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This paper presents the results of the comparison of the galactic reference frames

realized by the catalogues XPM and UCAC4. Based on about 40 million stars com-

mon to both catalogues, the systematic differences of the galactic coordinates and

proper motions have been derived for 12 magnitudes in 0.5m width bins with the

mean J-values from 10m.25 to 15m.75. The systematic differences were represented

by vector spherical harmonics, with the magnitude equation taken into considera-

tion. The mutual orientation of the frames was found to be at the level of 10 mas.

It is concluded that these differences are negligible in comparison with the accu-

racy of the implementation of the standard galactic coordinate system MAS 1958.

We investigated two features of the XPM catalogue. First, unlike the HCRF and

UCAC4 catalogues, whose proper motions are tied to the quasars and galaxies, the

XPM catalogue implements a reference system based only on galaxies. Second, the

XPM catalogue has two systems of proper motions—XPMx and XPMp, referred to

the two galaxy sub-catalogues of the project 2MASS—PSC and XSC. The study of

the differences XPMx−XPMp showed that they are free of the magnitude equation.

The speed of relative rotation of XPMx over XPMp was found to be 𝜔 = 0.453 ±
0.003 mas/year, which exceeds the residual rotation of the HCRF (0.25 mas/year).

Analysis of systematic differences XPMx−UCAC4 and XPMp−UCAC4 showed that

both frames XPMx and XPMp have an appreciable rotation speed relative to the

UCAC4 (hence the ICRF), especially large (up to 2 mas/year) for the brightest stars

in our range. This shows that a relatively high speed of rotation of the two frames

XPMx and XPMp with respect to the UCAC4 is a consequence of the transition from

a combined “quasar-galaxy” to a purely “galactic” reference system. It is shown

that the systematic difference between the proper motions of stars can be interpreted

within the Ogorodnikov–Milne kinematic model of the velocity field.
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1 INTRODUCTION

This article is devoted to deriving and analysing the sys-

tematic differences of the coordinates and proper motions

of the XPM (Fedorov, Akhmetov, Bobylev, & Bajkova,

2010; Fedorov, Myznikov, & Akhmetov, 2009) and UCAC4

(Zacharias et al., 2013) catalogues in the galactic coordi-

nate system. It is a continuation of the work of Vityazev and

Tsvetkov (2015b), which describes these catalogues and the

results of their comparison in the equatorial coordinate sys-

tem. As a rule, the comparison of the catalogues is fulfilled

in the equatorial coordinate system and, as far as we know,

there are no examples of systematic difference analysis in the

galactic system. However, the galactic coordinate system is

widely used in various problems of astronomy, such as the

study of galactic structure, stellar kinematics, and dynamics.

The currently used galactic coordinate system was introduced

by the International Astronomical Union in 1958 (Blaauw,

Gum, Pawsey, & Westerhout, 1960) based on a study of

the distribution of neutral hydrogen in the galaxy. In recent
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papers (Liu, Zhu, & Hu, 2011; Liu, Zhu, & Zhang, 2011), the

problem is posed of improving the galactic coordinate sys-

tem by identifying the galactic plane with new observational

data on the coordinates of the various objects in the infrared

range of the catalogue 2MASS (Skrutskie, Cutri, & Stiening,

2006) and radio frequency (Vollmer et al., 2010). All of these

motivate the study of different implementations of the galac-

tic coordinate system. In this paper, we solve this problem by

representing the systematic differences between the coordi-

nates and the proper motions by vector spherical harmonics

complemented with functions that take into account the mag-

nitude equation. Such expansions are made for two sets of

proper motions presented in the XPM catalogue.

The catalogue UCAC4 is constructed in the HCRF (Hip-

parcos Celestial Reference) system with the proper motions

tied to the quasars and galaxies (Kovalevsky et al., 1997). The

accuracy of the corrections applied to the proper motions of

H37 preliminary catalogue to tie it to the ICRF system is esti-

mated as ±0.25 mas/year. Obviously, it measures the residual

rotation of HCRF and UCAC4 with respect to the combined

quasar-galactic frame. Although quasars and galaxies can

theoretically provide a basis for the construction of inertial

reference systems, the difference in the specific observations

of these objects may lead to systematic differences in the

proper motions of stars (especially regarding the magnitude

equation). The use of all currently available observational

data suggests that the residual rotation of the HCRF system is

determined with an error of 0.1 mas/year (Bobylev, 2015).

Unlike UCAC4, where proper motions are defined in the

reference system implemented with the help of quasars and

galaxies, the main purpose of the XPM was to obtain the

absolute proper motions with respect to the extragalactic ref-

erence system, constructed on galaxies only. For this reason,

we study the expansion coefficients of systematic differences

in order to clarify the effects of the transition from the ref-

erence system constructed on galaxies and quasars (UCAC4)

to the reference system implemented with the help of galax-

ies (XPM). Moreover, since the proper motions of stars in the

galactic coordinate system are used for the analysis of stellar

kinematics, we solve the problem of reducing the kinematic

parameters of the Ogorodnikov–Milne velocity field from the

system of one catalogue to the system of another catalogue.

Special attention is paid to clarify the influence of systematic

differences on the estimation of the Oort constants.

2 REPRESENTATION OF SYSTEMATIC
DIFFERENCES WITH VECTOR SPHERICAL
HARMONICS AND LEGENDRE
POLYNOMIALS

The decomposition of systematic differences on the system

of complex vector spherical functions has been proposed

(Mignard & Froeschle, 2000; Mignard & Klioner, 2012;

Mignard & Morando, 1990). The real form of spherical har-

monics (henceforth VSH) was used in our previous papers

(Vityazev & Tsvetkov, 2013) without taking into account the

magnitude equation. In this paper, the systematic differences

between the XPM and UCAC4 catalogues are obtained by a

modified method based on real vector spherical harmonics

and Legendre polynomials to take into account the magnitude

equation—henceforth VSHL. This approach was developed

by us earlier (Vityazev & Tsvetkov, 2015a).

In this method, the vector field of longitude and latitude

differences 𝛥l cos b and 𝛥b, and the vector field of the proper

motions differences, 𝛥𝜇l cos b and 𝛥𝜇b, given by

𝛥F(l, b,m) =

{
𝛥l cos b el + 𝛥b eb,

𝛥𝜇l cos b el + 𝛥𝜇b eb,
(1)

are decomposed on the VSHL basis as follows:

𝛥F(l, b,m) =
∑
nkpr

tnkprTnkp(l, b)Qr(m̄)

+
∑
nkpr

snkprSnkp(l, b)Qr(m̄). (2)

In Equation 1, el and eb denote the unit vectors in the tan-

gential plane along the longitude and latitude directions. In

Equation 2, the toroidal (Tnkp(l, b)) and spheroidal (Snkp(l, b))
harmonics describe the dependence of systematic differences

on longitude and latitude, whereas the normalized Legendre

polynomials (Qr(m̄)) take into account the dependence of sys-

tematic differences on the brightness of stars. The expression

m̄ = 2
m − mmin

mmax − mmin

− 1 (3)

transforms the interval [mmin ≤ m ≤ mmax] into [−1 ≤ m̄ ≤

+1].
A list of 41 316 676 stars common to our catalogues was

compiled by the star identification procedure in the J band

(2MASS photometric system). We considered the stars in dif-

ferent catalogues identical if the position difference did not

exceed 500 mas and the J magnitude difference was less than

0.01. Actually, the magnitudes just coincided, and there were

no difficulties with the cross-identification of stars. For all

the stars in our sample, the galactic coordinates and proper

motions were calculated. The standard procedure to derive

positions and proper motions in galactic coordinate system

was used (ESA, 1997).

To derive the coefficients tnkpr and snkpr for the decom-

positions of the position and proper motion differences, we

averaged the values of the fields (1) in each of the 1200 pix-

els built by the Healpix procedure (Gorski et al., 2005), for

stars belonging to the 0.m5 wide bins from Jmin = 10m.25 to

Jmax = 15m.75. Then, the averaged values of the fields related

to the centres of the areas were represented by Equation 2.

A detailed description of this procedure is given elsewhere

(Vityazev & Tsvetkov, 2015a, 2015b). Compared to the tra-

ditional methods of using vector spherical harmonics, our

approach has two novel features: first, we determine the sig-

nificance of all the harmonics that can be implemented on

the selected pixels; and second, we introduce the magnitude

equation model and calculate its parameters. All the values
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of the coefficients tnkpr and snkpr are derived with a reliability

better than 97.9%. Tables A1 and A2 contain the coefficients

of 𝛥l cos b el + 𝛥b eb decompositions. Tables A3 and A4 list

the coefficients of the XPMx−UCAC4 decompositions, while

Tables A5 and A6 show the same for the XPMp−UCAC4

decompositions.

3 ANALYSIS OF THE XPM−UCAC4
COORDINATE SYSTEMATIC DIFFERENCES

In this section, using Tables A1 and A2, we investigate how

the systematic differences of longitudes and latitudes between

the XPM and UCAC4 may affect the relative orientation of

galactic reference frames implemented by these catalogues.

It is known (Froeschle & Kovalevsky, 1982) that the

mutual orientation of coordinate systems can be derived from

the analysis of the systematic coordinate differences. These

effects must also appear in the coefficients of expansion of

systematic differences on a system of orthogonal functions.

Within the model of rigid-body rotation, the connection of

the expansion coefficients and the angles of rotation of one

coordinate system relative to the other was found by Vityazev

(1994) for the scalar case. When using the complex vec-

tor spherical harmonics (Mignard & Morando, 1990), the

mutual orientation of reference systems related to the cat-

alogues under consideration is determined via the toroidal

coefficients of the first order. In the notation of the present

article (real vector spherical harmonics), the working for-

mulae establishing the ties between the components of the

rotation vector (rotation) and toroidal coefficients of the first

order are given in Vityazev and Tsvetkov (2009, 2013, 2014).

Returning to our catalogues, denote by 𝜀x, 𝜀y, 𝜀z the angles

to rotate the UCAC4 system to bring it into coincidence

with the the XPM system. With these designations, the

XPM−UCAC4 systematic difference of the galactic coordi-

nates are modelled by the following equations:

𝛥l cos b = 𝜀x sin b cos l + 𝜀y sin b sin l − 𝜀z cos b, (4)

𝛥b = −𝜀x sin l + 𝜀y cos l. (5)

For each value of the magnitude m, one may use the following

expressions to calculate the rotation angles via the toroidal

coefficients:

𝜀x = −t1,1,1(m)∕
√

8𝜋∕3, (6)

𝜀y = −t1,1,0(m)∕
√

8𝜋∕3, (7)

𝜀z = −t1,0,1(m)∕
√

8𝜋∕3, (8)

where

tnkp(m) =
∑

r
tnkpr Qr(m̄), (9)

while the value m̄ is determined by Equation 3.

The expressions (6)–(8) are easily derived by decomposing

the vector fields with the right-hand sides of Equations 4 and

5 in the system of vector spherical harmonics.

The angles of mutual orientation of the galactic frames real-

ized by the XPM and UCAC4 catalogues calculated from the

FIGURE 1 Mutual orientation angles to bring the system UCAC4 in

coincidence with the XPM system: 𝜀x – dashes, 𝜀y – dots, 𝜀z – solid line.

formulae (6)–(8) are shown in Figure 1. Here we see that the

angles of rotation around the axis OY depend on the bright-

ness of stars and are in the range 3.51±0.26–6.54±0.55 mas.

The angle of rotation around the axis OX is −4.58±0.16 mas,

and the angle of rotation around the Z-axis is equal to 6.55 ±
0.16 mas.

There is reason to believe (Liu, Zhu, & Hu, 2011; Liu, Zhu,

& Zhang, 2011) that the accuracy of fixing the axes of the

standard galactic coordinate system MAS 1958 (Blaauw et al.,

1960) was done within a few minutes of arc. Therefore, we can

say that the orientations of the XPM and UCAC4 galactic axes

are virtually identical, since the differences found (although

they have a high statistical reliability) are significantly less

than the precision of the standard galactic reference frame.

More details on this issue are given in the article by Vityazev

and Tsvetkov (2016).

4 ANALYSIS OF THE XPM−UCAC4
SYSTEMATIC DIFFERENCES OF THE
PROPER MOTIONS

The XPM catalogue contains two entries for the proper

motions (henceforth referred to as XPMx and XPMp) obtained

with the data from two catalogues of extended sources (XSC

and PSC) of the 2MASS project (Fedorov, Akhmetov, et al.,

2010; Fedorov, Myznikov, et al., 2009).

This section is devoted to the study of the systematic differ-

ences between the two variants of the XPM proper motions

(XPMx and XPMp) as well as how each variant differs from
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the UCAC4 proper motions. In addition, we will also show

how the results of the decomposition of the proper motions on

the VSHL can be used to reduce the values of the kinematic

parameters from the system of one catalogue to the system of

another catalogue.

4.1 Systematic differences of the proper motions
XPMx−XPMp

For a detailed study of the two variants of the proper motions

XPMx and XPMp in the galactic coordinate system, we

averaged the differences between them in each of the 1200

HealPix areas for stars belonging to the same intervals of

magnitudes in the J band used by us in the processing of

the differences XPM−UCAC4. Then, the average values of

the differences of the proper motions, referred to the cen-

tres of the pixels, were represented by Equation 2 as was

described by Vityazev and Tsvetkov (2015b). The toroidal

and spheroidal coefficients of these expansions are shown

in Table 1. The analysis of this table allows us to state the

following facts:

1. The systematic differences XPMx−XPMp do not depend

on the magnitude equation. This is evidenced by the zero

value of the index r of all toroidal and spheroidal coefficients.

2. In contrast to the equatorial coordinate system (Vityazev

& Tsvetkov, 2015b), the galactic zonal harmonics are not of

primary importance among all other harmonics. Apparently,

this is an evidence that the differences of coordinates of galax-

ies in the sub-catalogues XSC and PSC are not due to the

avoidance of external galaxies along the plane of the Milky

Way depending mainly on the galactic latitude, and particu-

larly strong at low galactic latitudes, but due to the specifics

of the observations in the 2MASS project in the equatorial

coordinate system.

3. The first-order toroidal coefficients of the XPMx−XPMp
systematic differences of the proper motions yield the compo-

nents of the vector field that is generated by the rotation of the

reference system XPMp about XPMx system with the angular

velocities 𝜔x, 𝜔y, 𝜔z:

𝛥𝜇l cos b = 𝜔x sin b cos l + 𝜔y sin b sin l − 𝜔z cos b, (10)

𝛥𝜇b = −𝜔x sin l + 𝜔y cos l, (11)

where

𝜔x = −t1,1,1,0(m)∕
√

8𝜋∕3, (12)

𝜔y = −t1,1,0,0(m)∕
√

8𝜋∕3, (13)

𝜔z = −t1,0,1,0(m)∕
√

8𝜋∕3 (14)

are the analogues of Equations 6–8.

4. It is obvious that the components of the angular speed

𝜔x, 𝜔y, and 𝜔z allow us to determine the coordinates of the

pole of the relative rotation:

Lrot = arctg

(
𝜔y

𝜔x

)
; (15)

Brot = arctg

⎛⎜⎜⎜⎝
𝜔z√

𝜔2
x + 𝜔2

y

⎞⎟⎟⎟⎠ . (16)

In addition, the full mutual angular speed of rotation about

the pole can be obtained from the formula

𝛺rot =
√

𝜔x2 + 𝜔y2 + 𝜔z2. (17)

The vector map of the field with components (10) and (11)

is shown in Figure 2. The coordinates of the rotation pole

turned out to be Lrot = 124.8◦ ± 0.5◦, Brot = 30.4◦ ± 0.4◦.

They are very close to the galactic coordinates of the north

pole of the equatorial coordinate system, L = 122.9◦, B =
27.1◦. The rotation is clockwise with angular velocity 𝜔 =
0.453 ± 0.003 mas/year, which exceeds the residual rotation

of the HCRF (0.25 mas/year). This fact is consistent with fig.

7 in Vityazev and Tsvetkov (2015b), which shows the vec-

tor field generated by the rotation of the system XPMp with

respect to XPMx in the equatorial coordinate system.

5. The vector map XPMx−XPMp generated by the vector

spherical harmonics higher than the first order is almost fully

determined by the large value of the second zonal harmonic

in the expansion of systematic differences in the equatorial

system: t201 = 2.88 ± 0.01 mas/year (Vityazev & Tsvetkov,

2015b). This map corresponds to the toroidal function

T𝛼
2,0,1

(𝛼, 𝛿) =
√

15

32𝜋
sin 2𝛿, (18)

TABLE 1 Values of toroidal tnkpr and spheroidal snkpr coefficients in representation of the differences XPMx−XPMp by VSHL

Value Value Value

Coeff. (mas/year) Coeff. (mas/year) Coeff. (mas/year)

t1,0,1,0 −0.94 ± 0.01 t2,2,0,0 −1.76 ± 0.01 t6,1,1,0 −0.23 ± 0.01

t1,1,0,0 −1.31 ± 0.01 t2,2,1,0 −0.75 ± 0.01 t6,2,0,0 0.27 ± 0.01

t1,1,1,0 0.91 ± 0.01 t3,0,1,0 0.33 ± 0.01 t6,4,0,0 0.24 ± 0.01

t2,0,1,0 −0.49 ± 0.01 t3,2,0,0 0.43 ± 0.01 t6,6,1,0 0.29 ± 0.01

t2,1,0,0 1.63 ± 0.01 t4,1,1,0 0.20 ± 0.01 t8,1,0,0 0.23 ± 0.01

t2,1,1,0 −1.32 ± 0.01 t4,4,1,0 0.32 ± 0.01 t55,37,1,0 −0.20 ± 0.01

s1,1,0,0 0.45 ± 0.01 s2,1,1,0 −0.43 ± 0.01 s3,3,1,0 0.22 ± 0.01

s1,1,1,0 −0.35 ± 0.01 s2,2,0,0 −0.47 ± 0.01 s5,0,1,0 −0.24 ± 0.01

s2,1,0,0 0.27 ± 0.01 s3,2,1,0 −0.23 ± 0.01 s7,0,1,0 0.24 ± 0.01
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FIGURE 2 Vector map generated by the rotation of the XPMp about the

XPMx system.

so in galactic coordinates we can see the vortex motion

around the north and south poles and zero velocities along

the celestial equator. This effect is strong enough because

it defines the general structure of the vector field calcu-

lated with all significant harmonics of systematic differences

XPMx−XPMp (Figure 3).

4.2 Systematic differences of the proper motions
XPMx−UCAC4 and XPMp−UCAC4

Now, using Equation 17 let us calculate the angular veloc-

ity of the XPM system’s rotation around the UCAC4 system.

Obviously, Equations 15 and 16 enable us to determine the

positions of the pole about which the coordinate systems

under consideration are involved in mutual spin. The speed of

rotation around the poles are shown in Figures 4–7 for stars of

different brightness values. From these figures, it follows that

the rate of relative rotation of the XPMx about UCAC4 frame

varies from 0.32 ± 0.05 to 1.78 ± 0.05 mas/year, and a simi-

lar rate for XPMp about UCAC4 changes from 0.54± 0.06 to

2.22 ± 0.05 mas/year.

As was shown in Vityazev and Tsvetkov (2015a), the spin of

the residual UCAC4 rotation practically reproduces the mea-

sure of the HIPPARCOS residual rotation (0.25 mas/year).

Thus, it can be argued that both galactic frames XPMx and

XPMp have significant residual speeds of rotation relative

to UCAC4 (hence the ICRF), especially for the brightest

stars of our range. Since, as was shown above, the relative

rotation XPMp around XPMx estimated as 𝜔 = 0.453 ±
0.003 mas/year, a relatively high rate of both frames XPMx
and XPMp with respect to the UCAC4, is caused not by dif-

ferent calibration of the proper motions on the data taken

from XSC and the PSC but by the general transition from

“quasar-galaxy” to the “galactic” reference system.

4.3 Kinematics of the XPM−UCAC4 systematic
differences of proper motions

Very often, the stellar kinematics is studied in the frames

of the Ogorodnikov–Milne model (du Mont, 1977; Ogorod-

FIGURE 3 Vector maps of the XPMx−XPMp systematic differences

calculated with different sets of harmonics. (Top) all significant harmonics

included; (Bottom) upper (n ≥ 2) harmonics alone are used.

FIGURE 4 Angular velocity of the UCAC4 rotation with respect to XPMx

about the poles with J-dependent coordinates shown in Figure 5.

nikov, 1965), which represents the velocity field by the

following expression:

V = V0 +𝛺 × r + M+ r, (19)

where V is the stellar velocity, V0 is the effect of the trans-

lational solar motion, 𝛺 is the angular velocity of rigid-body

rotation of the stellar system, and M+ is the symmetric veloc-

ity field deformation tensor.

The Ogorodnikov–Milne model contains 12 parameters:

U, V , W are the components of the velocity vector of

translational Solar motion V0 relative to the stars;
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FIGURE 5 J-dependent coordinates of the poles about which the UCAC4

system rotates with respect to XPMx.

FIGURE 6 Angular velocity of UCAC4 rotation with respect to XPMp

about the poles with J-dependent coordinates shown in Figure 7.

FIGURE 7 J-dependent coordinates of the poles about which the UCAC4

system rotates with respect to XPMp.

𝛺x, 𝛺y, 𝛺z are the components of the vector of rigid-body

rotation 𝛺;

M+
11

, M+
22

, M+
33

are the parameters of the tensor M+ that

describes the velocity field contraction–expansion along

the principal galactic axes;

M+
12

, M+
13

, M+
23

are the parameters of the tensor M+ that

describes the velocity field deformation in the principal

plane and in the two planes perpendicular to it.

Projecting (19) onto the unit vectors of the galactic coor-

dinate system yields (with r standing for the distance to the

star and  = 4.738 for converting dimensions mas/year into

km/s/kpc):

𝜇l cos b = U∕r sin l − V∕r cos l
−𝛺x sin b cos l −𝛺y sin b sin l +𝛺z cos b
− M+

13
sin b sin l + M+

23
sin b cos l

+ M+
12

cos b cos 2l − 1

2
M11 cos b sin 2l

+ 1

2
M+

22
cos b sin 2l, (20)

𝜇b = U∕r cos l sin b + V∕r sin l sin b − W∕r cos b
+𝛺x sin l −𝛺y cos l

− 1

2
M+

12
sin 2b sin 2l + M+

13
cos 2b cos l

+ M+
23

cos 2b sin l − 1

2
M+

11
sin 2b cos2 l

− 1

2
M+

22
sin 2b sin2 l + 1

2
M+

33
sin 2b. (21)

Since there is a linear relationship between the coefficients

M+
11

, M+
22

, and M+
33

, the substitutions M∗
11

= M+
11

− M+
22

and

M∗
33

= M+
33
−M+

22
(du Mont, 1977) are often introduced when

proper stellar motions are analysed.

In our previous article (Vityazev & Tsvetkov, 2009), the

relations connecting the expansion VSH coefficients with the

parameters of the Ogorodnikov–Milne model were given. It

is obvious that since the Ogorodnikov–Milne equations are

linear, the systematic differences of the proper motions may

be represented by the same equations with parameters 𝛥U∕r,

𝛥V∕r, ... , 𝛥M+
33

instead of U∕r, V∕r, ... ,M+
33

. In this way,

the connections of the systematic difference expansion coef-

ficients with the differences of the kinematic parameters can

be found, as shown in Table 2. It should be kept in mind that

the components of the solar motion enter into Equations 20

and 21 with the factor 1∕r. When no distances are available,

it is common practice to solve our equations assuming r = 1.

In this case, instead of components U,V ,W, we determine

the averaged values 𝛥⟨U∕r⟩, 𝛥⟨V∕r⟩, and 𝛥⟨W∕r⟩. Such an

approach causes small biases if the stars are taken from nar-

row interval of distances (or magnitudes). Now, we comment

on the term “glide”, which for the first time was introduced by

Mignard and Klioner (2012). They explain: “From the astro-

nomical point of view, this is a field associated to a motion

of the observer toward an apex, with all the stars showing

a kinematical stream in the opposite direction.” In this con-

nection, it must be said that the standard Ogorodnikov–Milne

kinematic model of proper motions always contains the solar

motion terms which are nothing but “glide” as was called by

Mignard and Klioner (with parameters G1 = −⟨U∕r⟩,G2 =
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TABLE 2 Connections between the differences of the
Ogorodnikov–Milne parameters and the coefficients of the VSH
expansion of systematic differences in the proper motions between the
two catalogues

VSH

coefficients Ogorodnikov–Milne parameters

t101

√
8𝜋∕3 𝛥𝜔3

t110

√
8𝜋∕3𝛥𝜔2

t111

√
8𝜋∕3𝛥𝜔1

s101 −
√

8𝜋∕3𝛥⟨W∕r⟩
s110 −

√
8𝜋∕3𝛥⟨V∕r⟩

s111 −
√

8𝜋∕3𝛥⟨U∕r⟩
s201 −

√
2𝜋∕15 (𝛥M+

11
+ 𝛥M+

22
− 2𝛥M+

33
)

s210

√
8𝜋∕5𝛥M+

23

s211

√
8𝜋∕5𝛥M+

13

s220

√
8𝜋∕5𝛥M+

12

s221

√
2𝜋∕5 (𝛥M+

11
− 𝛥M+

22
)

−⟨V∕r⟩,G3 = −⟨W∕r⟩). Indeed, the physical meaning of the

first-order spheroidal harmonics in terms of the glide compo-

nents is clarified in Table 2. Within 1 𝜎 precision, the glide

parameters for XPMx−UCAC4 and XPMp−UCAC4 turned

out to be coincident. Their dependence on the magnitude is

shown in Figure 8.

Now, we consider the influence of the XPM−UCAC4 sys-

tematic differences of the proper motions on the numerical

values of the Oort constants A = M+
12

and B = 𝜔3 derived

from each catalogue. Based on the data in Table 2, it can be

shown that the differences between the values of the constants

Oort 𝛥A and 𝛥B obtained in the systems of two different cat-

alogues are connected with the expansion coefficients in the

following way:

𝛥A(m) =  s2,2,0(m)∕
√

8𝜋∕5, (22)

𝛥B(m) =  t1,0,1(m)∕
√

8𝜋∕3, (23)

where

s2,2,0(m) =
∑

r
s2,2,0,r Qr(m̄), (24)

t1,0,1(m) =
∑

r
t1,0,1,r Qr(m̄). (25)

Using these formulae, we calculated the m-dependent dif-

ferences 𝛥A(m) and 𝛥B(m) from the VSHL coefficients which

correspond to the systematic differences of the proper motions

XPMx−UCAC4 and XPMp−UCAC4. The results are shown

in Figures 9 and 11. In turn, the m-dependent differences and

the sums of these values are shown in Figures 10 and 12.

They can be considered as the reductions of A and B and of

A − B, A + B in the translation them from UCAC4 system to

the XPMx and XPMp systems. At the same time, as we know,

the difference A − B is used to determine the period of the

galaxy rotation in the solar neighbourhood, and the sum A+B
determines the slope of the rotation curve of the galaxy.

Analysis of these results gives us the following information:

1. In case of XPMx−UCAC4, the difference of the Oort

coefficients 𝛥B ranges from −1.49 ± 0.34 to 3.07 ± 0.34,

FIGURE 8 Glide parameters G1 (dashed line), G2 (points), G3 (solid line)

versus magnitudes for XPMp−UCAC4 and XPMx−UCAC4 differences.

km/s/kpc, passing through zero value at J = 13.m5. In contrast

to the sharp change of the difference 𝛥B in the transition to

fainter stars, the difference of the Oort coefficient 𝛥A remains

practically constant at −2.1 ± 0.2 km/s/kpc in the range of

J = 11m to J = 15m.

2. In case of XPMp−UCAC4, the differences of the

Oort coefficients 𝛥B range from −0.10 ± 0.34 to 4.49 ±
0.34 km/s/kpc, passing through a zero value at J = 15.m 0.

The values 𝛥B lie in the range of −2.24 ± 0.34 to −0.65 ±
0.24 km/s/kpc.

3. In general, it can be assumed that, with respect to the

parameter B, the XPMx and XPMp systems are in good agree-

ment with UCAC4 system for faint stars in the range of J =
13m − 16m and much worse for the brightest stars in the range

of J = 10m − 13m. The differences of these systems in rela-

tion to the Oort parameter A are minimal for the faintest stars

at J = 15m − 16m.

4. It must be said that the dependence of Oort constants A
and B and consequently A − B and A + B on magnitude has

no physical reason. This is nothing but the consequences of

the astrometric measurement techniques when the precision

of position determinations depends on brightness of stars.

The magnitude equation is inevitable error in photographic

catalogues.

Note that the discrepancies between XPMx and XPMp
affect the results of the kinematic analysis of the proper

motions fulfilled in the systems of these catalogues. Really,

from Equations 22 and 23 we get 𝛥A = −0.71 ±
0.02 km/s/kpc; 𝛥B = −1.11 ± 0.02 km/s/kpc. When the
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FIGURE 9 𝛥A (dashed line) and 𝛥B (solid line) versus the magnitudes for

XPMx−UCAC4 differences.

UCAC4 is used, the root mean square error in determin-

ing the parameters of the Oort constants are at the level of

0.1–0.2 km/s/kpc, which is significantly less than the differ-

ences found here. This suggests that the systematic differ-

ences in proper motions XPMx−XPMp can lead to significant

changes in estimates of the Oort constants.

5 SYSTEMATIC DIFFERENCES IN THE B
AND R PHOTOMETRIC BANDS

Since XPM and UCAC4 are optical catalogues, it is natural

to determine the magnitude equation in standard photometric

systems B (440 nm), V (550 nm), or R (640 nm). To do this,

it is imperative that information about the magnitude for each

star in the same photometric band should be taken from the

same source. However, the UCAC4 catalogue provides the

values of B, V , and R borrowed from the AAVSO Photometric

All-Sky Survey (Henden, Levine, Terrell, Smith, & Welch,

2012), and the XPM catalogue gives the values of the B and R
taken from the USNO-A2.0 (Monet, 1998). Thus, for our pur-

poses, the bands B and R are common only, but, unfortunately,

are not homogeneous. The UCAC4 authors write: “UCAC4

is not a photometric catalog”, and the PPMXL authors warn:

“Magnitudes from USNO-B should be used with care”. For

this reason, it is dangerous to use such photometry for the

identification of stars as well as for deriving the magnitude

equation.

In contrast, our catalogues provide the estimates of the

brightness of stars borrowed from the 2MASS catalogue. In

particular, in both catalogues the magnitudes in the J band

FIGURE 10 (𝛥A + 𝛥B) (dashed line) and (𝛥A − 𝛥B) (solid line) versus the

magnitudes for XPMx−UCAC4 differences.

FIGURE 11 𝛥A (dashed line) and 𝛥B (solid line) versus the magnitudes for

XPMp−UCAC4 differences.

(1280 nm) are available. This justifies the determination of the

magnitude equation we have derived in this band. In order to

apply the results in the B and R bands, one must have the con-

version formulae between the various magnitude bands. We

obtained them from the data in each catalogue.
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FIGURE 12 (𝛥A + 𝛥B) (dashed line) and (𝛥A − 𝛥B) (solid line) versus the

magnitudes for XPMp−UCAC4 differences.

For this purpose, we selected the stars with the available J,

B, and R magnitudes, and for all the stars in narrow (0.1m)
zones of J magnitudes, the average values of B and R as

well as their standard deviations from the mean values were

found. After that, the mean values obtained were smoothed by

the moving five-point averaging filter, and from the resulting

series, the values over 0.5m intervals were extracted. These

were approximated by linear functions, which allowed us to

link the magnitudes in the B, R, and J bands.

The equation derived from the UCAC4 turned out to be

B = (0.726 ± 0.015)J + (6.300 ± 0.190),
10.25 ≤ J ≤ 15.75; (26)

J = (1.378 ± 0.028)B − (8.680 ± 0.316),
13.74 ≤ B ≤ 17.74; (27)

R = (0.833 ± 0.011)J + (3.725 ± 0.144),
10.25 ≤ J ≤ 15.75; (28)

J = (1.200 ± 0.016)R − (4.471 ± 0.183),
12.26 ≤ R ≤ 16.85. (29)

The analogous equations for the catalogue XPM look as

follows:

B = (0.778 ± 0.005)J + (6.233 ± 0.063),
10.25 ≤ J ≤ 15.75; (30)

J = (1.285 ± 0.008)B − (8.011 ± 0.094),
14.21 ≤ B ≤ 18.49; (31)

R = (0.896 ± 0.005)J + (2.889 ± 0.068),
10.25 ≤ J ≤ 15.75; (32)

J = (1.117 ± 0.006)R − (3.226 ± 0.178),
12.07 ≤ R ≤ 17.00. (33)

Thus, to reduce the UCAC4 positions and proper motions

into system of the XPM catalogue on the B or R bands, one

must determine the corresponding J magnitudes using for-

mulae (27) and (29), and substitute the received J values in

Equation 3. Obviously, when solving the inverse problem, that

is, transition from XPM to UCAC4 system, it is necessary to

calculate the J from Equations 31 and 33.

6 CONCLUSIONS

As mentioned above, we have already carried out the com-

parison of the catalogues XPM and UCAC4 in the equatorial

coordinate system (Vityazev & Tsvetkov, 2015b). For this rea-

son, it is appropriate to state explicitly the correlation and

difference with current work. In fact, the papers are corre-

lated because similar mathematical methods of analysis based

on combination of VSH and Legendre polynomials have been

used. At the same time, the papers are different because, in

contrast to metrological interpretation of the VSH coefficients

(orientation and rotation), in case of equatorial coordinate

system the kinematical interpretation of the VSH coefficients

(glide parameters, Oort constants) was done in case of galactic

coordinate system.

In the present work, for the first time, the systematic dif-

ferences between the coordinates and the proper motions of

the XPM and UCAC4 catalogues in the Galactic coordinate

system were obtained. The representation of the systematic

differences by vector spherical harmonics with the magnitude

equation taken into consideration was made for the purpose.

The detection of significant harmonics was made at the level

exceeding 97.7%.

Analysis of systematic differences in the galactic coordi-

nates allows us to find the discrepancies between the galactic

coordinate frames, which are implemented by various cata-

logues. In this connection, we estimated that the orientation

angles of the XPM and UCAC4 galactic frames did not exceed

10 mas, while the new versions of the galactic coordinate

system are believed to deviate from the standard version intro-

duced by IAU in 1958 at few minutes of arc (Liu, Zhu, & Hu,

2011; Liu, Zhu, & Zhang, 2011). For this reason, it can be said

that the differences of the XPM and UCAC4 galactic coordi-

nate frames are negligible compared to the precision of the

current galactic coordinate system.

Catalogue XPM has two features. First, it is based on the

galaxies and does not use a reference system implemented

on quasars. Second, the XPM catalogue provides two sys-

tems of proper motions—XPMx and XPMp—derived from

two catalogues XSC and the PSC of the 2MASS project. For

this reason, we made the expansion of the XPMx−XPMp,

XPMx−UCAC4, and XPMp−UCAC4 systematic differences

on orthogonal functions.
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Upon close examinations of the differences XPMx−XPMp,

we found that they are free from the magnitude equation and

do not show a distinct dependence on the galactic latitude. In

addition, we have found that the systems XPMx and XPMp
are in mutual rotation around the pole the positions of which

is close to the north pole of the equatorial coordinate system.

This suggests that the differences of coordinates of galaxies in

the catalogues XSC and the PSC are caused not by the effects

of the external galaxies avoidance along the galactic plane

that would manifest themselves in the galactic coordinate sys-

tem, but by the specifics of the project 2MASS methods of

measurement in the equatorial coordinate system.

Study of systematic differences XPMx−UCAC4 and

XPMp−UCAC4 shows that XPMx and XPMp systems rotate

relative to the UCAC4 system. The rotation speed changes in

different groups of magnitudes. In our opinion, the high rate

of both frames XPMx and XPMp relative to UCAC4 is caused

by the general transition from the combined “quasar-galaxy"

to the pure “galactic" reference system.

Besides this, it was shown that the systematic differences

between the proper motions help us to see how differ-

ent the kinematical parameters derived from the catalogues

under consideration can be. In particular, the differences

XPMx−XPMp with respect to the Oort constant A produce the

least effect for the faintest stars J = 15m − 16m. On the other

hand, with respect to Oort constant B, the XPMx and XPMp
systems are in good agreement with UCAC4 system for faint

stars in the range J = 13m–16m and in much worse agreement

for the bright stars in the range of J = 10m–13m.

The results obtained in the study of systematic differences

of positions and proper motions of the XPM and UCAC4

catalogues in the galactic and equatorial coordinate systems

(Vityazev & Tsvetkov, 2015b) show that the transition from a

quasi-inertial frame of reference, based on quasars and galax-

ies (UCAC4), to the reference system based on the galaxies

(XPM) leads to noticeable systematic differences of coordi-

nates and proper motions of these two catalogues.
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APPENDIX: COEFFICIENTS OF THE VSHL
SYSTEMATIC DIFFERENCE
DECOMPOSITIONS

TABLE A1 The values of toroidal tnkpr coefficients in the VSHL expansion of the XPM−UCAC4 field 𝛥l cos b el + 𝛥b eb

Value Value Value

Coeff. (mas) Coeff. (mas) Coeff. (mas)

t1,0,1,0 −26.75 ± 0.65 t3,3,0,1 −3.44 ± 0.76 t5,5,0,0 12.97 ± 0.65

t1,1,0,0 −22.86 ± 0.69 t3,3,0,2 1.71 ± 0.75 t5,5,0,1 −4.83 ± 0.76

t1,1,0,1 −1.30 ± 0.76 t3,3,1,0 8.79 ± 0.66 t6,3,0,0 5.41 ± 0.72

t1,1,0,2 2.81 ± 0.75 t4,3,1,0 6.86 ± 0.65 t6,3,0,1 −1.93 ± 0.79

t1,1,1,0 18.71 ± 0.66 t4,3,1,1 −4.10 ± 0.76 t6,3,0,2 2.24 ± 0.78

t2,0,1,0 −11.05 ± 0.65 t5,0,1,0 −9.27 ± 0.69 t6,5,0,0 3.71 ± 0.65

t2,1,0,0 27.92 ± 0.69 t5,0,1,1 6.08 ± 0.76 t6,5,0,1 −4.97 ± 0.76

t2,1,0,1 2.18 ± 0.90 t5,0,1,2 −1.82 ± 0.75 t6,6,0,0 −5.66 ± 0.69

t2,1,0,2 −4.63 ± 0.75 t5,1,0,0 13.97 ± 0.71 t6,6,0,1 5.46 ± 0.76

t2,1,0,3 −2.67 ± 0.79 t5,1,0,1 −5.58 ± 0.82 t6,6,0,2 −2.40 ± 0.75

t2,1,1,0 −18.42 ± 0.65 t5,1,1,0 −6.21 ± 0.76 t8,4,1,0 4.69 ± 0.65

t2,1,1,1 −2.36 ± 0.76 t5,2,0,0 −10.70 ± 0.74 t8,6,1,0 7.46 ± 0.65

t2,2,0,0 −35.89 ± 0.69 t5,2,0,1 6.19 ± 0.86 t8,6,1,1 −4.14 ± 0.76

t2,2,0,2 2.15 ± 0.75 t5,2,1,0 −7.66 ± 0.69 t8,7,1,0 −6.30 ± 0.65

t2,2,1,0 −16.97 ± 0.66 t5,2,1,1 4.66 ± 0.76 t8,7,1,1 2.15 ± 0.76

t2,2,1,1 2.42 ± 0.76 t5,2,1,2 −2.01 ± 0.75 t8,8,0,0 −6.70 ± 0.69

t3,0,1,0 −9.22 ± 0.65 t5,3,1,0 −9.78 ± 0.66 t8,8,0,1 2.07 ± 0.76

t3,0,1,1 2.86 ± 0.76 t5,3,1,1 3.10 ± 0.76 t8,8,0,2 −1.58 ± 0.75

t3,2,0,0 −14.00 ± 0.66 t5,4,0,0 −16.43 ± 0.69 t8,8,1,0 7.85 ± 0.65

t3,2,0,1 3.50 ± 0.77 t5,4,0,1 7.58 ± 0.76 t8,8,1,1 −2.72 ± 0.76

t3,2,1,1 −6.31 ± 0.76 t5,4,0,2 −2.88 ± 0.75 t17,17,1,0 6.99 ± 0.65

t3,2,1,2 2.52 ± 0.72 t5,4,1,0 10.46 ± 0.65

t3,3,0,0 6.98 ± 0.69 t5,4,1,1 −1.69 ± 0.76
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TABLE A2 Values of spheroidal snkpr coefficients in the VSHL expansion of the XPM−UCAC4 field 𝛥l cos b el + 𝛥b eb

Value Value Value

Coeff. (mas) Coeff. (mas) Coeff. (mas)

s1,0,1,0 11.01 ± 0.65 s3,2,1,1 −9.43 ± 0.76 s8,1,0,0 5.39 ± 0.72

s1,0,1,1 −4.86 ± 0.76 s3,2,1,2 4.74 ± 0.75 s8,1,0,1 −4.23 ± 0.83

s1,1,0,0 9.42 ± 0.69 s3,3,1,0 −3.65 ± 0.69 s8,1,1,0 −4.26 ± 0.73

s1,1,0,1 12.88 ± 0.76 s3,3,1,1 15.57 ± 0.76 s8,1,1,1 4.01 ± 0.80

s1,1,0,2 −11.14 ± 0.75 s3,3,1,2 −7.50 ± 0.75 s8,1,1,2 −2.15 ± 0.79

s1,1,1,0 −9.60 ± 0.70 s4,1,0,0 4.06 ± 0.73 s8,6,1,0 3.51 ± 0.69

s1,1,1,1 −5.05 ± 0.76 s4,1,0,1 −7.39 ± 0.84 s8,6,1,1 −5.70 ± 0.76

s1,1,1,2 4.77 ± 0.75 s4,4,1,0 6.05 ± 0.65 s8,6,1,2 1.57 ± 0.75

s2,1,0,0 13.06 ± 0.70 s5,0,1,0 −3.95 ± 0.69 s9,0,1,0 −4.91 ± 0.65

s2,1,0,1 −7.32 ± 0.77 s5,0,1,2 2.10 ± 0.75 s9,2,1,0 4.14 ± 0.65

s2,1,0,2 2.44 ± 0.76 s5,4,0,0 9.08 ± 0.65 s9,2,1,1 −4.52 ± 0.76

s2,1,1,0 −11.27 ± 0.66 s5,4,0,1 −3.76 ± 0.76 s10,10,0,0 6.75 ± 0.65

s2,1,1,1 5.82 ± 0.76 s6,1,0,0 −8.13 ± 0.80 s10,10,0,1 −2.52 ± 0.76

s2,2,0,0 −9.59 ± 0.65 s6,1,0,1 3.92 ± 0.92 s11,0,1,0 4.26 ± 0.65

s2,2,0,1 8.55 ± 0.76 s6,2,0,0 6.84 ± 0.69 s13,5,1,0 5.70 ± 0.69

s2,2,1,0 −7.80 ± 0.66 s6,2,0,1 −5.07 ± 0.76 s13,5,1,1 −4.37 ± 0.76

s2,2,1,1 2.91 ± 0.76 s6,2,0,2 1.86 ± 0.75 s13,5,1,2 2.23 ± 0.75

s3,0,1,0 12.85 ± 0.69 s7,0,1,0 3.54 ± 0.69 s21,13,0,0 −6.73 ± 0.65

s3,0,1,1 −12.05 ± 0.76 s7,0,1,1 3.88 ± 0.76 s21,13,0,1 3.77 ± 0.76

s3,0,1,2 7.61 ± 0.75 s7,0,1,2 −2.61 ± 0.75 s55,38,0,0 −4.58 ± 0.70

s3,1,0,0 −5.69 ± 0.65 s7,1,1,0 2.64 ± 0.69 s55,38,0,1 3.85 ± 0.77

s3,1,0,1 4.60 ± 0.76 s7,1,1,1 −6.24 ± 0.76 s55,38,0,2 −2.12 ± 0.76

s3,2,0,0 8.78 ± 0.70 s7,1,1,2 3.01 ± 0.75 s56,39,1,0 2.51 ± 0.78

s3,2,0,1 −16.65 ± 0.77 s7,6,1,0 −3.03 ± 0.69 s56,39,1,1 2.35 ± 0.86

s3,2,0,2 10.83 ± 0.76 s7,6,1,1 7.15 ± 0.76 s56,39,1,2 −2.40 ± 0.84

s3,2,1,0 2.70 ± 0.69 s7,6,1,2 −3.89 ± 0.75

TABLE A3 Values of toroidal tnkpr coefficients in the VSHL expansion of the XPMx−UCAC4 field 𝛥𝜇l cos b el + 𝛥𝜇b eb

Coeff. Value Coeff. Value Coeff. Value

tnkpr (mas/year) tnkpr (mas/year) tnkpr (mas/year)

t1,0,1,0 0.53 ± 0.06 t3,0,1,0 −0.15 ± 0.06 t5,1,1,1 −0.23 ± 0.06

t1,0,1,1 −1.13 ± 0.08 t3,0,1,1 0.51 ± 0.06 t5,2,0,0 −0.45 ± 0.06

t1,0,1,3 0.16 ± 0.07 t3,1,0,0 −0.31 ± 0.06 t5,2,0,1 0.48 ± 0.06

t1,1,0,0 3.26 ± 0.06 t3,1,0,1 −0.21 ± 0.06 t5,2,1,0 −0.81 ± 0.07

t1,1,0,1 −1.68 ± 0.08 t3,1,0,2 0.18 ± 0.06 t5,2,1,1 0.45 ± 0.07

t1,1,0,3 0.17 ± 0.07 t3,2,0,0 −0.98 ± 0.06 t5,2,1,2 −0.25 ± 0.07

t1,1,1,0 −1.21 ± 0.06 t3,2,0,1 0.41 ± 0.06 t5,4,0,0 −0.78 ± 0.06

t1,1,1,1 1.24 ± 0.06 t3,3,0,0 0.77 ± 0.06 t5,4,0,1 0.27 ± 0.06

t1,1,1,2 −0.28 ± 0.06 t3,3,0,1 −0.16 ± 0.06 t5,4,0,2 −0.20 ± 0.06

t2,0,1,0 −0.63 ± 0.06 t3,3,1,0 0.53 ± 0.06 t6,1,0,0 0.66 ± 0.06

t2,0,1,1 0.19 ± 0.06 t3,3,1,2 −0.13 ± 0.06 t6,3,1,0 −0.60 ± 0.07

t2,1,0,0 0.71 ± 0.06 t4,1,0,0 −0.76 ± 0.06 t6,3,1,1 0.22 ± 0.08

t2,1,0,1 −0.45 ± 0.06 t4,1,0,1 0.55 ± 0.07 t7,2,1,0 0.30 ± 0.07

t2,1,0,2 −0.20 ± 0.06 t4,2,0,0 0.54 ± 0.06 t7,2,1,1 0.32 ± 0.08

t2,2,0,0 −0.72 ± 0.06 t4,3,1,0 1.01 ± 0.06 t8,5,1,0 −0.58 ± 0.06

t2,2,0,1 0.38 ± 0.06 t4,3,1,1 −0.50 ± 0.06 t8,5,1,1 0.19 ± 0.06

t2,2,0,2 0.20 ± 0.06 t5,0,1,0 −0.80 ± 0.06 t9,0,1,0 −0.51 ± 0.06

t2,2,1,0 −0.78 ± 0.06 t5,0,1,1 0.39 ± 0.06 t14,12,0,0 −0.67 ± 0.06

t2,2,1,1 0.42 ± 0.06 t5,0,1,2 −0.13 ± 0.06 t25,22,1,0 0.53 ± 0.06

t2,2,1,2 −0.17 ± 0.06 t5,1,1,0 0.52 ± 0.06 t52,39,0,0 0.63 ± 0.06
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TABLE A4 Values of spheroidal snkpr coefficients in the VSHL expansion of the XPMx−UCAC4 field 𝛥𝜇l cos b el + 𝛥𝜇b eb

Value Value Value

Coeff. (mas/year) Coeff. (mas/year) Coeff. (mas/year)

s1,0,1,0 −0.28 ± 0.06 s3,2,1,0 1.38 ± 0.06 s7,5,1,0 −0.55 ± 0.06

s1,0,1,1 −1.00 ± 0.06 s3,2,1,1 −0.31 ± 0.06 s8,6,1,0 0.60 ± 0.06

s1,0,1,2 0.27 ± 0.06 s3,2,1,2 0.15 ± 0.06 s8,6,1,1 −0.36 ± 0.06

s1,1,0,0 −2.38 ± 0.06 s3,3,1,0 −2.18 ± 0.06 s9,7,1,0 0.75 ± 0.06

s1,1,0,3 −0.23 ± 0.06 s3,3,1,1 0.54 ± 0.06 s10,0,1,0 −0.56 ± 0.06

s1,1,1,0 0.33 ± 0.06 s3,3,1,2 −0.13 ± 0.06 s10,0,1,1 0.21 ± 0.06

s1,1,1,1 0.77 ± 0.06 s4,0,1,0 −0.98 ± 0.06 s10,3,1,0 0.53 ± 0.06

s2,0,1,0 −0.62 ± 0.06 s4,1,0,0 −0.50 ± 0.06 s10,6,1,0 −0.43 ± 0.06

s2,1,0,0 0.94 ± 0.06 s4,1,0,1 −0.34 ± 0.06 s10,8,0,0 −0.71 ± 0.06

s2,1,0,1 −0.18 ± 0.08 s4,1,0,2 0.20 ± 0.06 s10,10,0,0 0.83 ± 0.06

s2,1,0,3 −0.18 ± 0.07 s4,2,0,0 −0.89 ± 0.06 s13,5,1,0 0.40 ± 0.06

s2,1,1,0 −0.83 ± 0.06 s4,2,0,1 0.22 ± 0.06 s13,5,1,1 −0.39 ± 0.06

s2,1,1,1 −0.30 ± 0.06 s4,2,0,2 −0.14 ± 0.06 s13,5,1,2 0.18 ± 0.06

s2,2,0,0 −1.42 ± 0.06 s4,3,1,0 1.10 ± 0.06 s13,12,0,0 −0.48 ± 0.06

s2,2,0,1 0.15 ± 0.08 s4,4,0,0 0.88 ± 0.06 s13,13,1,0 0.60 ± 0.06

s2,2,0,3 0.15 ± 0.07 s5,1,0,0 0.74 ± 0.06 s20,12,1,0 0.38 ± 0.06

s3,0,1,0 1.73 ± 0.06 s5,1,0,1 −0.27 ± 0.07 s20,12,1,1 −0.33 ± 0.06

s3,0,1,1 −0.22 ± 0.06 s5,1,1,0 −0.61 ± 0.06 s20,12,1,2 0.19 ± 0.06

s3,0,1,2 0.37 ± 0.06 s5,4,0,0 −0.37 ± 0.06 s52,39,0,0 −0.47 ± 0.06

s3,1,0,0 −0.69 ± 0.06 s5,4,0,1 −0.29 ± 0.06 s53,38,0,0 0.74 ± 0.07

s3,1,0,1 0.47 ± 0.06 s6,6,1,0 −0.51 ± 0.06 s55,38,0,0 −0.44 ± 0.06

s3,2,0,0 2.44 ± 0.06 s7,1,1,0 0.38 ± 0.06 s55,38,0,1 0.28 ± 0.07

s3,2,0,1 −0.87 ± 0.07 s7,1,1,1 −0.39 ± 0.06 s55,38,0,2 −0.17 ± 0.06

s3,2,0,2 0.32 ± 0.06 s7,1,1,2 0.15 ± 0.06

TABLE A5 Values of toroidal tnkpr coefficients in the VSHL expansion of the XPMp−UCAC4 field 𝛥𝜇l cos b el + 𝛥𝜇b eb

Value Value Value

Coeff. (mas/year) Coeff. (mas/year) Coeff. (mas/year)

t1,0,1,0 1.46 ± 0.06 t3,0,1,1 0.51 ± 0.06 t5,2,1,0 −0.81 ± 0.07

t1,0,1,1 −1.13 ± 0.08 t3,2,0,0 −1.41 ± 0.06 t5,2,1,1 0.45 ± 0.07

t1,0,1,3 0.16 ± 0.07 t3,2,0,1 0.41 ± 0.06 t5,2,1,2 −0.25 ± 0.07

t1,1,0,0 4.57 ± 0.06 t3,3,0,0 0.71 ± 0.06 t5,4,0,0 −0.78 ± 0.06

t1,1,0,1 −1.67 ± 0.08 t3,3,0,1 −0.16 ± 0.07 t5,4,0,1 0.27 ± 0.06

t1,1,0,3 0.17 ± 0.07 t3,3,1,0 0.58 ± 0.06 t5,4,0,2 −0.20 ± 0.06

t1,1,1,0 −2.15 ± 0.06 t4,1,0,0 −0.89 ± 0.07 t6,1,0,0 0.84 ± 0.07

t1,1,1,1 1.24 ± 0.06 t4,1,0,1 0.68 ± 0.07 t6,1,0,1 −0.27 ± 0.07

t1,1,1,2 −0.28 ± 0.06 t4,2,0,0 0.65 ± 0.06 t7,2,1,0 0.30 ± 0.07

t2,1,0,0 −0.94 ± 0.06 t4,3,1,0 0.93 ± 0.06 t7,2,1,1 0.32 ± 0.08

t2,1,0,1 −0.43 ± 0.07 t4,3,1,1 −0.50 ± 0.07 t8,5,1,0 −0.64 ± 0.06

t2,1,0,2 −0.21 ± 0.06 t5,0,1,0 −0.69 ± 0.06 t8,5,1,1 0.20 ± 0.06

t2,1,1,0 0.96 ± 0.06 t5,0,1,1 0.39 ± 0.06 t9,0,1,0 −0.52 ± 0.06

t2,1,1,1 −0.19 ± 0.07 t5,0,1,2 −0.13 ± 0.06 t14,12,0,0 −0.68 ± 0.06

t2,2,0,0 1.03 ± 0.06 t5,1,1,0 0.62 ± 0.06 t19,10,1,0 −0.47 ± 0.06

t2,2,0,1 0.38 ± 0.06 t5,1,1,1 −0.23 ± 0.07 t25,22,1,0 0.57 ± 0.06

t2,2,0,2 0.20 ± 0.06 t5,2,0,0 −0.42 ± 0.06 t52,39,0,0 0.70 ± 0.06

t3,0,1,0 −0.47 ± 0.06 t5,2,0,1 0.48 ± 0.06
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TABLE A6 Values of spheroidal snkpr coefficients in the VSHL expansion of the XPMp−UCAC4 field 𝛥𝜇l cos b el+ 𝛥𝜇b eb

Value Value Value

Coeff. (mas/year) Coeff. (mas/year) Coeff. (mas/year)

s1,0,1,0 −0.24 ± 0.06 s3,2,1,0 1.60 ± 0.06 s5,4,0,1 −0.29 ± 0.06

s1,0,1,1 −1.01 ± 0.06 s3,2,1,1 −0.31 ± 0.06 s8,1,1,0 −0.51 ± 0.06

s1,0,1,2 0.27 ± 0.06 s3,2,1,2 0.15 ± 0.06 s8,1,1,1 0.38 ± 0.07

s1,1,0,0 −2.80 ± 0.06 s3,3,1,0 −2.43 ± 0.06 s8,1,1,2 −0.13 ± 0.06

s1,1,0,3 −0.24 ± 0.06 s3,3,1,1 0.55 ± 0.07 s8,6,1,0 0.59 ± 0.06

s1,1,1,0 0.69 ± 0.06 s3,3,1,2 −0.15 ± 0.06 s8,6,1,1 −0.36 ± 0.06

s1,1,1,1 0.77 ± 0.07 s4,0,1,0 −0.96 ± 0.06 s9,7,1,0 0.75 ± 0.06

s2,1,0,0 0.66 ± 0.06 s4,1,0,0 −0.50 ± 0.06 s10,0,1,0 −0.60 ± 0.06

s2,1,0,1 −0.19 ± 0.08 s4,1,0,1 −0.34 ± 0.07 s10,0,1,1 0.22 ± 0.06

s2,1,0,3 −0.18 ± 0.07 s4,1,0,2 0.21 ± 0.06 s10,6,1,0 −0.45 ± 0.06

s2,1,1,0 −0.41 ± 0.06 s4,2,0,0 −0.88 ± 0.06 s10,8,0,0 −0.60 ± 0.06

s2,1,1,1 −0.30 ± 0.07 s4,2,0,1 0.23 ± 0.06 s10,10,0,0 0.76 ± 0.06

s2,2,0,0 −0.94 ± 0.06 s4,2,0,2 −0.13 ± 0.06 s50,39,0,0 0.36 ± 0.06

s2,2,0,3 0.19 ± 0.06 s4,2,1,0 −0.57 ± 0.06 s50,39,0,1 0.21 ± 0.07

s3,0,1,0 1.62 ± 0.06 s4,2,1,1 0.25 ± 0.06 s52,39,0,0 −0.46 ± 0.06

s3,0,1,1 −0.21 ± 0.06 s4,2,1,2 −0.19 ± 0.06 s53,38,0,0 0.71 ± 0.08

s3,0,1,2 0.38 ± 0.06 s4,3,1,0 1.10 ± 0.06 s55,37,0,0 0.62 ± 0.06

s3,1,0,0 −0.85 ± 0.06 s4,4,0,0 0.83 ± 0.06 s55,38,0,0 −0.43 ± 0.07

s3,1,0,1 0.47 ± 0.07 s5,1,0,0 0.71 ± 0.06 s55,38,0,1 0.31 ± 0.07

s3,2,0,0 2.60 ± 0.06 s5,1,0,1 −0.25 ± 0.07 s55,38,0,2 −0.18 ± 0.07

s3,2,0,1 −0.86 ± 0.07 s5,3,1,0 −0.68 ± 0.08

s3,2,0,2 0.32 ± 0.06 s5,4,0,0 −0.51 ± 0.06


