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We present a method of kinematic analysis of proper motions by vector spherical functions, and the results of its application
to astrometric data. The sets of vector spherical functions which are orthonormal on a full sphere as well as on a latitude
zone are constructed. Decomposition of the proper motions into a set of such functions allows model-independent study
of stellar kinematics. If needed, the parameters of the standard (say, Ogorodnikov-Milne) model may be derived from the
coefficients of the decomposition. In contrast to the commonly used least squares estimation of the model’s parameters,
vector spherical functions identify all systematic components of the velocity field (no matter, whether they are incorporated
into the model or not) and give us a possibility to test whether the data are compatible with the model. In this paper, we
apply this technique for the first time to the proper motions from the UCAC4 catalog for stars in the 11 to 16 magnitude
range. We derive all-sky solutions and the solutions based on stars in the northern and southern Galactic hemispheres. The
all-sky solution provide evidence for noticeable magnitude-dependent trends in the coordinates of the solar motion apex,
Oort constants, angular speed of the local Galactic rotation, and the slope of the local rotation velocity curve as we go
from bright to faint stars. Furthermore, our all-sky vector spherical function analysis identified strong and reliable extra-
model harmonics, whereas the solutions for the northern and southern hemisphere indicate sign reversals for some of the
Ogorodnikov-Milne parameters. We show that both effects appear simultaneously and can be explained by the slowdown
of Galactic rotation with increasing distance from the main Galactic plane. We estimate the absolute value of the vertical
gradient of the Galactic rotational velocity to be ∼40 km s−1 kpc−1.
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1 Introduction

During recent 15 years we were witnessing a real parade
of catalogues implementing the ICRS in optical waves with
full coverage of the sky. The first one was the Hippar-
cos (∼100 thousand stars) observed in space and tied to
the ICRF-1 (Perryman et al. 1997). It was followed by
Tycho-2 (∼2.5 million stars) created from ground based
and space-based observations (Høg et al. 2000). The next
came UCAC3 (Zacharias et al. 2010) which was soon re-
placed by UCAC4 (Zacharias et al. 2013). The UCAC4 is
an all-sky catalogue containing about 113 million stars cov-
ering mainly the 8 to 16 magnitude range in a single band-
pass between V and R. The positional accuracy of stars in
UCAC4 at mean epoch is about 15–100 mas per coordinate,
depending on magnitude, while the formal errors in PMs
range from about 1 to 10 mas yr−1 depending on magnitude
and observing history. Systematic errors in PMs are esti-
mated to be about 1–4 mas yr−1. All bright stars have been
added to UCAC4 from Hipparcos and Tycho-2 catalogues.
The UCAC4 may be considered complete to about R = 16.
At present, the largest catalogue of positions and proper
motions is PPMXL (Roeser et al. 2010). It contains about
900 million objects and probably is full from the brightest
stars down to about magnitude V = 20 full-sky with abso-
lute proper motions in the ICRS reference frame. The mean
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errors of the proper motions range from 4 mas yr−1 to more
than 10 mas yr−1. The accuracy of positions are estimated
to be 80–120 mas (at epoch 2000.0).

Modern astrometric catalogues provide a qualitatively
new material, in particular, for investigating the kinemat-
ics of nearby stars. Highly accurate measurements of paral-
laxes, proper motions, and radial velocities for hundreds of
millions of stars planned in the future space project GAIA
are a motivation for developing new methods of kinematic
analysis of stars. The papers by Vityazev & Shuksto (2005)
and Vityazev & Tsvetkov (2009, 2011, 2012), which are
devoted to the application of vector spherical harmonics
(VSH) to problems of stellar kinematics, meet this require-
ment.

The VSH formalism is particularly well suited for ana-
lyzing the present and future catalogues containing all three
components of the velocity vector – the proper motions
in both coordinates and the radial velocity. The method
of VSH is capable of revealing all systematic components
in the stellar velocity field without resorting to a specific
physical model. Comparison of the decomposition coeffi-
cients for a particular kinematic model with the observa-
tional data can reveal systematic components that are not
described by the model considered. The VSH method was
successfully applied to stellar kinematics by Makarov &
Murphy (2007) and Bobylev et. al. (2011). Note that two-
dimensional vector spherical functions were first used by
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Mignard & Morando (1990) in astrometric problems related
to the comparison of catalogues to represent the systematic
differences between Hipparcos and FK5. Further extensive
study of this technique aiming at its application in the GAIA
project may be found in recent paper by Mignard & Klioner
(2012).

This paper is devoted to application of the vector spher-
ical function formalism for kinematic analysis of proper
motions of the UCAC4 catalogue. For this purpose we in-
troduce the system of vector spherical functions orthonor-
mal on the whole sphere as well as a system of zone vector
functions orthonormal on a zone of Galactic latitudes (decli-
nations). Next, we show that the zone spherical harmonics
can be used to estimate the parameters using at least two –
the main and alternative – techniques. A comparison of the
main and alternative solutions allows the standard kinematic
model to be tested for compatibility with the observational
data. These systems of functions are used for the all-sphere
analysis and for the half sphere analysis in the northern and
southern Galactic hemispheres of the UCAC4 catalogue.

2 Ogorodnikov-Milne equations

The equations of the Ogorodnikov-Milne model (Ogorod-
nikov 1965) are commonly used to investigate stellar kine-
matics. In this model, the star’s velocity V relative to
the Cartesian Galactic coordinate system with unit vectors
eX , eY , eZ is given by the following linear equations:

V = −U eX − V eY − W eZ + M+
r + M−

r, (1)

where

M+ =

⎡
⎣ M+

11 M+
12 M+

13

M+
21 M+

22 M+
23

M+
31 M+

32 M+
33

⎤
⎦; (2)

M− =

⎡
⎣ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎤
⎦. (3)

Here r is the heliocentric vector toward a star; U, V, W are
the components of the solar motion vector relative to the
stellar centroid; Ω1, Ω2, and Ω3 are the components of the
rigid-body rotation vector of the stellar centroid; M+

11, M+
22,

M+
33 are the parameters describing the contraction or expan-

sion of the velocity field along the principal axes of the co-
ordinate system; M+

12 = M+
21, M+

13 = M+
31, M+

23 = M+
32 -

parameters describing the velocity field deformation in the
principal plane and the two planes perpendicular to it.

To connect the components of V with the radial veloc-
ity V of a star, and its proper motions μl and μb in lon-
gitude and latitude, respectively, let us project the vector
V onto the unit vectors el, eb, er. Introducing the factor
K = 4.74 for converting the dimensions of stellar proper
motions mas yr−1 to km s−1 kpc−1, we obtain

⎡
⎣ Kμl cos b

Kμb

V/r

⎤
⎦ = A(l, b)

⎡
⎣ U/r

V/r
W/r

⎤
⎦ +

+ A(l, b) (M+ + M−)

⎡
⎣ cos b cos l

cos b sin l
sin b

⎤
⎦ , (4)

where A is the transformation matrix from the unit vectors
eX , eY , eZ of the Cartesian Galactic coordinate system to
the unit vectors el, eb, er directed along the direction of
change in Galactic longitude and latitude and the line of
sight:

A(l, b) =

⎡
⎣ − sin l cos l 0
− cos l sin b − sin l sin b cos b
cos l cos b sin l cos b sin b

⎤
⎦ . (5)

3 Scalar spherical functions

Spherical functions are widely used in various areas of
mathematics and physics. Their definition can be found in
many sources, for example in Arfken (1970). In this paper,
we will use the following representation for them:

Knkp(l, b) = Rnk

⎧⎨
⎩

Pn,0(b), k = 0, p = 1;
Pnk(b) sin kl, k �= 0, p = 0;
Pnk(b) cos kl, k �= 0, p = 1,

(6)

Rnk =

√
2n + 1

4π

{ √
2(n−k)!
(n+k)! , k > 0;

1, k = 0,
(7)

where l and b are the longitude and latitude of the point on
the sphere, respectively, (0 ≤ l ≤ 2π; −π/2 ≤ b ≤ π/2);
Pnk(b) are the Legendre (at k = 0) and associated Legendre
(for k > 0) polynomials that can be calculated using the
recurrence relations

Pnk(b) = sin b 2n−1
n−k

Pn−1,k(b) − n+k−1
n−k

Pn−2,k(b),

k=0, 1, ...n=k+1, k+2, ...

Pkk(b) = (2k)!
2kk! cosk b,

Pk+1,k(b) = (2k+2)!
2k+1(k+1)!

cosk b sin b.

(8)

For convenience, a linear numeration of the functions
Knkp by one index j is often introduced. In this way the
index j is used instead of (nkp), where

j = n2 + 2k + p − 1. (9)

4 Vector spherical harmonics (VSH)

Consider a set of mutually orthogonal unit vectors el, eb, er

in the directions of the longitude and latitude and along the
line of sight, respectively, in a plane tangential to the sphere.
Using the definitions of VSFs in Arfken (1970) let us in-
troduce radial, Vj , toroidal, Tj and spheroidal Sj via the
relations

Vj(l, b) = Kj(l, b)er, (10)

Tj = rn

(
∂Kj(l, b)

∂b
el − 1

cos b

∂Kj(l, b)

∂l
eb

)
, (11)

www.an-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



762 V.V. Vityazev & A.S. Tsvetkov: UCAC4: Stellar kinematics with vector spherical functions

Sj = rn

(
1

cos b

∂Kj(l, b)

∂l
el +

∂Kj(l, b)

∂b
eb

)
, (12)

where

rn =
1√

n(n + 1).
(13)

Denote the components of the unit vector el as T l
j Sl

j ,
and the components of the unit vector eb – respectively T b

j

and Sb
j :

Tj = T l
jel + T b

j eb, (14)

Sj = Sl
jel + Sb

jeb. (15)

These components are defined as:

T l
j = Rnk√

n(n+1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pn,1(b),k=0, p=1,

(−k tan bPnk(b)
+Pn,k+1(b)) sin kl,k �=0, p=0,

(−k tan bPnk(b)
+Pn,k+1(b)) cos kl,k �=0, p=1;

(16)

T b
j = Rnk√

n(n+1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0,k �=0, p=1,

− k
cos b

Pnk(b) cos kl,k �=0, p=0,

+ k
cos b

Pnk(b) sin kl,k �=0, p=1;

(17)

Sb
j = Rnk√

n(n+1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pn,1(b),k=0, p=1,

(−k tan bPnk(b)
+Pn,k+1(b)) sin kl,k �=0, p=0,

(−k tan bPnk(b)
+Pn,k+1(b)) cos kl,k �=0, p=1;

(18)

Sl
j = Rnk√

n(n+1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0,k=0, p=1,

+ k
cos b

Pnk(b) cos kl,k �=0, p=0,

− k
cos b

Pnk(b) sin kl,k �=0, p=1.

(19)

The functions introduced above satisfy the relations:

∫
Ω

(Vi · Vj) dω =

∫
Ω

(Ti · Tj) dω =

=

∫
Ω

(Si · Sj) dω =

{
0, i �= j,
1, i = j;

(20)

∫
Ω

(Vi · Tj) dω =

∫
Ω

(Vi · Sj) dω =

=

∫
Ω

(Si · Tj) dω = 0, ∀ i, j. (21)

In other words, functions Vj , Tj , Sj form an orthonormal
set of functions on the sphere.

5 Vector spherical harmonics for a zonal
catalogue (ZVSF)

VSHs are specified for all points of the sphere where they
are orthogonal and complete (Arkfen 1970). If the data are
available within some latitude (declination) zone, a com-
plete system of orthogonal functions can also be introduced.
Let the data of some zonal catalogue belong to the following
domain of the celestial sphere:

Z =

{
0 ≤ l ≤ 2π,
bmin ≤ b ≤ bmax.

(22)

Let us introduce the transformation

b̂ = arcsin(α sin b + β), (23)

that for

α =
2

s2 − s1
, β = −s2 + s1

s2 − s1
, (24)

s1 = sin bmin, s2 = sin bmax (25)

transforms the entire sphere into region Z.
Now, the zone vector spherical functions (ZVSF) are in-

troduced as

V̂j(l, b) =
√

αKj(l, b̂)er. (26)

T̂j(l, b̂) =
√

α(T l
j(l, b̂)el + T b

j (l, b̂)eb), (27)

Ŝj(l, b̂) =
√

α(Sl
j(l, b̂)el + Sb

j (l, b̂)eb). (28)

These functions are orthonormal on the set Z , so the
following relations are valid:

∫
Z

(
V̂i · V̂j

)
dω =

∫
Z

(
T̂i · T̂j

)
dω =

=

∫
Z

(
Ŝi · Ŝj

)
dω =

{
0, i �= j,
1, i = j;

(29)

∫
Z

(
V̂i · T̂j

)
dω =

∫
Z

(
V̂i · Ŝj

)
dω =

=

∫
Z

(
Ŝi · T̂j

)
dω = 0, ∀ i, j. (30)

where, for example,

∫
Z

(
T̂i · T̂j

)
dω =

α

2π∫
0

dl

bmax∫
bmin

T l
i (l, b̂)T l

j(l, b̂) cos b db +

α

2π∫
0

dl

bmax∫
bmin

T b
i(l, b̂)T b

j (l, b̂) cos b db . (31)
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Since the radial velocities are not available in the cata-
logue UCAC4, in what follows, we consider only the tan-
gential stellar velocity field specified in region Z on the ce-
lestial sphere:

U(l, b) = μ∗l el + μ∗b eb, (32)

where μ∗l = Kμl cos b; μ∗b = Kμb.
We can now use the system of Zone Vector Spherical

Functions to decompose the velocity field as

U(l, b) =
∑

j

tjT̂j(l, b̂) +
∑

j

sj Ŝj(l, b̂). (33)

Given the orthonormality of the basis, the decomposition
coefficients can be calculated by the following formulas:

tj =
∫
Z

(
U · T̂j

)
dω; sj =

∫
Z

(
U · Ŝj

)
dω. (34)

Note that the expressions (33) and (34) are valid for
all sky analysis since in this case α = 1 and T̂j(l, b̂) and
Ŝj(l, b̂) become Tj(l, b) and Sj(l, b) respectively.

6 The method in practice

Assume that we have at our disposal a catalogue of stars
with Galactic coordinates and proper motion components
in latitude and longitude. As was mentioned before, the full
and the zonal catalogue may be treated likewise, so let us
describe the sequence of steps for the kinematic analysis of
the stellar velocity field using ZVSH.

(1) Calculating the ZVSH decomposition coefficients
tj , sj of the velocity field. These coefficients and their root-
mean-square (rms) errors can be derived from the equations

μ∗l =
∑

j

tjT̂l
j(l, b̂) +

∑
j

sj
ˆSl

j(l, b̂), (35)

μ∗b =
∑

j

tjT̂b
j(l, b̂) +

∑
j

sjŜb
j(l, b̂) (36)

by the standard least-squares procedure. The total num-
ber of decomposition terms can be chosen from the condi-
tion that the residuals in the velocity field components with
statistically significant harmonics subtracted from them
behave as random quantities (Brosche 1966; Mignard &
Klioner 2012).

It is necessary to emphasize that Eqs. (4) give us a phys-
ical model of the stellar velocity field since we know the
physical meaning of each parameter of it. However, this
model is not complete, because it does not incorporate all
physical content of the observed data. In contrast to that,
Eqs. (35) and (36) are complete, because all the information
of the data is captured by the decomposition coefficients
(due to completeness of the VSF and ZVSF). However, this
model is not physical, because we do not know the underly-
ing physics of each decomposition coefficient.

(2) Determining the parameters of a specific kinematic
model. Once the decomposition coefficients tj ± σtj

, sj ±

σsj
have been determined, we can write the equations relat-

ing the decomposition coefficients to the sought for model
parameters. When the full catalogue is used, the physical
meaning of the coefficients up to n ≤ 2 is shown in Tables 5
and 6. From these formulas the kinematic parameters of the
Ogorodnikov-Milne model may be obtained easily.

In case of zonal catalogue the relation between the de-
composition coefficients and kinematic parameters depends
on the size of the zone. In this paper we analyze the kine-
matics of the northern and southern Galactic hemispheres,
and the relation between the decomposition coefficients and
kinematic parameters is more complicated, as is evident
from Table 1. To determine the kinematic parameters, the
number of such equations is taken to be equal to the number
of parameters. Thus several (theoretically infinitely many)
estimates of model parameters can be obtained. In practice,
it is appropriate to construct the solutions for the lowest-
order decomposition terms. In our method, we will use two
estimates of the parameters, which we refer to as the main
and alternative solutions:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ū
V̄
W̄
Ω1

Ω2

Ω3

M+
13

M+
23

M+
12

M∗
11

M∗
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s101

s110

s111

s201

s210

s211

s220

s221

t101
t110
t111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ū
V̄
W̄
Ω1

Ω2

Ω3

M+
13

M+
23

M+
12

M∗
11

M∗
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= B

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s101

s110

s111

s301

t201
t110
t111
t210
t211
t220
t221

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

Here Ū , V̄ , W̄ are the mean values of the products
Uπ, V π, Wπ if the parallaxes π are unknown, and M∗

11 =
M+

11 − M+
22, M∗

33 = M+
33 − M+

22 since the value M+
22 can

not be determined when only the PM are available (Clube
1972). The matrices A and B are shown in Tables 2 and 3
(Vityazev & Tsvetkov 2011).

(3) Analyzing the decomposition coefficients not de-
scribed by the model. In the case of all-sky analysis, the
Ogorodnikov-Milne model can be completely described by
the decomposition coefficients tnpk, snpk up to k ≤ 2. All
of the remaining decomposition terms with significant coef-
ficients define the systematic components of the stellar ve-
locity field that are not incorporated in the standard model.
Establishing the physical meaning of these harmonics is a
separate problem that basically reduces to constructing a
new kinematic model.

7 The all-sky proper-motion analysis,
extra-model harmonics

We applied the VSF to study the kinematics of the UCAC4
proper motions in different 1m bins using the UCAC fit
model magnitudes (579–642 nm). The following samples
have been selected:
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Table 1 The kinematics of the ZVSF (up to n ≤ 3) in the frame of Ogorodnikov-Milne model. The upper and lower signs correspond
to the northern and southern hemisphere, respectively. In cases of a single sign the signs of both hemispheres coincide. Units are
km s−1 kpc−1.

j n k l Tj Sj

1 1 0 1 +1.949 Ω3 −1.949W̄ ± 0.873(M∗
33 − 1

2
M∗

11)
2 1 1 0 ∓0.768Ū + 1.791 Ω2 − 0.256M+

13 −1.791V̄ ∓ 0.768 Ω1 ± 1.279M+
23

3 1 1 1 ±0.768V̄ + 1.791 Ω1 + 0.256M+
23 −1.791Ū ∓ 0.768 Ω2 ± 1.279M+

13

4 2 0 1 ∓0.453 Ω3 ±0.453W + 0.274(M∗
33 − 1

2
M∗

11)
5 2 1 0 +0.332Ū ∓ 0.332 Ω2 ± 0.332M+

13 ±0.332V̄ + 0.332 Ω1 + 0.728M+
23

6 2 1 1 −0.332V̄ ∓ 0.332 Ω1 ∓ 0.332M+
23 ±0.332Ū − 0.332 Ω2 + 0.728M+

13

7 2 2 0 ±0.216M∗
11 +1.338M+

12

8 2 2 1 ∓0.433M+

12 +0.669M∗
11

9 3 0 1 +0.270 Ω3 −0.270W̄ ∓ 0.017(M∗
33 − 1

2
M∗

11)
10 3 1 0 ∓0.199Ū + 0.199 Ω2 − 0.199M+

13 −0.199V̄ ∓ 0.199 Ω1 ∓ 0.199M+
23

11 3 1 1 ±0.199V̄ + 0.199 Ω1 + 0.199M+

23 −0.199Ū ± 0.199 Ω2 ∓ 0.199M+

13

12 3 2 0 −0.109M∗
11 ∓0.463M+

12

13 3 2 1 +0.219M+

12 ∓0.231M∗
11

14 3 3 0 0 0
15 3 3 1 0 0

Table 2 Matrix A for calculating the main solution (37). The upper and lower signs correspond to the northern and southern hemi-
spheres, respectively; if there is one sign, then the signs of the coefficient are identical for the northern and southern hemispheres.

0 0 −0.54 0 0 ±1.10 0 0 0 ±0.44 0
0 −0.54 0 0 ±1.10 0 0 0 0 0 ∓0.44

−0.29 0 0 ±0.94 0 0 0 0 0 0 0
0 ±0.21 0 0 −0.64 0 0 0 0 0 0.77
0 0 ∓0.21 0 0 0.64 0 0 0 0.77 0
0 0 0 0 0 0 0 0 0.51 0 0
0 0 ±0.15 0 0 1.16 0 0 0 0.15 0
0 ±0.15 0 0 1.16 0 0 0 0 0 −0.15
0 0 0 0 0 0 0.75 0 0 0 0
0 0 0 0 0 0 0 1.49 0 0 0

±0.49 0 0 2.10 0 0 0 0.75 0 0 0

Table 3 Matrix B for calculating the main solution (37). The upper and lower signs correspond to the northern and southern hemi-
spheres, respectively; if there is one sign, then the signs of the coefficient are identical for the northern and southern hemispheres.

0 0 −0.42 0 0 ±0.56 0 2.04 0 0 0
0 −0.42 0 0 0 0 ∓0.56 0 −2.04 0 0

−0.06 0 0 −3.25 0 0 0 0 0 0 0
0 ±0.14 0 0 0 0 0.84 0 ±1.18 0 0
0 0 ∓0.14 0 0 0.84 0 ±1.18 0 0 0
0 0 0 0 ∓2.21 0 0 0 0 0 0
0 0 ±0.28 0 0 0.28 0 ±2.15 0 0 0
0 ±0.28 0 0 0 0 −0.28 0 ∓2.15 0 0
0 0 0 0 0 0 0 0 0 0 ∓2.31
0 0 0 0 0 0 0 0 0 ±4.63 0

±1.00 0 0 ∓7.25 0 0 0 0 0 ±2.32 0

11m (1 586 674 stars), 12m (3 757 366 stars), 13m

(8 196 861 stars), 14m (17 805 026 stars), 15m (36 204 620
stars), 16m (33 440 398 stars).

The volume of processed data for each sample is very
large, and hence determination of the VSH decomposition
coefficients is a real challenge. This difficulty can be over-
come by data pre-pixelization on the sphere. As applied to
our problem, the pixelization scheme should satisfy the re-
quirement that the pixel centers are equidistant in both lat-

itude and longitude. Two schemes satisfy this requirement.
One of them is HEALPix (Górski et al. 2005). The other
is the so-called Equidistant Cylindrical Projection (ECP).
Pixelization algorithms were discussed in detail previously
(Vityazev & Tsvetkov 2009). In this paper, we focussed on
ECP, in which the stellar proper motions are averaged over
spherical trapezia obtained by a uniform partitioning of the
equator and the latitude circle into M = 180 and N = 90
parts, respectively.
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Table 4 The Ogorodnikov-Milne parameters derived from the UCAC4 catalogue by LSM-solution over the entire sphere. Here A and
B are the Oort constants (km s−1 kpc−1); P , the period of the Galactic rotation in the vicinity of the Sun in million years; L and B, the
longitude and latitude of the solar motion apex (degree), respectively.

11m 12m 13m 14m 15m 16m

Ū 18.3 ± 0.2 16.9 ± 0.1 14.9 ± 0.1 12.6 ± 0.1 10.6 ± 0.1 9.6 ± 0.1
V̄ 45.0 ± 0.2 40.6 ± 0.1 36.3 ± 0.1 34.3 ± 0.1 32.3 ± 0.1 30.8 ± 0.1
W̄ 13.8 ± 0.2 11.1 ± 0.1 8.8 ± 0.1 7.8 ± 0.1 6.2 ± 0.1 5.0 ± 0.1
Ω1 0.7 ± 0.2 0.6 ± 0.1 0.1 ± 0.1 −0.8 ± 0.1 −0.8 ± 0.1 −0.4 ± 0.1
Ω2 −4.6 ± 0.2 −4.6 ± 0.1 −3.0 ± 0.1 −1.2 ± 0.1 −0.6 ± 0.1 −0.6 ± 0.1
B = Ω3 −10.0 ± 0.2 −10.7 ± 0.1 −11.4 ± 0.1 −11.0 ± 0.1 −10.9 ± 0.1 −10.9 ± 0.1
M+

13 −0.4 ± 0.2 −0.6 ± 0.2 −0.5 ± 0.2 0.3 ± 0.2 0.1 ± 0.1 −0.2 ± 0.1
M+

23 −0.8 ± 0.2 0.6 ± 0.2 1.6 ± 0.2 1.7 ± 0.2 1.6 ± 0.1 1.9 ± 0.1
A = M+

12 14.2 ± 0.2 13.3 ± 0.2 11.4 ± 0.2 10.8 ± 0.2 10.2 ± 0.1 9.1 ± 0.1
M∗

11 −1.7 ± 0.4 −2.5 ± 0.4 −2.8 ± 0.3 −2.8 ± 0.3 −4.4 ± 0.3 −4.4 ± 0.3
M∗

33 0.7 ± 0.4 0.2 ± 0.4 −0.3 ± 0.3 −0.3 ± 0.3 −1.1 ± 0.3 −1.4 ± 0.3

A + B 4.2 ± 0.3 2.6 ± 0.2 0.0 ± 0.2 −0.3 ± 0.2 −0.7 ± 0.2 −1.8 ± 0.1
A − B 24.2 ± 0.3 24.0 ± 0.2 22.8 ± 0.2 21.9 ± 0.2 21.1 ± 0.2 21.1 ± 0.1
P 253.9 ± 3.0 256.0 ± 2.4 269.5 ± 2.7 280.5 ± 2.9 291.2 ± 2.0 307.2 ± 2.2

L 67.9 ± 0.2 67, 4 ± 0.2 67.6 ± 0.2 69.9 ± 0.2 71.8 ± 0.2 72.7 ± 0.2
B 15.9 ± 0.2 14.3 ± 0.2 12.6 ± 0.2 12.1 ± 0.2 10.5 ± 0.2 8, 8 ± 0.2

First of all, we performed the traditional combined LSM
solutions for μl cos b and μb from Eq. (4). The results are
listed in Table 4. As is evident from this table, the main
features of the stellar kinematics that can be derived from
the data are the Oort constants A and B; the angular speed
of the local Galactic rotation A − B; the slope of the local
rotational velocity curve A + B; the period of the Galaxy
rotation in the vicinity of the Sun as well as the longitude L
and latitude B of the solar motion apex.

We then performed the VSF analysis of the same sam-
ples of stars. The results are listed in Tables 5 and 6. All the
harmonics associated with the Ogorodnikov-Milne model
yield practically the same values of the kinematic param-
eters as those listed in Table 4. Upon close examination,
we see that the VSF method gives not only the information
which we usually get from the traditional LSM technique,
but yields some extra information. Indeed, apart from the
expected model harmonics it detected several extra-model
harmonics among which the t211 and s310 coefficients are
very powerful.

8 The proper motions analysis in the
northern and southern hemispheres

We applied the ZVSHs formalism to investigate the proper
motions of stars in the northern and southern Galactic
hemispheres based on the data from the UCAC4 cata-
logue. The stars were sampled within 1m bins with aver-
ages 11m (743 246 northern and 844 299 southern stars),
12m (1 729 824 northern and 2 028 132 southern stars),
13m (3 719 008 northern and 4 478 186 southern stars),
14m (7 929 146 northern and 9 876 006 southern stars), 15m

(15 891 947 northern and 20 312 698 southern stars), 16m

(15 030 372 northern and 18 410 068 southern stars).

The most striking result that we obtained when analyz-
ing the velocity field in different hemispheres is that the
statistically reliable values of Ω1 and M+

32 have different
signs in different hemispheres. As can be seen from Ta-
bles 7 and 8, the reality of these parameters is confirmed by
the excellent agreement between the main and alternative
solutions, where almost complete coincidence is observed
within the error limits of these estimates. We see that Ω1

and M+
32 are almost the same in magnitude but different in

sign and therefore when the kinematic parameters are tra-
ditionally determined by the LSM from the data over the
entire celestial sphere the resulting Ω1 and M+

32 are quite
small (Table 4).

9 The vertical gradient of the Galaxy’s
rotational velocity

Application of VSF and ZVSF to UCAC4 proper motions
yielded two unexpected results: large extra-model harmon-
ics and different signs of the parameters Ω1 and M+

23 in the
northern and southern Galactic hemispheres. The existence
of harmonics S310 and T211 was first reported by Vityazev
& Shuksto (2005), and confirmed by Makarov & Murphy
(2007) and Vityazev & Tsvetkov (2009). The second effect
was detected by Vityazev & Tsvetkov (2012). Both effects
need explanation. For this purpose consider the contribution
of the Ω1 and M+

23 terms to the proper motions

μ∗l (l, b) = −Ω1 sin b cos l + M+
23 sin b cos l, (38)

μ∗b(l, b) = Ω1 sin l + M+
23 cos 2b cos l, (39)

where the numerical values of Ω1 and M+
23 coincide with the

mean values Ω1 = 19.55 and M+
23 = −18.07 km s−1 kpc−1

for the northern hemisphere and Ω1 = −22.61 and M+
23 =

21.48 km s−1 kpc−1 for the southern hemisphere.
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Table 5 Decomposition of the UCAC4 proper motions into VSF over the entire sphere. The toroidal coefficients tj and their relation
to the parameters of the Ogorodnikov-Milne model. Units are km s−1 kpc−1.

Model Harmonics

tj 11m 12m 13m 14m 15m 16m

t101 = 2.89 ω3 −29.3 −31.1 −33.0 −32.0 −31.6 −31.5
t110 = 2.89 ω2 −13.4 −13.3 −8.6 −3.4 −1.7 −1.7
t111 = 2.89 ω1 1.8 1.7 0.2 −2.4 −2.3 −1.2

Extra-Model Harmonics

t201 1.7 1.8 1.3 −0.3 0.2 0.0
t210 −11.1 −11.9 −10.4 −7.4 −5.1 −3.5
t211 31.2 30.6 29.6 28.0 27.4 27.4

σ ±0.4 ±0.3 ±0.3 ±0.3 ±0.2 ±0.2

Table 6 Decomposition of the UCAC4 proper motions in VSF over the entire sphere. The values of spheroidal coefficients sj and
their relation to the parameters of the Ogorodnikov-Milne model. Units are in km s−1 kpc−1.

Model Harmonics

sj 11m 12m 13m 14m 15m 16m

s101 = −2.89 W̄ −40.0 −32.4 −25.4 −22.5 −18.1 −14, 5
s110 = −2.89 V̄ −130.0 −117.0 −105.0 −99.2 −93.5 −89.2
s111 = −2.89 Ū −53.1 −48.8 −43.2 −36.4 −30.8 −27.8
s201 = 1.30(M∗

33 − 1

2
M∗

11) 2.3 2.0 1.6 1.4 1.5 1.0
s210 = 2.24 M+

23 −1.9 1.3 3.7 3.8 3.5 4.3
s211 = 2.24 M+

13 −1.0 −1.3 −1.1 0.7 0.3 −0.5
s220 = 2.24 M+

12 31.6 29.6 25.5 24.2 22.9 20.4
s221 = 1.12 M∗

11 −1.6 −2.7 −3.1 −3.1 −5.0 −4.9

Extra-Model Harmonics

s301 −9.5 −7.9 −6.0 −6.1 −6.2 −6.1
s310 −15.7 −15.5 −16.5 −16.3 −16.0 −16.5
s311 −4.3 −5.6 −4.9 −4.5 −3.8 −3.4

σ ±0.4 ±0.3 ±0.3 ±0.3 ±0.2 ±0.2

From Eqs. (33) and (34) applied to the entire sphere
we find s310 = −15.3; t211 = 29.5. Comparing these es-
timates with the mean values s310 = −16.1; t211 = 29.0
from Tables 5–6 gives grounds to say that both above men-
tioned unexpected results are connected in such a way that
the values of Ω1 and M+

23 with different signs in different
hemispheres yield extra-model harmonics in proper motions
when analyzed by VSF on the entire sphere.

Now, in the galactocentric cylindrical coordinate system
we have (Miyamoto et al. 1993)

Ω1 − M+
32 = −∂VS

∂z
, (40)

where VS is the circular velocity of the motion of the local
reference frame around the Galactic center. This quantity is
identified with the Galaxy’s rotational velocity in the solar
neighborhood. Table 9 gives the numerical values for the
left-hand side of Eq. (40) that we obtained from different
samples of the UCAC4 catalog. We see from this table that
the vertical gradient of the Galaxy’s rotational velocity ∂VS

∂z

has different signs in the northern and southern Galactic
hemispheres, with the velocity decreasing with increasing
distance from the principal Galactic plane. It is also impor-
tant that the magnitudes of the gradient are approximately

identical for all the UCAC4 samples. Averaging these re-
sults over both hemispheres leads us to conclude that the
magnitude of the vertical gradient of the Galaxys rotational
lag for the stars from 11m to 16m is determined very reliably
and lies within the range

(39.0 ± 0.2) <

∣∣∣∣∂VS

∂z

∣∣∣∣ < (41.2 ± 0.3) km s−1 kpc. (41)

Note that the lower bound was calculated as the average of
three faint-star bins (14m–16m) while the upper bound cor-
responds to bright ( 11m–13m) UCAC4 stars.

There is extensive literature devoted to determining the
vertical gradient of the Galaxy’s rotational velocity (Majew-
ski 1993; Girard 2006). Note, however, that the first studies
of the Galaxy’s rotational lag were carried out by various
indirect methods. For example, Hanson (1989) proceeded
from the increase of the component V of solar motion rela-
tive to stars with their distances from the Galactic plane, and
found the gradient to be 30 km s−1 kpc−1 for the Galactic
thick disk (1–4 kpc). Based on the overall Galactic poten-
tial model, Girard (2006) offered a dynamical explanation
for the Galaxy’s rotational lag. Makarov & Murphy (2007)
hypothesized that the rotational lag also exists in the thin
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Table 7 Main and alternative solutions for the northern Galactic hemisphere stars of the UCAC4. Units are km s−1 kpc−1.

11m 12m 13m 14m 15m 16m

Main Solution

Ū 12.80 ± 0.7 8.9 ± 0.6 8.1 ± 0.4 7.3 ± 0.4 6.9 ± 0.3 6.8 ± 0.3
V̄ 22.06 ± 0.7 18.5 ± 0.6 15.0 ± 0.4 12.9 ± 0.4 11.4 ± 0.3 9.4 ± 0.3
W̄ 7.76 ± 0.5 6.4 ± 0.4 5.7 ± 0.3 4.9 ± 0.3 3.6 ± 0.2 2.6 ± 0.2
Ω1 21.71 ± 0.5 20.8 ± 0.5 19.6 ± 0.3 18.5 ± 0.3 18.1 ± 0.2 18.7 ± 0.2
Ω2 −10.47 ± 0.5 −12.0 ± 0.5 −9.4 ± 0.3 −5.8 ± 0.3 −3.7 ± 0.2 −2.8 ± 0.2
Ω3 −9.70 ± 0.3 −10.5 ± 0.2 −11.4 ± 0.2 −11.7 ± 0.1 −11.4 ± 0.1 −11.2 ± 0.1
M+

13 −5.17 ± 0.6 −7.8 ± 0.5 −6.8 ± 0.4 −5.1 ± 0.3 −4.1 ± 0.2 −3.6 ± 0.2
M+

23 −20.72 ± 0.6 −18.8 ± 0.5 −17.4 ± 0.4 −17.2 ± 0.3 −17.2 ± 0.2 −17.3 ± 0.2
M+

12 11.92 ± 0.4 12.0 ± 0.3 11.1 ± 0.2 10.3 ± 0.2 10.1 ± 0.1 9.0 ± 0.2
M∗

11 −1.76 ± 0.7 −1.2 ± 0.7 −2.2 ± 0.5 −3.3 ± 0.4 −6.1 ± 0.3 −6.4 ± 0.3
M∗

33 −14.48 ± 1.1 −11.0 ± 1.0 −8.3 ± 0.7 −8.7 ± 0.6 −9.8 ± 0.4 −9.7 ± 0.5

Alternative Solution

Ū 11.58 ± 1.1 10.9 ± 1.0 12.2 ± 0.7 14.2 ± 0.6 13.3 ± 0.4 11.8 ± 0.4
V̄ 18.72 ± 1.1 16.6 ± 1.0 14.1 ± 0.7 11.6 ± 0.6 11.2 ± 0.4 8.6 ± 0.4
W̄ 7.98 ± 1.6 4.7 ± 1.5 2.5 ± 1.0 0.4 ± 0.9 −1.3 ± 0.6 −2.1 ± 0.7
Ω1 23.76 ± 0.7 22.0 ± 0.7 20.2 ± 0.4 19.3 ± 0.4 18.3 ± 0.3 19.2 ± 0.3
Ω2 −11.23 ± 0.7 −10.8 ± 0.7 −7.1 ± 0.4 −1.9 ± 0.4 0.0 ± 0.3 0.1 ± 0.3
Ω3 −11.28 ± 1.1 −10.4 ± 1.0 −9.0 ± 0.7 −9.1 ± 0.6 −9.5 ± 0.4 −11.3 ± 0.5
M+

13 −6.49 ± 1.1 −5.7 ± 1.0 −2.5 ± 0.7 2.2 ± 0.6 2.6 ± 0.4 1.6 ± 0.5
M+

23 −24.36 ± 1.1 −20.8 ± 1.0 −18.4 ± 0.7 −18.7 ± 0.6 −17.4 ± 0.4 −18.2 ± 0.5
M+

12 11.26 ± 1.2 8.7 ± 1.0 8.9 ± 0.7 10.4 ± 0.6 10.7 ± 0.5 10.1 ± 0.5
M∗

11 −1.31 ± 2.3 2.6 ± 2.1 −0.2 ± 1.4 −7.2 ± 1.3 −12.8 ± 0.9 −14.2 ± 1.0
M∗

33 −13.64 ± 3.8 −12.7 ± 3.4 −14.3 ± 2.3 −20.7 ± 2.1 −23.9 ± 1.5 −23.9 ± 1.6

Table 8 Main and alternative solutions for the southern Galactic hemisphere stars of the UCAC4. Units are km s−1 kpc−1.

11m 12m 13m 14m 15m 16m

Main Solution

Ū 9.0 ± 0.7 5.5 ± 0.9 6.0 ± 0.7 4.6 ± 0.6 4.8 ± 0.4 4.8 ± 0.3
V̄ 20.5 ± 0.7 16.3 ± 0.9 11.8 ± 0.7 11.3 ± 0.6 9.7 ± 0.4 8.5 ± 0.3
W̄ 8.0 ± 0.5 6.0 ± 0.7 4.9 ± 0.5 3.6 ± 0.4 2.0 ± 0.3 0.6 ± 0.2
Ω1 −21.4 ± 0.6 −21.5 ± 0.7 −21.7 ± 0.5 −21.2 ± 0.4 −20.7 ± 0.3 −20.1 ± 0.2
Ω2 4.6 ± 0.6 5.0 ± 0.7 5.1 ± 0.5 5.6 ± 0.4 4.4 ± 0.3 3.3 ± 0.2
Ω3 −11.0 ± 0.3 −12.2 ± 0.4 −12.2 ± 0.3 −11.3 ± 0.2 −11.3 ± 0.1 −11.0 ± 0.1
M+

13 6.7 ± 0.6 8.6 ± 0.8 6.7 ± 0.6 6.9 ± 0.5 5.1 ± 0.3 4.0 ± 0.3
M+

23 20.1 ± 0.6 20.5 ± 0.8 22.9 ± 0.6 22.0 ± 0.5 21.5 ± 0.3 21.8 ± 0.3
M+

12 15.8 ± 0.4 14.2 ± 0.5 12.3 ± 0.4 11.4 ± 0.3 10.9 ± 0.2 9.5 ± 0.2
M∗

11 −2.4 ± 0.8 −5.6 ± 1.1 −4.4 ± 0.8 −2.7 ± 0.6 −2.4 ± 0.4 −1.7 ± 0.3
M∗

33 14.4 ± 1.2 13.0 ± 1.6 8.9 ± 1.2 10.6 ± 1.0 10.7 ± 0.6 11.0 ± 0.5

Alternative Solution

Ū 10.3 ± 1.2 6.6 ± 1.5 4.9 ± 1.1 5.0 ± 0.9 4.0 ± 0.6 4.8 ± 0.5
V̄ 19.4 ± 1.2 10.7 ± 1.5 10.3 ± 1.1 11.2 ± 0.9 8.5 ± 0.6 6.8 ± 0.5
W̄ 10.9 ± 1.8 3.9 ± 2.3 5.8 ± 1.7 3.6 ± 1.4 3.9 ± 0.9 3.5 ± 0.7
Ω1 −22.1 ± 0.8 −24.9 ± 1.0 −22.6 ± 0.8 −21.4 ± 0.6 −21.5 ± 0.4 −21.1 ± 0.3
Ω2 3.8 ± 0.8 4.4 ± 1.0 5.8 ± 0.8 5.4 ± 0.6 4.9 ± 0.4 3.3 ± 0.3
Ω3 −10.5 ± 1.2 −8.0 ± 1.6 −7.2 ± 1.2 −7.5 ± 0.9 −6.3 ± 0.6 −8.6 ± 0.5
M+

13 5.4 ± 1.2 7.6 ± 1.5 8.0 ± 1.2 6.5 ± 0.9 5.9 ± 0.6 4.1 ± 0.5
M+

23 21.3 ± 1.2 26.5 ± 1.5 24.6 ± 1.2 22.2 ± 0.9 22.9 ± 0.6 23.7 ± 0.5
M+

12 16.3 ± 1.3 17.9 ± 1.6 15.5 ± 1.2 13.4 ± 1.0 11.9 ± 0.7 10.9 ± 0.5
M∗

11 2.5 ± 2.5 −6.8 ± 3.3 −9.2 ± 2.5 −5.2 ± 2.0 −4.1 ± 1.3 0.1 ± 1.0
M∗

33 10.2 ± 4.2 17.0 ± 5.4 4.5 ± 4.1 9.5 ± 3.3 5.6 ± 2.2 5.3 ± 1.7

disk (200–300 pc). They found the gradient from Hipparcos
data to be 20 km s−1 kpc−1, which is completely confirmed

by our results (Vityazev & Tsvetkov 2012). In contrast to
the indirect methods listed above, our ZVSF approach can
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Table 9 Numerical values for the left-hand side of (40) obtained from the northern and southern Galactic hemispheres of the UCAC4.
Units are km s−1 kpc−1.

Catalogue UCAC4, Main Solution

11m 12m 13m 14m 15m 16m

(Ω1 − M+
23)N 42.4 ± 0.8 39.6 ± 0.7 36.9 ± 0.5 35.7 ± 0.4 35.2 ± 0.3 36.0 ± 0.3

(Ω1 − M+
23)S −41.5 ± 0.9 −42.1 ± 1.1 −44.6 ± 0.8 −43.2 ± 0.7 −42.3 ± 0.4 −41.9 ± 0.3∣∣∂VS

∂z

∣∣ 42.0 ± 0.6 40.8 ± 0.7 40.8 ± 0.5 39.4 ± 0.4 38.7 ± 0.3 39.0 ± 0.2

be classified as a direct method, because it detects the ver-
tical velocity gradient by analyzing the parameters of the
Ogorodnikov-Milne model applied separately to the north-
ern and southern Galactic hemispheres, where this gradient
retains its sign.

10 Conclusion

The main result of this paper is the development of a method
for kinematic studies of the proper motions of stars based
on the use of vector spherical functions. Two approaches
are proposed - full sphere and half sphere analysis. Appli-
cations of both techniques to the data from recent UCAC4
catalogue gave two kinds of information. The first one is
quite expected since it could be obtained with the traditional
LSM method applied for estimating kinematic parameters
of the 3-D Ogorodnikov-Milne model. As for these results,
we may say that the coordinates of the solar motion apex,
the Oort constants A and B; the angular speed of the local
Galactic rotation A − B; the slope of the local rotational
velocity curve A + B have been derived from stars from
11m to 16m. These estimates are of specific interest since
they show very noticeable trends when we go from bright to
faint stars (Table 4).

The second kind of results is unusual for traditional
techniques. Indeed, application of VSF to the data dis-
tributed over the entire sphere resulted in the detection
of significant harmonics that can not be explained by the
standard model. Furthermore, the zonal vector spherical
function used for the data in the northern and southern
hemispheres gave the second unexpected result: that of the
reversal of the signs of the parameters Ω1 and M+

23 when
passing from one hemispheres to another. While attempting
to explain both effects we succeeded to show that they show
up simultaneously and thus have one and the same physical
origin. An analysis of the difference of Ω1 and M+

23 in
the galactocentric coordinate system indicates that both

detected effects are associated with retardation of the speed
of the Galaxy rotation with increasing distance from the
principal Galactic plane. We derived the numerical estima-
tion ∼40 km s−1 kpc−1, which agrees well with our pre-
vious estimates based on Hipparcos, Tycho-2, and UCAC3
catalogues (Vityazev & Tsvetkov 2009, 2011, 2012). How-
ever, we do not rule out other possible explanations for the
extra-model harmonics on the full sphere in the kinematic
analysis with vector spherical functions.
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Brosche, P. 1966, Veröff. des Astron. Rechen-Inst. Heidelberg, 17,

1
Clube, S. V. M. 1972, MNRAS, 159, 289
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