infty,\beta) x, \end{split}$$
(28)
$$\ddot{l}_{\rm Horr} &= l_{\rm H}^{0} \left[\ddot{a}(\eta_{\infty} - \eta) - 2\dot{a}\dot{\eta} - a\ddot{\eta} \right] = \frac{\ddot{a}}{a} l_{\rm Horr} - l_{\rm H}^{0} \left(2\dot{a}\frac{H_{0}}{a} - a\frac{H_{0}}{a^{2}}\dot{a} \right) = \\ &= -\frac{4\pi G}{3} \rho_{\rm g} l_{\rm H}^{0} \frac{x}{x_{0}} \frac{I_{0}(\infty,\beta) - I_{0}(x,\beta)}{(\Omega_{\rm r}^{0}\Omega_{\Lambda}^{0})^{1/4}} - cH = \\ &= cH_{*} \left[-\frac{1}{2}\frac{2 + \beta x - 2x^{4}}{x^{3}} \left[I_{0}(\infty,\beta) - I_{0}(x,\beta) \right] - \frac{\sqrt{1 + \beta x + x^{4}}}{x^{2}} \right] \sim -\frac{9}{8} \frac{\beta}{x^{3}} cH_{*}. \end{split}$$
(29)

При $x = x_0$ получаются современные значения $\dot{v}_{\rm Hor} = 3.46 H_* c = 20.0 \cdot 10^{-8} \text{ см/c}^2$, $\dot{v}_{\rm Horr} = -0.408 H_* c = -2.35 \cdot 10^{-8} \text{ см/c}^2$. На рис. 8 представлены расстояния до горизонтов и их скорости в зависимости от параметра x. Вначале, пока $\eta_{\infty} - \eta > \eta$, расстояние до второго горизонта больше, чем до первого. Горизонты пересеклись при $\eta = \eta_{\infty}/2$, x = 4.08, z = 1.677, в эпоху t = 3.93 млрд лет от начала, то есть $t_0 - t = 9.80$ млрд лет тому назад, когда расстояние до них было 3.58 Гпк. Скорость первого горизонта растет, а второго уменьшается. На рис. 9 даны ускорения горизонтов в логарифмическом масштабе.

5. Связь с внеземными цивилизациями. В заключение этого параграфа обсудим проблему поиска внеземных цивилизаций в условиях экспоненциального расширения.

Предположим, что в эпоху $(t = t_*, \eta = \eta_*)$ в некотором направлении испускается радиосигнал. Расстояние до него увеличивается и при значении временной координаты η окажется $l_{\rm ph} = l_{\rm H}^0 a(\eta)(\eta - \eta_*), \eta \ge \eta_*$. Его скорость составляется из скорости расширения и скорости света:

$$\dot{l}_{\rm ph} = l_{\rm H}^0 \dot{a} (\eta - \eta_0) + l_{\rm H}^0 a \dot{\eta} = H l_{\rm ph} + c.$$
(30)

Пусть некоторый объект имеет пространственную координату ch_O. Расстояние до этого объекта в момент η равно $l_{\rm O} = l_{\rm H}^0 a(\eta) \chi_{\rm O}$ ($\eta < \eta_{\infty}$), так как оно растет только за счет космологического расширения, то есть увеличения масштабного множителя. Посланный сигнал, так как его скорость больше, чем скорость объекта, догонит объект, когда их расстояния от нас станут равными. Пусть это момент $\eta_{\rm O}$:

$$l_{\rm ph} = l_{\rm H}^0 a(\eta)(\eta - \eta_*) = l_{\rm O} = l_{\rm H}^0 a(\eta)\chi_{\rm O}, \quad \chi_{\rm O} = \eta_{\rm O} - \eta_*.$$
(31)

Так как $\eta_{\rm O} < \eta_{\infty}$, то должно быть $\chi_{\rm O} < \eta_{\infty} - \eta_*$.

Пусть разумные существа приняли наш сигнал, поняли его и отвечают. Времени на раздумья у них уйдет немного по сравнению с космологическими временами, так что будем считать, что ответ посылается мгновенно, в момент $\eta_{\rm O}$. Расстояние до нас от посланного ими сигнала $l_{\rm ph} = l_{\rm H}^0 a(\eta)(\eta_{\rm O} + \chi_{\rm O} - \eta)$, так что при $\eta = \eta_{\rm O}$ оно равно $l_{\rm ph} = l_{\rm H}^0 a(\eta_{\rm O})\chi_{\rm O}$, то есть это исходная точка сигнала. Сигнал дойдет до нас, если окажется, что расстояние $l_{\rm ph} = 0$. Пусть это произойдет в момент η_{**} , который также должен быть меньше предельного $\eta_{**} < \eta_{\infty}$. Тогда $\eta_{**} = \eta_{\rm O} + \chi_{\rm O} = 2\eta_{\rm O} - \eta_* < \eta_{\infty}$. Отсюда получаем, что $\eta_{\rm O} < (\eta_* + \eta_{\infty})/2 < \eta_{\infty}$. Для координаты объекта, от которого может быть получен сигнал, получается условие

$$0 < \chi_{O} < \frac{\eta_{\infty} + \eta_{*}}{2} - \eta_{*} = \frac{\eta_{\infty} - \eta_{*}}{2} < \eta_{\infty} - \eta_{*}.$$
(32)

Если $\eta_* = \eta_0$, то все конкретизируется. Чтобы сигнал дошел до объекта должно быть $\chi_O < \eta_\infty - \eta_0 = 1.13$, предельное расстояние сейчас $l_O = l_H^0(\eta_\infty - \eta_0) = 4.84$ Гпк, $z_O < 1.72$. Условие возможности получения ответа $\chi_O < (\eta_\infty - \eta_0)/2 = 0.56$, расстояние 2.42 Гпк, z < 0.66.

$$l_{\rm H}^0 a(\eta)(\eta - \eta_0) = l_{\rm H}^0 a(\eta)(\eta_0 - \eta_{\rm o}), \ \eta - \eta_0 = \eta_0 - \eta_{\rm o}, \ \eta_0 = \eta_{\rm lim} = 2\eta_0 - \eta_\infty \text{ при } \eta = \eta_\infty, \tag{33}$$

$$\eta_{\rm o} = 2\eta_0 - \eta = \frac{I_0(x_{\rm o},\beta)}{(\Omega_{\rm r}^0 \Omega_{\Lambda}^0)^{1/4}}, \ \eta = \frac{I_0(x,\beta)}{(\Omega_{\rm r}^0 \Omega_{\Lambda}^0)^{1/4}}, \ x \ge x_0, \ t = \frac{I_1(x,\beta)}{H_*}.$$
(34)

η_{o}	$I_0(x_{ m o},eta)$	$x_{ m o}$	$a(\eta_{ m o})$	$z_{ m o}$	$l_{\rm o}^0$ Гпк
2.02	0.157	3.30	0.303	2.30	5.69
2.22	0.172	4.01	0.367	1.72	4.83
2.42	0.188	4.80	0.440	1.27	3.98
2.62	0.204	5.71	0.523	0.913	3.12
2.82	0.219	6.77	0.620	0.613	2.27

Таблица 11. Объекты на пути сигнала.

На рис. 10 помещены прямые, отражающие зависимость расстояний l_o до пяти объектов от координаты x, которая указывает положение сигнала. Объекты характеризуются значениями $\eta_o = \eta_{\rm lim} + 0.2n$, n = -1(1)3. Соответствующие значения $I_0(x_o, \beta)$, x_o , современные значения масштабного множителя $a(\eta_o)$ и красного смещения z_o , а также современные расстояния до этих объектов l_o^0 приведены в табл. 3. Из рисунка видно, что посланный сигнал, путь которого изображен прямой, исходящей из оси абсцисс, доходит до объектов только при n = 1, 2, 3. Сигнал приходит раньше к объектам с бо́льшими η_o , и тем самым, меньшими z_o и l_o , то есть расположенными в момент испускания сигнала ближе к нему. Расстояние между объектом, находящимся сейчас чуть ближе второго горизонта (расстояние до него сейчас 4.83 Гпк, его красное смещение 1.72), то есть при $\eta_o = \eta_{\rm lim} - \varepsilon$, и сигналом

$$l_{\rm o} - l_{\rm ph} = l_{\rm H}^0 a(\eta)(\eta_0 - \eta_{\rm lim} + \varepsilon) - l_{\rm H}^0 a(\eta)(\eta - \eta_0) = l_{\rm H}^0 a(\eta)(\eta_\infty - \varepsilon - \eta) \sim \frac{c}{H_*} \frac{\eta_\infty - \varepsilon - \eta}{\eta_\infty - \eta},\tag{35}$$

так как $a(\eta) \sim 1/[\sqrt{\Omega_{\Lambda}^0}(\eta_{\infty} - \eta)]$ при $\eta_{\infty} - \eta \gg 1$. Разность (35) стремится к нулю при $\eta \to \eta_{\infty} - \varepsilon$, если $\varepsilon > 0$. Время до встречи сигнала с объектом $t \sim \ln(1/\varepsilon)$. При расположении объекта на горизонте ($\varepsilon = 0$) остается непреодолимое расстояние $c/H_* = 5.02$ Гпк. Между сигналом и объектами, которые сейчас располагаются за вторым горизонтом, расстояние будет только увеличиваться.

На рис. 12 представлены зависимости координат x_0 , современных расстояний l_0 и красных смещений z_0 объектов, до которых дойдет сигнал, от его координаты x и времени $t - t_0$, затраченного им на путь до встречи. Связь координаты и этого времени показана на рис. 11.

Впрочем, приведенные рассуждения носят чисто теоретический характер, так как посланный сигнал дойдет до второго горизонта, который представлен на рис. 10 кривой, почти прямолинейной и параллельной оси абсцисс, и зайдет за него, так что даже если получившая его цивилизация пошлет ответный сигнал, до нас он не дойдет.

Сигнал дойдет до горизонта, когда

$$l_{\rm ph} = l_{\rm H}^0 a(\eta_{\rm h})(\eta_{\rm h} - \eta_0) = l_{\rm Horr} = l_{\rm H}^0 a(\zeta_{\rm h})(\eta_{\infty} - \eta_{\rm h}), \quad \eta_{\rm h} = \frac{\eta_0 + \eta_{\infty}}{2} = 3.91.$$
(36)

Соответствующие значения $x_{\rm h} = 22.7$, $l_{\rm ph} = l_{\rm Horr} = 5.02$ Гпк. В это время к горизонту подойдет объект с исходной координатой $x_{\rm o} = 6.57$, при которой $a(\eta_{\rm o}) = 0.601$, $z_{\rm o} = 0.662$, и исходным расстоянием до нас $l_{\rm o}^0 = l_{\rm H}^0(\eta_0 - \eta_{\rm o}) = 2.44$ Гпк, так как если $l_{\rm o} = l_{\rm ph} = l_{\rm Horr}$, то

$$l_{\rm H}^0 a(\eta_{\rm h})(\eta_0 - \eta_{\rm o}) = l_{\rm H}^0 a(\eta_{\rm h})(\eta_{\infty} - \eta_{\rm h}), \ \eta_{\rm o} = \eta_0 - \eta_{\infty} + \eta_{\rm h} = \frac{3\eta_0 - \eta_{\infty}}{2} = 2.78.$$
(37)

Только до расстояний ≈ 5 Гпк сможет дойти посланный нами сигнал с надеждой на ответ. Экспоненциальное расширение пространства увлекает излучение, как идущее от нас, так и направленное к нам. Тем не менее, 5 Гпк — это очень большое расстояние, в сфере такого радиуса находится много галактик, а направлять сигнал имеет смысл к объектам, расположенным не дальше нескольких десятков световых лет, иначе ждать возможного ответа придется слишком долго.

При всем при том сигналу придется сообщить весьма большую энергию, чтобы он прошел достаточно большие расстояния.
Литература

- 1. Зельдович Я. Б., Новиков И. Д. Строение и эволюция Вселенной. М., 1975.
- 2. Гуревич Л. Э., Чернин А. Д. Введение в космогонию. М., 1978.
- 3. Долгов А. Д., Зельдович Я. Б., Сажин М. В. Космология ранней Вселенной. М., 1988.
- 4. Ландау Л. Д., Лифшиц Е. М. Теория поля. М., 1988.
- 5. *Нагирнер Д. И.* Элементы космологии. СПб, 2001, 72 стр. (электронная версия по адресу www.astro.spbu.ru раздел www-pecypcы).
- 6. Нагирнер Д. И. Реликтовый фон и его искажения. Изд-во СПбГУ, 2003, 55 стр. (электронная версия по адресу www.astro.spbu.ru раздел www-ресурсы).
- Сапар А. Теория наблюдаемых космологических эффектов // Публикации Тартуской астрономической обсерватории. 1964. Т. XXXIV. N 6. С. 223–318.
- 8. *Hubbl E.* A relation between distance and radial velocity among extragalactic nebulae. Proc. Natl. Acad. Sci. USA, 1929. Vol. 15. P. 168.
- 9. Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной. Регулярная и хаотическая динамика. Москва–Ижевск. 2002. 268 с.
- 10. Шмаонов Т. А. Методика абсолютных измерений эффективной температуры радиоизлучения с низкой эквивалентной температурой // Приборы и техника эксперимента. 1957. N 1. C. 83–86.
- 11. Дорошкевич А. Г., Новиков И. Д. Средняя плотность излучения в Метагалактике и некоторые вопросы релятивистской космологии // ДАН СССР. 1964. Т. 154. N 4. С. 809–811.
- Adams W. S. Some results with Coudé spectrograph of the Mount Wilson observatory // Astrophys. J. 1941. Vol. 93. N 1. P. 11–23.
- 13. Ohm E. A. Project ECHO. Receiving system // Bell Syst. Techn. J. 1961. Vol. 40. N 4. P. 1065–1094.
- 14. Peebles P. J. E. Principles of Physical Cosmology. Prinston: Prinston university press, 1993. 718 p.
- McKellar A. Molecular lines from the lowest states of diatomic molecules composed of atoms probably present in interstellar space // Publ. Dominion Astrophys. Observ. Victoria. 1941. Vol. 7. N 15. P. 251–272.
- Corey B. E., Wilkinson D. T. A measurement of the cosmic microwave background anisotropy at 19 GHz // Bull. Amer. Astron. Soc. 1976. Vol. 8. P. 351.
- Smoot G. F., Gorenstein M. V., Muller R. A. Detection of anisotropy in the cosmic blackbody radiation // Phys. Rev. Let. 1977. Vol. 39. N 14. P. 898–901.
- 18. Harrison E. // Astrophys. J. 1993. Vol. 403. N 1. P. 28-31.
- 19. *Riess A. S. et al.* Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., **116**, 1009, 1998.
- 20. Perlmuter S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophysical J., 517, 565, 1999.
- 21. IceCube. astro-ph 1401.4496.
- 22. Питьев Н. П., Питьева . 2013.
- 23. R.Alpher, R.Herman. Ann. Rev. Nucl. Sci. 2, 1, 1953.
- 24. Narlikar J. V. Introduction to Cosmology. Cambridge, 1995.
- 25. Smith M. S., Kawano L. H., Malany R. A. // Astrophys. J. Suppl. 1993. Vol. 85. P. 219.
- 26. Крамаровский Я. М., Чечев В. П. // Успехи физ. наук. 1999. Т. 169. С. 643.
- 27. Пиблс Ф. Дж. Структура Вселенной в больших масштабах. М., 1983.
- 28. Peebles P. J. E. Principles of Physical Cosmology. Prinston, 1993.

- 29. Peacock J. Cosmological Physics. Cambridge, 1999.
- 30. "Физика космоса" маленькая энциклопедия/ Под ред. Р.А.Сюняева. М., 1986.
- 31. Новиков И.Д. Как взорвалась Вселенная. М., 1988.
- 32. Новиков И. Д. Эволюция Вселенной. М., 1990.
- 33. Френкель В. Я., Чернин А. Д. От альфа-распада до Большого Взрыва. М., 1990.
- 34. Хеллер М., Чернин А. Д. У истоков космологии: Фридман и Леметр. М., 1991.
- 35. П.К. Рашевский. Риманова геометрия и тензорный анализ. М.: Наука, 1964.
- 36. А. Д. Чернин. Модель Вселенной, заполненной излучением и пылевидным веществом. Астрон. ж., **42**, 1124–1126, 1965.
- 37. В.А. Фок. Теория пространства, времени и тяготения. М., ГИТТЛ, 1955.
- 38. Я. Б. Зельдович. Успехи физ. наук, **80**, 353, 1963.
- 39. S. Stuart. astro-ph 0512282
- 40. А.С.Зенцова, А.Д. Чернин. Астрофизика, 16, 108, 1980.
- 41. Dolgov.
- 42. W.Bonnor. MNRAS 117, 104, 1957.
- 43. В. В. Соболев. Курс теоретической астрофизики. М.: Наука, 1985. 504 с.
- 44. Б.Э.Глинер.
- 45. A.Guth. Phys. Rev. Vol. D23. P. 347. 1981.
- 46. A.D.Linde. Phys. Lett. Vol. 108B. P. 389. 1982.
- 47. А.Д.Линде. Физика элементарных частиц и инфляционная космология. М., Наука, 1990, 276 с.
- G.C.McVittie. The mass-particle in an expanding universe. Monthly Notices of Royal Astronomical Society, 93, N 5, 325–339, 1933.
- 49. R.Alpher, R.Herman. Ann. Rev. Nucl. Sci. 2, 1, 1053.
- 50. Э.Камке. Справочник по обыкновенным дифференциальным уравнениям. М., Наука, 1965, 704 с.
- 51. Р.Фейнман.
- 52. Yu. Baryshev, P. Teericorpi. Fundamental Questions of Practical Cosmology. Springer.
- 53. Логунов.
- 54. R.Ferraro. f(R) and f(T) theories of modified gravity. astro-ph 1204.6273.
- 55. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971. 1108 с.

Приложение I. Альтернативные функции

1. Определения функций. Введем несколько общих обозначений для альтернативных функций, характеризующих космологические модели, при которых пространство имеет различную кривизну. Удобно ввести шесть таких обозначений.

Функции $\operatorname{sn}_k(\eta)$ и $\operatorname{cs}_k(\eta)$ являются соответственно альтернативными обозначениями тригонометрических и гиперболических синуса и косинуса:

$$\operatorname{sn}_{k} \eta = \begin{cases} \sin \eta & \operatorname{при} \quad k = 1, \\ \eta & \operatorname{при} \quad k = 0, \\ \operatorname{sh} \eta & \operatorname{при} \quad k = -1, \end{cases}$$
(1)

$$cs_k \eta = sn'_k(\eta) = \begin{cases} cos \eta & при \quad k = 1, \\ 1 & при \quad k = 0, \\ ch \eta & при \quad k = -1. \end{cases}, \quad cs'_k(\eta) = -k sn_k(\eta).$$
(2)

Следующие функции — интеграл от $\operatorname{sn}_k(\eta)$ и интеграл от интеграла (точнее, это простейшие первообразные):

$$sc_k(\eta) = \begin{cases} 1 - \cos \eta & \text{при} \quad k = 1, \\ \eta^2/2 & \text{при} \quad k = 0, \\ ch \eta - 1 & \text{при} \quad k = -1, \end{cases}$$
(3)

$$\operatorname{cn}_{k}(\eta) = \begin{cases} \eta - \sin \eta & \operatorname{при} \quad k = 1, \\ \eta^{3}/6 & \operatorname{при} \quad k = 0, \\ \operatorname{sh} \eta - \eta & \operatorname{при} \quad k = -1, \end{cases} \quad \operatorname{cn}_{k}'(\eta) = \operatorname{sc}_{k}(\eta). \tag{4}$$

Понадобятся также отношения введенных функций и производные от них:

$$\operatorname{tn}_{k}(\eta) = \frac{\operatorname{sn}_{k}(\eta)}{\operatorname{cs}_{k}(\eta)}, \quad \operatorname{ctn}_{k}(\eta) = \frac{\operatorname{cs}_{k}(\eta)}{\operatorname{sn}_{k}(\eta)}, \quad \operatorname{tn}_{k}'(\eta) = \frac{1}{\operatorname{cs}_{k}^{2}(\eta)}, \quad \operatorname{ctn}_{k}'(\eta) = -\frac{1}{\operatorname{sn}_{k}^{2}(\eta)}.$$
(5)

2. Обратные функции. Введем также обозначения для функций, обратных по отношению к $\operatorname{sn}_k(\eta)$ и $\operatorname{cs}_k(\eta)$, а также их отношенияю. Для самих функций

$$\operatorname{arsn}_{k}(y) = \begin{cases} \operatorname{arcsin} y, & k = 1, \\ y, & k = 0, \\ \operatorname{arsh} y = \ln(y + \sqrt{1 + y^{2}}), & k = -1, \end{cases} \quad \operatorname{arsn}_{k}(\operatorname{sn}_{k}(\eta)) = \eta, \ \operatorname{sn}_{k}(\operatorname{arsn}_{k}(y))) = y. \tag{6}$$

$$\operatorname{arcs}_{k}(y) = \begin{cases} \operatorname{arccos} y, & k = 1, \\ \operatorname{arch} y = \ln(y + \sqrt{y^{2} - 1}), & k = -1, \end{cases} \quad \operatorname{arcs}_{k}(\operatorname{cs}_{k}(\eta)) = \eta, \ \operatorname{cs}_{k}(\operatorname{arcs}_{k}(y))) = y. \tag{7}$$

Последняя функция для k = 0 не вводится.

Для отношения синуса и косинуса

$$\operatorname{artn}_{k}(y) = \begin{cases} \operatorname{arctg} y, & k = 1, \\ y, & k = 0, \\ \operatorname{arth} y = \frac{1}{2} \ln \frac{1+y}{1-y}, & k = -1, \end{cases} \quad \operatorname{artn}_{k}(\operatorname{tn}_{k}(\eta)) = \eta, \ \operatorname{tn}_{k}(\operatorname{artn}_{k}(y))) = y. \tag{8}$$

Производные от обратных функций

$$\frac{\mathrm{d}\operatorname{arsn}_{k}(y)}{\mathrm{d}y} = \frac{1}{\sqrt{1 - ky^{2}}}, \quad \frac{\mathrm{d}\operatorname{arcs}_{k}(y)}{\mathrm{d}y} = \frac{k}{\sqrt{k(1 - y^{2})}}, \quad \frac{\mathrm{d}\operatorname{artn}_{k}(y)}{\mathrm{d}y} = \frac{1}{1 + ky^{2}}.$$
(9)

3. Общие соотношения между функциями. Из формул плоской и гиперболической тригонометрии выводятся общие соотношения, справедливые для всех трех случаев кривизны пространства. Нетрудно проверить, что выполняются следующие соотношения между первыми тремя из введенных функций.

1) Основные соотношения.

$$cs_k^2(\eta) + k sn_k^2(\eta) = 1, \quad sn_k^2(\eta) + k sc_k^2(\eta) = 2 sc_k(\eta), \quad cs_k(\eta) + k sc_k(\eta) = 1.$$
 (10)

2) Сумма аргументов.

$$\operatorname{sn}_{k}(\eta_{1} \pm \eta_{2}) = \operatorname{sn}_{k}(\eta_{1})\operatorname{cs}_{k}(\eta_{2}) \pm \operatorname{cs}_{k}(\eta_{1})\operatorname{sn}_{k}(\eta_{2}), \quad \operatorname{cs}_{k}(\eta_{1} \pm \eta_{2}) = \operatorname{cs}_{k}(\eta_{1})\operatorname{cs}_{k}(\eta_{2}) - k\operatorname{sn}_{k}(\eta_{1})\operatorname{sn}_{k}(\eta_{2}).$$
(11)

3) Двойной аргумент.

$$\operatorname{sn}_{k}(2\eta) = 2\operatorname{sn}_{k}(\eta)\operatorname{cs}_{k}(\eta), \quad \operatorname{cs}_{k}(2\eta) = \operatorname{cs}_{k}^{2}(\eta) - k\operatorname{sn}_{k}^{2}(\eta), \quad \operatorname{sc}_{k}(2\eta) = 2\operatorname{sn}_{k}^{2}(\eta).$$
 (12)

4) Обратные функции.

$$\operatorname{arsn}_{k}(x) \pm \operatorname{arsn}_{k}(y) = \operatorname{arsn}_{k}\left(x\sqrt{1-ky^{2}} \pm y\sqrt{1-kx^{2}}\right), \quad \operatorname{artn}_{k}(y_{1}) \pm \operatorname{artn}_{k}(y_{2}) = \operatorname{artn}_{k}\left(\frac{y_{1} \pm y_{2}}{1 \mp ky_{1}y_{2}}\right).$$
(13)