АНАЛИЗ СИСТЕМАТИЧЕСКИХ РАЗНОСТЕЙ ПАРАЛЛАКСОВ ЗВЕЗД КАТАЛОГОВ TGAS И HIPPARCOS С ПОМОЩЬЮ СФЕРИЧЕСКИХ ФУНКЦИЙ

© 2018 г. А. С. Цветков^{*}, Ф. А. Амосов

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия Поступила в редакцию 31.04.2018 г.

Исследованы систематические разности тригонометрических параллаксов каталогов Hipparcos и TGAS с помощью сферических функций. Определены наиболее значимые гармоники в разложении. Изучено так же распределение дисперсии разности параллаксов в различных областях небесной сферы. Наиболее простой вид распределения среднеквадратичного отклонения имеет в эклиптической системе координат.

Ключевые слова: астрометрия, параллаксы, сферические функции, Hipparcos, Gaia.

DOI: 10.1134/S0320010818110062

ВВЕДЕНИЕ

Сравнение каталогов является классической задачей фундаментальной астрометрии. До недавнего времени такое исследование могло проводиться лишь для положений и собственных движений звезд. Появление первых результатов миссии Gaia, в частности, его подмножества каталога TGAS, позволило впервые произвести сравнение тригонометрических параллаксов общих звезд каталогов TGAS и Hipparcos, а именно его второй версии астрометрических данных (ван Леувен, 2007).

25 апреля 2018 г. вышла версия Gaia Data Release 2, но в ней на отсутствуют связи с объектами Hipparcos, более того, даже связь между номерами DR1 и DR2 признается авторами ненадежной. Кросс-таблицы связей Gaia DR1 и DR2, а также таблицы связи Gaia DR2 с другими каталогами будут опубликованы позднее.

Несмотря на то что параллаксы звезд Ніррагсоя имеют высокую формальную точность результата, неоднократно были указания на возможные систематические ошибки этих параллаксов. Например, в статье Седерблум и др. (2007) показывается расхождение с данными космического телескопа Hubble для звезд Плеяд. В статье Цветкова и др. (2008) приведен большой список звезд, для которых спектральные параллаксы, построенные на двумерной спектральной классификации, значительно отличаются от тригонометрических параллаксов, определенных на аппарате Ніррагсоя.

Каталог TGAS содержит 2057050 звезд с данными о тригонометрических параллаксах, включает в себя только звезды Hipparcos и Tycho-2 и использует в качестве первой эпохи положения звезд в этих каталогах. В статье Линдегрена и др. (2016) было проведено первичное сравнение параллаксов в каталогах TGAS и Hipparcos. Были даны оценки разностей, построены диаграммы, описывающие общий ход разностей параллаксов в зависимости от различных параметров звезд, например, от показателя цвета. Традиционно при сравнении положений и собственных движений звезд астрометрических каталогов используется аппарат скалярных или векторных функций. Впервые такой подход был использован Броше (1966) и подробно описан в монографии Витязева (2017). В настоящей статье мы применим аппарат скалярных сферических функций для анализа систематических разностей параллаксов.

ВЫЧИСЛЕНИЕ РАЗНОСТЕЙ ПАРАЛЛАКСОВ ИНДИВИДУАЛЬНЫХ ЗВЕЗД

Число общих звезд в каталогах Ніррагсоs и TGAS равно 93 635. Объединение данных каталогов не составило труда, так как в TGAS есть идентификатор звезды Ніррагсоs. Распределение звезд объединенного каталога по небесной сфере представлено на рис. 1. Во всех иллюстрациях мы использовали пикселизацию данных по алгоритму HealPix (Горски и др., 2005) с параметром n = 8,

^{*}Электронный адрес: A.S.Tsvetkov@inbox.ru

Рис. 1. Распределение звезд из объединенного каталога по небесной сфере в эклиптических координатах.

что дает 768 площадок. В площадки попадало от 57 до 273 звезд объединенного каталога.

В объединенном каталоге мы оставили следующие данные:

- *hip* идентификатор звезды в каталоге Hipparcos,
- *π*_{tgas} абсолютный барицентрический па-раллакс звезды в TGAS,
- σ_{πtgas} среднеквадратичная ошибка параллакса звезды в TGAS,
- *l* галактическая долгота в TGAS,
- b галактическая широта в TGAS,
- *π_{hip}* тригонометрический параллакс в Hipparcos,
- σ_{π_{hip}} среднеквадратичная ошибка параллакса звезды в Hipparcos.

Для каждой звезды объединенного каталога вычислялась величина разности ее параллакса в Hipparcos и в TGAS: $\pi_{hip} - \pi_{tgas}$.

АНАЛИЗ БОЛЬШИХ ВЫБРОСОВ

Предварительно мы проведем анализ на наличие больших выбросов в разностях параллаксов, с целью обнаружения единичных объектов, которые могут значительно исказить средний результат. Рассмотрим звезды, у которых разность параллаксов в TGAS и Hipparcos по модулю превышает три среднеквадратичных ошибки этой разности $\sqrt{\sigma_{\pi_{hip}}^2 + \sigma_{\pi_{tgas}}^2}$. Таких звезд оказалось 2148 (рис. 2). Коэффициент корреляции модуля разности параллаксов с ошибкой параллакса в Ніррагсоз для этих звезд равен 0.87, а с ошибкой в TGAS — всего 0.1. Таким образом, можно утверждать, что большая разность между параллаксами обусловлена большими ошибками параллаксов именно в Ніррагсоs. Кроме того, явно ошибочными являются значимые по критерию 3σ отрицательные параллаксы, т.е. такие, что $\pi < -3\sigma_{\pi}$. Но число таких звезд невелико. В TGAS — всего 6, а в Ніррагсоs — 17.

Для того чтобы не искажать общую картину предварительным отбрасыванием части наблюдений, что могло бы сдвинуть систематические разности, мы решили использовать все 93 635 звезд.

АНАЛИЗ РАЗНОСТЕЙ ТРИГОНОМЕТРИЧЕСКИХ ПАРАЛЛАКСОВ С ПОМОЩЬЮ СФЕРИЧЕСКИХ ФУНКЦИЙ

Разложения по сферическим функциям можно вести в разных системах координат. Как было отмечено Линдегреном (2016), и наше предварительное исследование показали, что разности параллаксов и распределение среднеквадратичных отклонений по небесной сфере имеют явно выраженную концентрацию наибольших и наименьших значений в областях эклиптики и эклиптических полюсов. Наилучшим образом этот факт заметен при визуализации не самих разностей параллаксов (рис. 3), а среднеквадратичного отклонения этой величины (рис. 4). Это делает целесообразным

785

ЦВЕТКОВ, АМОСОВ

Рис. 2. Распределение звезд с большими выбросами в в разностях параллаксов по небесной сфере в эклиптических координатах. Красным обозначены положительные разности $\pi_{hip} - \pi_{tgas}$, синим — отрицательные. Всего 2148 звезд.

Рис. 3. Распределение разностей параллаксов звезд Hipparcos и TGAS по небесной сфере в эклиптических координатах (мсд).

Рис. 4. Распределение среднеквадратичного отклонения разности параллаксов Hipparcos и TGAS по небесной сфере в эклиптических координатах (мсд).

АНАЛИЗ СИСТЕМАТИЧЕСКИХ РАЗНОСТЕЙ

HIP	λ	β	$\pi_{hip} - \pi_{tgas}$	$\sigma_{\pi_{hip}-\pi_{tgas}}$	π_{hip}	$\sigma_{\pi_{hip}}$	π_{tgas}	$\sigma_{\pi_{tgas}}$
21000	66.66	-16.34	81.15	4.76	84.76	4.74	3.61	0.43
68549	200.68	29.70	-71.15	9.10	-56.16	9.09	14.99	0.38
42525	121.46	22.12	62.60	15.52	68.54	15.51	5.94	0.50
92059	279.62	-11.28	54.46	13.48	55.49	13.48	1.03	0.26
81496	245.01	37.91	-42.18	10.19	-38.04	10.19	4.14	0.25
90368	283.25	69.94	41.76	10.37	51.00	10.37	9.24	0.24
87784	269.50	-47.09	40.40	8.36	41.30	8.36	0.90	0.26
81594	255.96	-29.53	-39.09	6.69	-6.97	6.69	32.12	0.25
98679	291.96	-28.93	36.88	11.17	84.75	11.17	47.87	0.31
63028	156.49	56.02	34.74	10.01	41.33	10.00	6.59	0.38
43650	162.33	-61.41	34.53	8.77	36.40	8.77	1.87	0.26
71922	228.36	-16.14	-32.12	10.58	-31.80	10.58	0.32	0.24
116869	1.74	15.39	-31.51	9.40	-24.10	9.39	7.41	0.40
109335	31.57	66.81	30.56	8.86	34.06	8.86	3.50	0.24
26111	86.75	46.30	29.36	1.96	30.22	1.94	0.86	0.27
47696	146.02	-7.05	28.54	1.51	4.84	1.35	-23.70	0.68
39939	117.96	9.99	-28.05	9.13	-16.34	9.13	11.71	0.26
91557	280.15	12.62	-25.99	7.89	30.49	7.89	56.48	0.27
114994	8.32	38.70	-25.80	5.16	-21.35	5.14	4.45	0.47
100625	298.76	-19.84	25.38	7.08	27.99	7.06	2.61	0.48

Таблица 1. Звезды с самыми большими различиями параллаксов (λ и β — градусы, остальные величины — мсд)

проведение разложений систематических разностей по сферическим функциям в эклиптической системе координат.

Следуя обычному подходу, представим разности параллаксов в виде

$$\Delta_{\pi}(\lambda,\beta) = \sum_{nkp} \delta_{nkp} K_{nkp}(\lambda,\beta), \qquad (1)$$

где сферические функции имеют вид (Арфкен, 1970)

$$K_{nkp}(\lambda,\beta) = \tag{2}$$

$$= R_{nk} \begin{cases} P_{n,0}(\beta), & k = 0, \quad p = 1; \\ P_{nk}(\beta) \sin k\lambda, & k \neq 0, \quad p = 0; \\ P_{nk}(\beta) \cos k\lambda, & k \neq 0, \quad p = 1, \end{cases}$$

$$R_{nk} = \sqrt{\frac{2n+1}{4\pi}} \begin{cases} \sqrt{\frac{2(n-k)!}{(n+k)!}}, & k > 0; \\ 1, & k = 0. \end{cases}$$
(3)

В формуле (2) через λ и β обозначены соответственно эклиптическая долгота и широта, ($0 \le \lambda \le \le 2\pi$; $-\pi/2 \le \beta \le \pi/2$); через $P_{nk}(\beta)$ — полиномы Лежандра (при k = 0) и присоединенные функции Лежандра (при k > 0), которые можно вычислить с помощью следующих рекуррентных соотношений:

$$P_{nk}(\beta) = \sin \beta \frac{2n-1}{n-k} P_{n-1,k}(\beta) -$$
(4)
$$-\frac{n+k-1}{n-k} P_{n-2,k}(\beta), \qquad \substack{k=0,1,\dots\\ n=k+1,k+2,\dots\\ p_{kk}(\beta) = \frac{(2k)!}{2^k k!} \cos^k \beta$$
$$P_{k+1,k}(\beta) = \frac{(2k+2)!}{2^{k+1}(k+1)!} \cos^k \beta \sin \beta.$$

Для удобства часто вводят линейную нумерацию функций K_{nkp} и коэффициентов δ_{nkp} одним индексом j, где

$$j = n^2 + 2k + p - 1.$$
 (5)

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 44 № 11 2018

Рис. 5. Систематические разности параллаксов, полученные на основе табл. 2 (мсд).

Введенные функции удовлетворяют следующим соотношениям:

$$\iint_{\Omega} \left(K_i \cdot K_j \right) d\omega = \begin{cases} 0, & i \neq j; \\ 1, & i = j. \end{cases}$$
(6)

Другими словами, набор функций *K*_{*nkp*} образует на сфере ортонормированную систему функций.

Методом наименьших квадратов решим систему, порождаемую уравнением (1) для усредненных данных всех площадок Healpix и для первых 49 ($n \leq 6$) коэффициентов разложения δ_j , поскольку нас интересуют только низкочастотные коэффициенты. Как мы увидим далее, число значимых гармоник значительно меньше. Полученные данные имеют значение F-статистики 3.388 по критерию Фишера, т.е. модель является достоверной на уровне значимости 1.3×10^{-12} . Таким образом, полученные коэффициенты полностью описывают модель систематических разностей. Данные коэффициенты разложения представлены в табл. 2. Статистически значимых на уровне 3σ коэффициентов

Таблица 2. Статистически значимые коэффициенты разложения разности параллаксов по сферическим функциям в эклиптических координатах

j	δ_j	σ_{δ_j}	$rac{ \delta_j }{\sigma_{\delta_j}}$
0	0.34	0.02	13.66
1	0.11	0.02	4.25
2	-0.14	0.02	5.76
3	-0.11	0.02	4.51
31	0.09	0.02	3.68
46	0.08	0.02	3.43

оказалось всего шесть. Систематические разности параллаксов, полученные на основе этой таблицы, изображены на рис. 5. Амплитуда этой величины оказалась весьма мала: от -0.09 мсд до +0.26 мсд. Таким образом, систематически параллаксы TGAS мало отличаются от параллаксов Hipparcos.

АНАЛИЗ СРЕДНЕКВАДРАТИЧНЫХ ОТКЛОНЕНИЙ ТРИГОНОМЕТРИЧЕСКИХ ПАРАЛЛАКСОВ С ПОМОЩЬЮ СФЕРИЧЕСКИХ ФУНКЦИЙ

Для исчерпывающего изучения отличия параллаксов звезд обоих каталогов мы решили изучить закономерность в распределении среднеквадратичного отклонения разностей параллаксов, так как это позволит выявить участки небесной сферы, где разброс параллаксов Hipparcos и TGAS наиболее велик, а где мал.

Коэффициенты разложения по сферическим функциям среднеквадратичного отклонения разностей параллаксов звезд на уровне значимости 3σ представлены в табл. 3. Распределение среднеквадратичных отклонений, вычисленных на основе этой таблицы, изображено на рис. 6. Полученная регрессия имеет значение F-статистики 4.282, т.е. модель является значимой на уровне 3.37×10^{-18} .

Модель среднеквадратичных отклонений разностей оказалась на удивление очень простой и на уровне значимости 1.30×10^{-22} фактически описывается всего лишь двумя коэффициентами — нулевым и четвертым.

ОБСУЖДЕНИЕ

Положительный коэффициент при нулевой гармонике разложения разности параллаксов позволяет сказать, что параллакс в Hipparcos больше, чем параллакс в TGAS в среднем по всей небесной

Рис. 6. Распределение среднеквадратичных отклонений, вычисленных на основе табл. 3 (мсд).

сфере, т.е. по данным Hipparcos звезды находятся ближе. Это подтверждается и другими исследованиями (Коллаборация Gaia, 2017).

Коэффициенты 1 и 2 показывают асимметрию распределения разности в различных полушариях (рис. 3). Отрицательный коэффициент за номером 3 свидетельствует о том, что в районе точки весеннего равноденствия (нулевой долготы) параллаксы в TGAS статистически значимо больше, чем в Ніррагсоs, в отличие от других частей небесной сферы.

Анализ показывает, что статистически значимые гармоники разложения среднеквадратичного отклонения разности параллаксов Hipparcos и TGAS по сферическим функциям в эклиптических координатах имеют номера 0, 4. Таким образом, статистическое различие параллаксов зависит в основном только от эклиптической широты. Большой модуль разности параллаксов в TGAS и Hipparcos достаточно коррелирует с ошибками в параллаксах Hipparcos, и числом наблюдений звезды на аппарате (рис. 7).

Нулевой коэффициент разложения среднеквадратичного отклонения разности параллаксов на порядок превосходит коэффициент разложения разности. Это говорит о том, что разность параллаксов

Таблица 3. Статистически значимые коэффициенты разложения среднеквадратичного отклонения разности параллаксов по сферическим функциям в эклиптических координатах

j	δ_j	σ_{δ_j}	$rac{ \delta_j }{\sigma_{\delta_j}}$
0	6.05	0.07	80.96
4	-0.83	0.07	11.07
8	-0.27	0.07	3.56

Ніррагсов и TGAS имеет *разный знак* для разных звезд, а сама эта *разность может быть и вели*ка. Различия параллаксов двух каталогов имеют в значительной мере стохастический характер.

ЗАКЛЮЧЕНИЕ

Результат данного исследования в целом показал, что параллаксы Hipparcos и TGAS систематически схожи, хотя индивидуальные параллаксы звезд могут различаться значительно. Изучение распределения среднеквадратичных отклонения параллаксов одного каталога от другого показало, что их амплитуда в некоторых областях небесной сферы может достигать 2 мсд (рис. 6), что превосходит формальную заявленную точность даже Hipparcos. Различия для отдельных звезд могут достигать значений в десятки мсд. Если предположить, что параллаксы TGAS надежнее, чем параллаксы Hipparcos, то в этом случае система параллаксов TGAS является улучшением Hipparcos именно в случайном отношении.

Любопытно, систематические разности собственных движений или положений даже близких по построению наземных каталогов (Витязев, Цветков, 2015) имеют значительно более сложную структуру, в том числе систематические разности собственных движений Tycho-2 и TGAS (Витязев, Цветков, 2017).

Простая модель систематических разностей может заключаться в том, что параллаксы обоих каталогов получены в результате космических экспериментов, что привело к высокой однородности данных.

Однако есть и другая гипотеза. Близость параллаксов TGAS и Hipparcos в систематическом отношении говорит о том, что использование в качестве первой эпохи координат звезд Hipparcos и Tycho 2 позволяет считать, что параллаксы TGAS не являются в полном смысле независимыми от

Рис. 7. Распределение числа наблюдений звезд на аппарате Hipparcos по небесной сфере в эклиптических координатах.

данных предыдущей космической миссии. Подтверждение этому обстоятельству может служить описание каталога Gaia DR2, где в предисловии явно сказано, что эта версия каталога наконец не зависит от данных Tycho-2. Публикация кросстаблиц связи DR2 с DR1 и с Ніррагсоз позволит провести соответствующее исследование и подтвердить или опровергнуть эту гипотезу.

СПИСОК ЛИТЕРАТУРЫ

- Андерсон Э., Фрэнсис Ч., Письма в Астрон. журн. 38, 374 (2012) [Е. Anderson and Ch. Francis, Astron. Lett. 38, 331 (2012)].
- 2. Астраатмаджа, Байлер-Джонс (Т. Astraatmadja and C. Bailer-Jones), Astrophys. J. 832, 137 (2016).
- Арфкен Г., Математические методы в физике (М.: Атомиздат, 1970).
- 4. Броше (Brosche P.), Veroff. des Astron. Rechen-Inst. Heidelberg № 17, 1 (1966).
- 5. Витязев В.В., Анализ астрометрических каталогов с помощью сферических функций (СПбГУ, 2018).
- Витязев В.В., Цветков А.С., Письма в Астрон. журн. 35, 114 (2009) [V.V. Vityazev and A.S. Tsvetkov, Astron. Lett. 35, 100 (2009)].
- Витязев В.В., Цветков А.С., Письма в Астрон. журн. 41, 624 (2015) [V.V. Vityazev and A.S. Tsvetkov, Astron. Lett. 41, 575 (2015)].
- 8. Витязев В.В., Цветков А.С., Вестн. СПбГУ. Сер. 1. 138 (2013).

- Витязев В.В., Цветков А.С., Письма в Астрон. журн. 43, 807 (2017) [V.V. Vityazev and A.S. Tsvetkov, Astron. Lett. 43, 730 (2017)].
- Витязев В.В., Цветков А.С., Трофимов Д. А., Письма в Астрон. журн. 40, 783 (2014) [V.V. Vityazev et al., Astron. Lett. 40, 713 (2014)].
- 11. Горски и др. (K.M. Gorski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, and M. Bartelmann), Astrophys. J. **622**, 759 (2005).
- 12. Коллаборация Gaia (Gaia Collaboration), Astron. Astrophys. man. no. 30552 (2017).
- 13. Каталог Gaia Data Release 2, https://www. cosmos.esa.int/web/gaia/dr2.
- 14. ван Леувен (F. Leeuwen), *Hipparcos, the New Reduction of the Raw Data* (Springer, ISBN: 978-1-4020-6341-1, 2007).
- 15. Линдегрен и др. (L. Lindegren, U. Lammers, U. Bastian, J. Hernandez, S. Klioner, D. Hobbs, A. Bombrun, D. Michalik, et al.), Astron. Astrophys. **595**, 4L (2016).
- 16. Миньяр, Клионер (F. Mignard and S. Klioner), Astron. Astrophys. 547, A59 (2012).
- 17. Михалик и др. (D. Michalik, L. Lindegren, and D. Hobbs), Astron. Astrophys. **574**, A115 (2015).
- 18. Седерблум и др. (David R. Soderblom 1, et al.), Astron. J. **129**, № 3 (2007).
- Цветков А.С., Смирнов А.А., Попов А.В., Письма в Астрон. журн. 34, 21 (2008) [А.S. Tsvetkov et al., Astron. Lett. 34, 17 (2008)].