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Abstract—Based on the measurements performed in the first 14 months of Gaia operation, we have solved
the problem of obtaining the systematic differences between the stellar positions and proper motions of the
TGAS (Tycho–Gaia Astrometric Solution) and Tycho-2 catalogues. By dividing the common stars from
the TGAS and Tycho-2 catalogues into three G-magnitude groups for mean values of 10m. 5, 11m. 5, and
13m. 0, we have obtained the systematic differences between the stellar equatorial coordinates and proper
motions of both catalogues in the form of a decomposition into vector spherical harmonics by taking into
account the magnitude equation. The systematic components have been extracted from the individual
differences with a probability of 0.977–0.999. The constructed model of systematic differences allows any
position measurements performed using Tycho-2 as a reference catalogue to be transformed to the TGAS
frame. An important fact is the existence of a magnitude equation in the systematic differences: when
passing from bright (G = 10m) to faint (G = 13m) stars, the systematic position differences change within
the range from approximately −40 to 15 mas, while the systematic proper motion differences change from
−3 to 3 mas yr−1. The orientation and mutual rotation parameters of the Tycho-2 and TGAS frames
have also been found to be different for stars of different magnitudes: when passing from bright to faint
stars, the rotation angle of the Tycho-2 frame relative to TGAS changes from 3.51 to 5.63 mas, while
the angular velocity of rotation changes from 0.35 to 1.22 mas yr−1. Based on the developed method that
allows the extent to which the systematic errors in the equatorial proper motions of stars affect the results of
a kinematic analysis of the Galactic proper motions to be estimated within the Ogorodnikov–Milne model,
we have shown that the slope of the Galactic rotation curve and the Oort parameter C are most sensitive
to the transition from the Tycho-2 frame to the TGAS one. Their relative changes after the transformation
to the TGAS frame reach 56 and 100%, respectively. At the same time, the changes in the estimates of
the Oort parameters A and B as well as the linear velocity of the Sun relative to the Galactic center, the
Galactic rotation period, the ratio of the epicyclic frequency to the angular velocity of Galactic rotation, and
the mass of the Galaxy within the Galactocentric distance of the Sun are not so large, being 2−10%.
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1. INTRODUCTION

This paper is devoted to an investigation of the
Tycho-2 catalogue (Hoeg et al. 2000) based on Gaia
Data Release 1 (Lindegren et al. 2016).

Two star catalogues appeared as a result of the
Hipparcos space project (ESA 1997). The first of
them is Hipparcos. It contains the positions, proper
motions, and parallaxes for 118 218 stars measured
with an error of ∼1 milliarcsecond (mas). The second
catalogue was named Tycho. It provides slightly less
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accurate data for 1 058 332 stars. The common char-
acteristics of the two catalogues are as follows: the
mean epoch of observations is J1991.25, the frame
of the catalogues is the ICRS, the accuracy with
which they are tied to the ICRS (along three axes)
is ±0.6 mas, and the residual rotation relative to the
ICRF (along three axes) is ±0.25 mas yr−1.

The Tycho-2 catalogue (Hoeg et al. 2000) is an
outgrowth of the Tycho project. It is based the
measurements performed onboard the Hipparcos
spacecraft. More accurate reduction methods were
used in its production, while ground-based cata-
logues of stellar positions, which gave a large epoch
difference, were used to calculate the proper motions.
The Astrographic Catalogue (Urban et al. 1998) was
used as the first epoch (1905). The second epoch, the
mean epoch of Hipparcos observations, is 1991.25.
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In addition to the Astrographic Catalogue, 143 more
ground-based catalogues were used. According
to the authors, Tycho-2 has a positional accuracy
from 10 to 100 mas, depending on the magnitude of a
star. The accuracy of proper motions is 2.5 mas yr−1.
The 99% completeness of the catalogue is achieved
for stars with V = 11. The Tycho-2 frame coincides
with the Hipparcos one. Being one of the most
accurate astrometric catalogues covering the entire
celestial sphere, Tycho-2 is widely used in various
astrometric problems. Nevertheless, a major short-
coming of this catalogue is the absence of stellar
parallaxes. The Tycho-2 Spectral Type catalogue
(Wright et al. 2003) provided a partial compensation
for this shortcoming. It gives (mostly for stars in the
southern equatorial hemisphere) information about
the spectra and spectral types of stars that allows
the photometric parallaxes to be estimated (Popov
et al. 2006).

In Gaia Data Release 1 (Gaia DR1) (Lindegren
et al. 2016) the stellar positions and parallaxes were
obtained for 2 057 050 Tycho-2 stars at a submilliarc-
second accuracy level. The accuracy of stellar proper
motions turned out to be lower: the standard errors in
the stellar proper motions reach 2–3 mas yr−1. This
catalogue was named TGAS (Tycho–Gaia Astro-
metric Solution). The TGAS stellar proper motions
were obtained by the method of two epochs. The
observations onboard the Hipparcos satellite were
taken as the first epoch (1991.25), while the sec-
ond epoch (2015.0) corresponds to the observations
onboard the Gaia spacecraft in the first 14 months
of its active operation. The systematic errors of the
TGAS stars, which depend on the positions on the
sphere and colors of stars, are at a level of ±0.3 mas.
The stellar positions and proper motions were referred
to the reference frame brought into coincidence with
ICRF2 at epoch J2015.0 with an accuracy better than
0.1 mas and a residual rotation up to 0.03 mas yr−1.
The reference frames of the Hipparcos and Tycho-2
catalogues were found to rotate relative to the Gaia
DR1 frame with an angular velocity of 0.24 mas yr−1

(Lindegren et al. 2016). The TGAS catalogue may be
considered to be the third version of the Tycho project.
Compared to Tycho-2, it contains the stellar paral-
laxes; in addition, its proper motions obtained without
invoking any ground-based observations are based
on the observations performed in space onboard the
Hipparcos and Gaia spacecraft.

The first attempt to compare the TGAS and
Tycho-2 catalogues was made by Lindegren et al.
(2016). The stellar proper motions of the Tycho-2
catalogue were first transformed to the Gaia DR1
frame using the following transformations:

μ∗
α = (μ∗

α)Tycho-2 − 0.126 sin δ cosα (1)

+ 0.185 sin δ sinα− 0.075 cos δ,

μδ = (μδ)Tycho-2 − 0.126 sin α− 0.185 cos α. (2)

Thereafter, the global statistics, the median (med)
and robust scatter estimate (σ) of the proper motion
differences TGAS–Tycho-2 in mas yr−1 were calcu-
lated irrespective of the stellar positions, colors, and
other characteristics:

med(Δμ∗
α) = +0.07 mas; (3)

med(Δμδ) = +0.20 mas,

σ(Δμ∗
α) = 3.6 mas yr−1; (4)

σ(Δμδ) = 3.30 mas yr−1.

Furthermore, maps of the distribution of these differ-
ences on the celestial sphere were constructed (Lin-
degren et al. 2016, Fig. C.7). Since the TGAS and
Tycho-2 catalogues were compared to check and val-
idate the results of the Gaia project, the authors found
no sufficient grounds to use the Tycho-2 catalogue
as a reliable means for validating the Gaia measure-
ments.

Our paper is also devoted to comparing the TGAS
and Tycho-2 catalogues, but we solve other problems
as well. The first of them is a detailed study of the
systematic differences between the stellar positions
and proper motions of these catalogues to transform
the measurements performed in the Tycho-2 frame
to the TGAS one. The statement of this problem is
dictated by the intrinsic logic of astrometry: each new
catalogue is always related to the previous catalogues
by the systematic differences between the positions
and proper motions of their common stars. The sec-
ond problem is to study the mutual orientation and
mutual rotation of the Tycho-2 and TGAS reference
frames. The third problem is devoted to searching
for the Galactic rotation parameters whose estimates
are most sensitive to the transition from the Tycho-2
frame to the TGAS one.

2. INITIAL DATA

To compare the TGAS and Tycho-2 catalogues,
we calculated the following individual differences
at epoch J2000.0 of Tycho-2: Δα∗ = (αTGAS −
αTycho-2) cos δ, Δδ = (δTGAS − δTycho-2), Δμ∗

α =
((μα)TGAS − (μα)Tycho-2) cos δ, Δμδ = ((μδ)TGAS −
(μδ)Tycho-2). The TGAS stellar positions were trans-
formed to epoch J2000.0 using a linear procedure.
We did not apply the rigorous procedure (ESA 1997),
first, because of the absence of radial velocities for
all stars and, second, because of the presence of
unrealistically large differences for a large number of
stars, as can be seen from Figs. 1 and 2. For this
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Fig. 1. (Color online) Histogram of the absolute values
√

(Δα∗)2 + (Δδ)2 of the J2000 position differences.
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Fig. 2. (Color online) Histogram of the absolute values
√

(Δμ∗
α)2 + (Δμδ)2 of the stellar proper motion differences.

reason, we filtered the data by retaining the stars for
which the following relations held:

√
(Δα∗)2 + (Δδ)2 < A, (5)

√
(Δμ∗

α)
2 + (Δμδ)2 < M, (6)

where A = 200 mas and M = 20 mas yr−1. The
remaining differences were divided into three groups
for the stars in the magnitude ranges G1 = 10−11,
G2 = 11−12, and G3 = 12−14 and were referred to

1200 pixels of the celestial sphere constructed by
the Healpix method (Gorski et al. 2005). For each
pixel we calculated the mean differences 〈Δα∗〉, 〈Δδ〉,
〈Δμ∗

α〉, 〈Δμδ〉 and the root-mean-square (rms) de-
viations of the individual differences from the means.
Obviously, these characteristics determine the mean
deviations and dispersions of the Tycho-2 stellar po-
sitions and proper motions from the TGAS ones in
a given direction on the celestial sphere and in a
given magnitude range. If the TGAS accuracy is
assumed to be considerably higher than the Tycho-2
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Table 1. Global statistics of the stellar position and proper
motion differences TGA–Tycho-2

G 10–11 11–12 12–14

number of stars in sample 538323 648279 126755

mean(〈Δμ∗
α〉) mas yr−1 0.15 0.14 0.14

med(〈Δμ∗
α〉), mas yr−1 0.13 0.17 0.09

σ(〈Δμ∗
α〉), mas yr−1 3.41 3.89 4.18

mean(〈Δμδ〉), mas yr−1 0.27 0.40 0.48

med(〈Δμδ〉), mas yr−1 0.26 0.44 0.54

σ(〈Δμδ〉), mas yr−1 3.12 3.48 3.79

mean(〈Δα∗〉), mas 1.30 2.02 2.23

med(〈Δα∗〉), mas 1.40 1.68 1.51

σ(〈Δα∗〉), mas 53.98 76.33 86.43

mean(〈Δδ〉), mas 1.78 4.36 4.69

med(〈Δδ〉), mas 2.74 4.34 3.57

σ(〈Δδ〉), mas 54.59 75.97 86.21

one, then these quantities may be called the Tycho-
2 errors. In turn, averaging these quantities over all
pixels gives an idea of the mean errors and dispersions
of the Tycho-2 positions and proper motions relative
to TGAS over the entire sky, but in the former mag-
nitude ranges. These global statistics of the Tycho-2
catalogue are given in Table 1, whose analysis allows
the following conclusion to be formulated: all global
statistics of the stellar proper motion and position dif-
ferences between the TGAS and Tycho-2 catalogues
increase when passing from bright stars to fain ones
(except for the differences Δμ∗

α). It should be noted
that our results agree with the results (3) and (4).
However, when comparing them, it should be kept in
mind that we did not reduce Tycho-2 to the TGAS
frame of the form (1) and (2), because within the
formulated problem of the data transformation from
the Tycho-2 frame to the TGAS one these rotations
must be contained in the numerical coefficients of the
model of systematic differences, which, obviously, will
depend on the magnitude of stars. Hence it follows
that the Tycho-2 positions and proper motions are
distorted by the errors of the magnitude equation. The
latter appear, because old photographic catalogues
were used in constructing Tycho-2. This conclusion
necessitates using an appropriate mathematical ap-
paratus in calculating the systematic differences to be
discussed in the next section.

3. REPRESENTATION OF THE SYSTEMATIC
DIFFERENCES TGAS–Tycho-2 BY VECTOR

SPHERICAL HARMONICS

In this paper the systematic differences between
the TGAS and Tycho-2 catalogues were obtained
by the method based on the application of vec-
tor spherical harmonics including the magnitude
equation that we developed previously (Vityazev
and Tsvetkov 2015a). Below we describe its main
steps to obtain the systematic position and proper
motion differences TGAS–Tycho-2. In this method
the vector fields of right ascension and declination
differences Δα cos δ and Δδ as well as the fields of
stellar proper motion differences Δμα cos δ and Δμδ

ΔF(α, δ,m) =

{
Δα cos δeα +Δδeδ

Δμα cos beα +Δμδeδ
(7)

are approximated by the expression

ΔF(α, δ,G) (8)

=
∑

nkpr

tnkprTnkp(α, δ)Qr(Ḡ)

+
∑

nkpr

snkprSnkp(α, δ)Qr(Ḡ).

In Eq. (7) the mutually orthogonal unit vectors in
the directions of change of the right ascensions and
declinations in the tangential plane are denoted by
eα and eδ, respectively. In Eq. (8) the dependence
of the fields on coordinates is described by toroidal,
Tnkp(α, δ), and spheroidal, Snkp(α, δ), spherical
harmonics, while the dependence of the field on
magnitude G is described by normalized Legendre
polynomials Qr(Ḡ). Explicit formulas to calculate
the functions Tnkp(α, δ), Snkp(α, δ), and Qr(Ḡ) are
provided in the Appendix. A detailed description of
the procedure for calculating the coefficients tnkpr
and snkpr is contained in Vityazev and Tsvetkov
(2015a, 2015b). Note that in comparison with
the traditional techniques of using vector spherical
harmonics (Mignard and Morando 1990; Mignard
and Froeschle 2000; Mignard and Klioner 2012),
new features of our method are, first, the method of
determining the significance of all the harmonics that
can be realized on a chosen data pixelization scheme
and, second, modeling the magnitude equation and
determining its parameters.

The coefficients tnkpr and snkpr were obtained
in two steps. In the first step, we calculated the
coefficients tnkp(Gj) and snkp(Gj) for each of our
three samples of stars with means G1 = 10.5, G2 =
11.5, and G3 = 13. Since the vector spherical
harmonics are orthonormal, the rms errors of the

ASTRONOMY LETTERS Vol. 43 No. 11 2017
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Fig. 3. Maps of systematic position differences TGAS–Tycho-2 for G1 = 10−11. (a) Δα cos δ and (b) Δδ. The units are mas.
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Fig. 4. Maps of systematic position differences TGAS–Tycho-2 for G3 = 12−14. (a) Δα cos δ and (b) Δδ. The units are mas.
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Fig. 5. Maps of systematic proper motion differences TGAS–Tycho-2 for G1 = 10−11. (a) Δμα cos δ and (b) Δμδ. The units
are mas yr−1.
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Fig. 6. Maps of systematic proper motion differences TGAS–Tycho-2 for G3 = 12−14. (a) Δμα cos δ and (b) Δμδ. The units
are mas yr−1.
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Table 2. Ranges of variations in the systematic differences of the right ascensions and proper motions in right ascension
TGAS–Tycho-2

G min(Δα cos δ) max(Δα cos δ) min(Δμα cos δ) max(Δμα cos δ)

10–11 −13.5 13.6 −0.94 1.17

11–12 −11.0 16.5 −1.30 1.55

12–14 −15.4 19.8 −3.45 3.28

The units are: mas (columns 2, 3) and mas yr−1 (columns 4, 5).

toroidal and spheroidal coefficients σt(G) and σs(G)
in each sample turned out to be identical and equal to
σt(G1) = σs(G1) = 0.60, σt(G2) = σs(G2) = 0.67,
and σt(G3) = σs(G3) = 1.74 mas for the position
differences and σt(G1) = σs(G1) = 0.05, σt(G2) =
σs(G2) = 0.06, and σt(G3) = σs(G3) = 0.12 mas yr−1

for the stellar proper motion differences, respec-
tively. The dependence of each of the coefficients
on magnitude was approximated by a parabola (the
sum of Legendre polynomials Qr(Ḡ), r = 0, 1, 2)
with coefficients tnkpr and snkpr. The parabolic
representation of the coefficients was made in the case
where at least one of the coefficients in any sample in
G was significant (in this case, the like insignificant
coefficients in other zones were assumed to be zero).
The derived coefficients tnkpr and snkpr are presented
in Tables 13–18. Their significance was established
with a probability of 97.7–99.9% using the statistical
criteria described in Vityazev and Tsvetkov (2015a,
2015b).

For the position differences the rms errors of
these coefficients are σ(tnkp0) = σ(snkp0) = 1.18,
σ(tnkp1) = σ(snkp1) = 0.75, and σ(tnkp2) =
σ(snkp2) = 0.45 mas, while for the proper motions
σ(tnkp0) = σ(snkp0) = 0.07, σ(tnkp1) = σ(snkp1) =

0.05, and σ(tnkp2) = σ(snkp2) = 0.04 mas yr−1 for all
indices nkp. Because of this, the tables give the ratios

Table 3. Ranges of variations in the systematic differ-
ences of the declinations and proper motions in declination
TGAS–Tycho-2

G min(Δδ) max(Δδ) min(Δμδ) max(Δμδ)

10–11 −21.1 12.2 −1.01 1.33

11–12 −14.9 18.8 −2.17 2.10

12–14 −17.1 33.7 −2.55 2.79

The units are: mas (columns 2, 3) and mas yr−1 (columns 4, 5).

of the absolute values of the coefficients to their rms
errors.

Formula (8) and the derived coefficients tnkpr and
snkpr solve the formulated problem, because they al-
low the systematic stellar position and proper motion
differences to be calculated for the transition from the
Tycho-2 frame to the TGAS one and back. Fig-
ures 3–6 give an idea of how the systematic differ-
ences vary over the celestial sphere. The ranges of
systematic difference variations are shown in Tables 2
and 3.

The maps of systematic position and proper mo-
tion differences TGAS–Tycho-2 exhibit two charac-
teristic features: the zonal structure of the systematic
differences and their change when passing to faint
stars (magnitude equation). Obviously, both these
effects are a consequence of using the zonal photo-
graphic catalogues that provide a basis for the Astro-
graphic Catalogue to construct the Tycho-2 proper
motions.

The effect of the magnitude equation is noticed
when comparing the maps of systematic differences
for various groups of stars in the G1 and G3 bands
(Figs. 3–6). Figures 7 and 8 demonstrate the quanti-
tative characteristics of these effects. The differences
of Δα cos δ, Δδ, Δμα cos δ, and Δμδ calculated for
the stars of the first (G1 = 10−11) and third (G3 =
12−14) samples are shown here. The ranges of vari-
ations in these quantities are given in Tables 4 and 5.

4. THE MODEL OF SYSTEMATIC STELLAR
POSITION AND PROPER MOTION

DIFFERENCES

The main purpose of the systematic differences is
to transform the stellar positions and proper motions
of one catalogue to the frame of another catalogue.
However, apart from these reduction tasks, the sys-
tematic position and proper motion differences for
the same stars reflect the discrepancies between the
reference frames that are realized by the comparison
catalogues.

ASTRONOMY LETTERS Vol. 43 No. 11 2017
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Fig. 7. Maps of variations in the systematic stellar position differences TGAS–Tycho-2 when passing from the G1 photometric
band to G3. (a) Δα cos δ and (b) Δδ. The units are mas.
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Fig. 8. Maps of variations in the systematic stellar proper motion differences TGAS–Tycho-2 when passing from the G1

photometric band to G3. (a) Δμα cos δ and (b) Δμδ. The units are mas yr−1.

The model of rigid-body mutual rotation and dis-
placement of two reference frames is commonly used
in comparing optical catalogues. We will assume that
the coordinate system (x, y, z) of catalogue Cat is
transformed to the coordinate system (x′, y′, z′) of
catalogue Cat′ by the translation of the coordinate
origin to point (ξ, η, ζ) and the rotation of the axes

Table 4. Differences ΔA = (Δα cos δ)(G1)−
(Δα cos δ)(G3), and ΔD = (Δδ)(G1)− (Δδ)(G3)

min(ΔA) max(Δ)A min(ΔD) max(ΔD)

−22.0 15.2 −35.8 14.8

The units are: mas (columns 2, 3) and mas yr−1 (columns 4, 5).

Table 5. Differences ΔPMA = (Δμα) cos δ)(G1)−
(Δμα cos δ)(G3), and ΔPMD = (Δμδ))(G1)−
(Δμδ)(G3)

min(ΔPMA)max(ΔPMA)min(ΔPMD)max(ΔPMD)

−3.3 3.0 −2.0 1.9

The units are: mas (columns 2, 3) and mas yr−1 (columns 4, 5).

through angles (Ω1, Ω2, Ω3). We will assume the
angles to be positive when the rotation for an observer
located on the positive ray of the axis is counterclock-
wise when viewed along the rotation axis toward the
coordinate origin. In this case, the transformation of
the coordinate systems is described by the following
equation:

⎡

⎢
⎢⎢
⎣

x′

y′

z′

⎤

⎥
⎥⎥
⎦
= M

⎡

⎢
⎢⎢
⎣

x− ξ

y − η

z − ζ

⎤

⎥
⎥⎥
⎦
. (9)

In the approximation of an infinitesimal rotation the
matrix M is

M =

⎡

⎢⎢
⎢
⎣

1 Ω3 −Ω2

−Ω3 1 Ω1

Ω2 −Ω1 1

⎤

⎥⎥
⎥
⎦
. (10)

Under the analogous assumption of a small displace-
ment of the coordinate origin, to within terms of the
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first order of smallness, we have
⎡

⎢
⎢⎢
⎣

x′ − x

y′ − y

z′ − z

⎤

⎥
⎥⎥
⎦
= (M −E)

⎡

⎢
⎢⎢
⎣

x

y

z

⎤

⎥
⎥⎥
⎦
−

⎡

⎢
⎢⎢
⎣

ξ

η

ζ

⎤

⎥
⎥⎥
⎦
, (11)

where E is a unit matrix.
Using the relations between the rectangular and

spherical coordinates of a star with a heliocentric
distance r

⎡

⎢
⎢⎢
⎣

x

y

z

⎤

⎥
⎥⎥
⎦
=

⎡

⎢
⎢⎢
⎣

r cos δ cosα

r cos δ sinα

r sin δ

⎤

⎥
⎥⎥
⎦
, (12)

we obtain
⎡

⎢
⎢⎢
⎣

rΔα cos δ

rΔδ

Δr

⎤

⎥
⎥⎥
⎦
= A

⎡

⎢
⎢⎢
⎣

Δx

Δy

Δz

⎤

⎥
⎥⎥
⎦
, (13)

where A is the transformation matrix of the unit vec-
tors of the rectangular coordinate system to the unit
vectors of the tangent plane directed toward increas-
ing right ascensions, declinations, and radius vector
of the star:

A =

⎡

⎢
⎢⎢
⎣

− sinα cosα 0

− cosα sin δ − sinα sin δ cos δ

cosα cos δ sinα cos δ sin δ

⎤

⎥
⎥⎥
⎦
. (14)

Assuming the displacement and rotation parame-
ters to be functions of time,

ξ(t) = ξ0 + ξ̇(t− t0), (15)

η(t) = η0 + η̇(t− t0),

ξ(t) = ζ0 + ζ̇(t− t0),

Ω1(t) = ε1 + ω1(t− t0), (16)

Ω2(t) = ε2 + ω2(t− t0),

Ω3(t) = ε3 + ω3(t− t0),

from (11)–(13) at Δx = x′ − x, Δy = y′ − y, and
Δz = z′ − z we obtain

Δα cos δ = ε1 sin δ cosα+ ε2 sin δ sinα (17)
− ε3 cos δ + g1 sinα− g2 cosα;

Δδ = −ε1 sinα+ ε2 cosα+ g1 cosα sin δ (18)
+ g2 sinα sin δ − g3 cos δ;

Δr = −ξ cosα cos δ − η sinα cos δ − ζ sin δ; (19)

Δμα cos δ = ω1 sin δ cosα+ ω2 sin δ sinα (20)

− ω3 cos δ + ġ1 sinα− ġ2 cosα;

Δμδ = −ω1 sinα+ ω2 cosα (21)

+ ġ1 cosα sin δ + ġ2 sinα sin δ − ġ3 cos δ;

ΔVr = −ξ̇ cosα cos δ − η̇ sinα cos δ − ζ̇ cos δ. (22)

The parameters in these equations have the fol-
lowing meaning:

• Δα, Δδ, Δμα, Δμδ are the stellar position and
proper motion differences Cat′–Cat at epoch
t0;

• Δr and ΔVr are the change in the heliocentric
distance to the star expressed in units of dis-
tance and the change in the radial velocity of
the star expressed in km s−1;

• ε1, ε2, ε3 are the rotation angles of the rectan-
gular coordinate system of Cat relative to Cat′

expressed in mas;

• ω1, ω2, ω3 are the angular velocities of the
rectangular coordinate system of Cat relative
to Cat′ expressed in mas yr−1;

• g1 = ξ0/r, g2 = η0/r, g3 = ζ0/r are the com-
ponents of the displacement of the zero point
of the Cat reference frame relative to the Cat′
reference frame expressed in mas;

• ġ1 = ξ̇/r, ġ2 = η̇/r, ġ3 = ζ̇/r are the compo-
nents of the displacement velocity of the zero
point of the Cat reference frame relative to the
Cat′ reference frame expressed in mas yr−1.

Note that for the vector Δ = Δα cos δeα +Δδeδ
and the component Δr Eqs. (17)–(19) can be written
as a linear combination of vector spherical harmonics:

Δ = −ε1
T111(α, δ)

ρ11
− ε2

T110(α, δ)

ρ11
(23)

− ε3
T101(α, δ)

ρ10
− g1

S111(α, δ)

ρ11

− g2
S110(α, δ)

ρ11
− g3

S101(α, δ)

ρ10
,

Δr = −ξ
K111(α, δ)

R11
− η

K110(α, δ)

R11
(24)

− ζ
K101(α, δ)

R10
.

Obviously, an analogous representation of
Eqs. (20)–(22) as a linear combination of vector
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spherical harmonics can also be written for the vec-
tor Δμ = Δμα cos δeα +Δμδeδ and the component
ΔVr:

Δμ = −ω1
T111(α, δ)

ρ11
− ω2

T110(α, δ)

ρ11
(25)

− ω3
T101(α, δ)

ρ10
− ġ1

S111(α, δ)

ρ11

− ġ2
S110(α, δ)

ρ11
− ġ3

S101(α, δ)

ρ10
,

ΔVr = −ξ̇
K111(α, δ)

R11
− η̇

K110(α, δ)

R11
(26)

− ζ̇
K101(α, δ)

R10
.

In these equations

ρnk =
Rnk√
n(n+ 1)

, (27)

while Rnk is calculated from Eq. (43).
These are the basic equations for analyzing the

discrepancies between the two reference frames due
to their mutual displacement and rotation. In our
case, the Tycho-2 and TGAS catalogues act as Cat
and Cat′, respectively. Since these catalogues con-
tain no radial velocities, Eqs. (19), (24) and (22), (26)
will not be used in our analysis. Here, they are given
to keep the generality of our reasoning.

As we see, the model of the systematic differences
that are generated by the mutual rotation and dis-
placement of the reference frames is a linear combi-
nation of first-order toroidal and spheroidal harmon-
ics. Comparing Eqs. (17)–(18) and (20)–(22) with
Eqs. (23)–(25) term by term, we conclude that the
rotation and displacement parameters can be calcu-
lated via the coefficients of the decomposition of sys-
tematic differences into vector spherical harmonics,
as shown in Table 6. Note that the same relations can
be derived by directly decomposing the right-hand
sides of Eqs. (17)–(19) and (20)–(22) into a system
of vector spherical harmonics.

The relationship between the rotation angles of
one coordinate system relative to another and the
coefficients of the decomposition of the systematic
differences between the right ascensions and decli-
nations of stars into scalar harmonics was estab-
lished within the model of rigid-body rotation by
Vityazev (1994). Such a relationship was found by
Mignard and Morando (1990) when using vector
spherical harmonics. The influence of the displace-
ment of the zero points of the coordinate systems
corresponding to two comparison catalogues on the
systematic differences was revealed in Mignard and
Klioner (2012), where this effect was considered as a

regular flow (a glide) from one point to another on the
sphere diametrically opposed. From an astronomical
point of view, this field can be associated with the
observer’s motion toward the apex, whereby the
systematic differences “outflow” from the apex and
“inflow” into the antiapex.

In Fig. 9 on the left we see the vector field due to
the rotations of the Tycho-2 reference frame through
angles ε1 = −t111/2.89, ε2 = −t110/2.89, and ε3 =
−t101/2.89. The values of tnkp here were calculated
for the sample G2 = 11−12 from the formula

tnkp(G2) =
∑

r

tnkprQr(Ḡ2), (28)

with the coefficients tnkpr taken from Table 15.

The coordinates of the rotation pole corresponding
to the end of the vector with these components were
derived from the formulas

Arot = arctan
(
ε2
ε1

)
; (29)

Drot = arctan

(
ε3√

ε21 + ε22

)

.

The vector field of systematic position differences
TGAS–Tycho-2 generated by the displacement of
the zero points of these reference frames by g1 =
−s111/2.89, g2 = −s110/2.89, and g3 = −s101/2.89
is shown in Fig. 9 on the right. The values of snkp here
were calculated for the sample G2 = 11−12 from the
formula

snkp(G2) =
∑

r

snkprQr(Ḡ2), (30)

with the coefficients tnkpr taken from Table 13.

Table 6. Coefficients of the vector spherical harmonic de-
composition of Eqs. (17), (18) and (20), (21)

Coefficient Eqs. (17), (18) Eqs. (20), (21)

t101 −2.89ε3 −2.89ω3

t110 −2.89ε2 −2.89ω2

t111 −2.89ε1 −2.89ω1

s101 −2.89g3 −2.89ġ3

s110 −2.89g2 −2.89ġ2

s111 −2.89g1 −2.89ġ1
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Fig. 9. Vector maps of position differences TGAS–Tycho-2 for G = 10−11 due to the rotation of the Tycho-2 reference frame
relative to the TGAS one (left) and the displacement of their zero points (right).
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Fig. 10. Vector maps of stellar proper motion differences TGAS–Tycho-2 for G = 10−11 due to the rotation of the Tycho-2
reference frame relative to the TGAS one (left) and the displacement velocity of their zero points (right).

The coordinates of the outflow point are deter-
mined from the formulas

A = arctan
(
g2
g1

)
; (31)

D = arctan

(
g3√

g21 + g22

)

.

Similarly, in Fig. 10 on the left we see the vector
field due to the rotation of the Tycho-2 reference
frame relative to the TGAS one. The right panel of
the same figure shows the vector field generated by
the displacement velocity of the zero points of our
reference frames. Tables 18, 16 and Eqs. (28), (29)
with a formal substitution of ġi for gi and ωi for εi were
used to construct these fields.

The derived orientation and rotation parameters of
the Tycho-2 reference frame relative to the TGAS one
are given in Tables 7 and 8. Analysis of these tables
shows that the orientation and rotation parameters of
the Tycho-2 frame depend on the magnitude of stars
and increase as we pass to fainter stars. Therefore,
it should be noted that Lindegren et al. (2016) used
the rotation parameters ωx = −0.126, ωy = −0.185,
and ωz = 0.076 derived from the stellar proper mo-
tion differences between the TGAS and Hipparcos

catalogues when transforming the Tycho-2 stellar
proper motions to the TGAS frame (Gaia DR1). The
fact that, contrary to the analogous parameters of
the Hipparcos frame, the rotation parameters of the
Tycho-2 reference frame relative to the TGAS one
turned out to be dependent on the magnitude of stars
is quite understandable, because ground-based cata-
logues were used to obtain the Tycho-2 stellar proper
motions and were not used to obtain the Hipparcos
stellar proper motions.

4.1. The Influence of Gaia on the Estimates of Stellar
Velocity Field Parameters

Let us now use our model of the systematic differ-
ences between the equatorial proper motions of stars
to estimate the changes in the kinematic parameters
of the stellar proper motions when passing from the
Tycho-2 frame to the TGAS one.

In the Ogorodnikov–Milne model (Ogorodnikov
1965; du Mont 1977), which is often used in analyz-
ing the stellar proper motions, the stellar velocity field
is represented by a linear relation:

V = V0 +Ω× r+M+r, (32)

where V is the stellar velocity, V0 is the influence
of the translational solar motion, Ω is the angular
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Table 7. Orientation parameters and rotation angle ε =
√
ε2x + ε2y + ε2z of the Tycho-2 reference frame relative to the

TGAS one

G εx εy εz ε Arot Drot

10–11 −1.20± 0.22 2.79± 0.22 −1.75± 0.22 3.51± 0.22 113.3± 4.1 −29.9± 3.5

11–12 −1.56± 0.23 −3.48± 0.23 −2.36± 0.22 4.49± 0.23 245.9± 3.5 −31.8± 3.0

12–14 0.00± 0.58 −4.96± 0.58 −2.68± 0.58 5.63± 0.58 270± 6.7 −28.4± 5.9

The units are: mas (columns 2–5) and degrees (columns 6, 7).

Table 8. Rotation parameters and rotation rate ω =
√
ω2
x + ω2

y + ω2
z of the Tycho-2 reference frame relative to the

TGAS one

G ωx ωy ωz ω Arot Drot

10–11 −0.15± 0.02 0.26± 0.02 −0.19± 0.02 0.35± 0.02 120.2± 3.4 −32.2± 2.9

11–12 −0.08± 0.02 0.81± 0.02 −0.23± 0.02 0.85± 0.02 95.6± 1.6 −15.9± 1.6

12–14 0.00± 0.04 1.18± 0.04 −0.29± 0.04 1.22± 0.04 90.0± 2.1 −14.0± 2.0

The units are: mas (columns 2–5) and degrees (columns 6, 7).

velocity of rigid-body rotation of the stellar system,
and M+ is the symmetric deformation tensor of the
velocity field.

The Ogorodnikov–Milne model contains 12 pa-
rameters:

U , V , W are the components of the translational
velocity vector of the Sun V0 relative to the stars;

ω1, ω2, ω3 are the components of the rigid-body
rotation vector Ω;

M+
11, M+

22, M+
33 are the parameters of the ten-

sor M+ describing the velocity field contraction–
expansion along the principal Galactic axes;

M+
12, M+

13, M+
23 are the parameters of the tensor

M+ describing the velocity field deformation in the
principal plane and two planes perpendicular to it.

Projecting Eq. (32) onto the unit vectors of the
Galactic coordinate system and using the designa-
tion r for the stellar distance and K = 4.738 for the
conversion factor of the dimensions of stellar proper
motions mas yr−1 to km s−1 kpc−1, we obtain

Kμl cos b = U/r sin l − V/r cos l (33)

− ω1 sin b cos l − ω2 sin b sin l + ω3 cos b

−M+
13 sin b sin l +M+

23 sin b cos l

+M+
12 cos b cos 2l −

1

2
M∗

11 cos b sin 2l,

Kμb = U/r cos l sin b+ V/r sin l sin b (34)

−W/r cos b+ ω1 sin l − ω2 cos l

− 1

2
M+

12 sin 2b sin 2l +M+
13 cos 2b cos l

+M+
23 cos 2b sin l −

1

2
M∗

11 sin 2b cos
2 l

+
1

2
M∗

33 sin 2b,

where M∗
11 = M+

11 −M+
22 and M∗

33 = M+
33 −M+

22.

It is well known that the Ogorodnikov–Milne
model parameters allow a number of kinematic and
physical characteristics of our Galaxy to be estimated.
First of all, the Oort constants are determined via
them. Assuming that the velocity field is axisymmet-
ric or VR = 0, where VR is the velocity component
along the radius vector in the Galactic cylindrical
coordinate system (Miyamoto et al. 1993), for the
Oort constants A and B we have

A = M+
12, B = Ω3. (35)

In turn, the Oort constants C and K are determined
as follows:

C =
M∗

11

2
, K =

M∗
11

2
−M∗

33. (36)

These constants are linear combinations of the gradi-
ents of stellar velocity field parameters. The constants
A and C characterize the azimuthal and radial defor-
mations, respectively, the constant B characterizes
the rigid-body rotation component of the stars relative
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to the Galactic coordinate system, and K character-
izes the field divergence (Torra et al. 2000).

Vityazev and Tsvetkov (2009) performed a decom-
position of Eqs. (33) and (34) into vector spherical
harmonics (VSHs), which shows what harmonics in
the decomposition of the stellar proper motions deter-
mine the individual parameters of this model. Since
the solar motion components enter into Eqs. (33)
and (34) with the factor 1/r, the coefficients of the
corresponding VSHs are determined to within the
factor 1/〈r〉. Obviously, in view of the linearity of the
Ogorodnikov–Milne equations, the systematic differ-
ences between the stellar proper motions of two cata-
logues can also be represented as Eqs. (33) and (34),
in which the kinematic parameters U/r, V/r, ... ,
M+

33 are replaced by the differences ΔU/r, ΔV/r, ... ,
ΔM+

33. Therefore, using the results from Vityazev and
Tsvetkov (2009), we can relate the corrections of the
kinematic parameters ΔU/r, ΔV/r, ... , ΔM+

33 when
passing from the frame of one catalogue to the frame
of another catalogue to the numerical values of the
statistically significant decomposition coefficients of
the stellar proper motions of these catalogues. The
formulas explaining the physical meaning of the de-
composition coefficients are given in Table 9.

A kinematic analysis of the stellar velocity field is
performed in the Galactic coordinate system. Since
the Galactic coordinate system is obtained by trans-
forming the stellar equatorial coordinates and proper
motions of a specific catalogue, the systematic dif-
ference between the Galactic stellar proper motions
of two catalogues are determined by the system-
atic differences between the equatorial proper mo-
tions of these catalogues. Since in our paper the
systematic differences between the equatorial stel-
lar proper motions of the TGAS and Tycho-2 cata-
logues are modeled by Eqs. (8), we will obtain the
systematic differences between the Galactic proper
motions by applying the standard procedure of de-
termining the Galactic proper motions (ESA 1997)
to them. Guided by the form of the Ogorodnikov–
Milne equations (33) and (34), we decomposed the
systematic Galactic stellar proper motion differences
TGAS–Tycho-2 into a system of vector spherical
harmonics for each of our three samples of stars.
These data were used to calculate the shifts of the
Ogorodnikov–Milne model parameters when passing
from the Tycho-2 frame to the TGAS one. The results
of these calculations are given in Table 10. Analysis
of this table shows that when passing from Tycho-2
to TGAS:

• the shifts of the kinematic parameters (except
for M+

13 and M+
23) increase in absolute value

with decreasing stellar brightness;

Table 9. Relations between the differences of the
Ogorodnikov–Milne model parameters and the decom-
position coefficients of the stellar proper motions of two
catalogues

Coefficient Value

t101 2.89Δω3

t110 2.89Δω2

t111 2.89Δω1

s101 −2.89ΔW/〈r〉

s110 −2.89ΔV/〈r〉

s111 −2.89ΔU/〈r〉

s201 −0.65 (ΔM∗
11 − 2ΔM∗

33)

s210 2.24ΔM+
23

s211 2.24ΔM+
13

s220 2.24ΔM+
12

s221 1.12ΔM∗
11

• the absolute shifts lie within the range from 0
to 4.2 km s−1 kpc−1;

• given that the rms errors of these parameters
from the Tycho-2 data are 0.2 km s−1 kpc−1

(Bobylev et al. 2009), it can be said that when
determining the Oort parameters, the system-
atics of the Tycho-2 catalogue can give shifts
in the parameters exceeding their random er-
rors.

Let us now examine the changes in Galactic ro-
tation parameters to which the data in Table 10 will
lead. Denoting the the Galactocentric distance of the
Sun by RS , for the linear velocity of the Sun relative
to the Galactic center we have

VS = RS × (A−B). (37)

With this velocity the Galactic rotation period in the
solar neighborhood will be

P =
2πRS

VS
. (38)

In turn, the slope of the Galactic rotation curve S is
determined from the formula

S = −(A+B). (39)
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Table 10. Shifts of the Ogorodnikov–Milne model param-
eters when passing from the Tycho-2 frame to the TGAS
one

Parameter
shift

G1 = 10−11 G2 = 11−12 G4 = 12−14

Δ〈U/r〉 0.45± 0.05 0.55± 0.07 0.90± 0.12

Δ〈V/r〉 −1.30± 0.05 −2.11± 0.07 −2.42± 0.12

Δ〈W/r〉 −1.05± 0.05 −1.81± 0.07 −2.29± 0.12

ΔΩ1 0.62± 0.05 2.82± 0.07 4.21± 0.12

ΔΩ2 1.57± 0.05 2.72± 0.07 3.38± 0.12

ΔB 0.04± 0.05 0.94± 0.07 1.74± 0.12

ΔM13 0.97± 0.05 1.06± 0.07 1.00± 0.12

ΔM23 −1.00± 0.05 −0.45± 0.07 0.25± 0.12

ΔA 0.71± 0.05 2.06± 0.07 3.33± 0.12

ΔC 0.15± 0.03 1.41± 0.04 2.01± 0.06

ΔK −0.17± 0.06 −0.32± 0.08 −0.73± 0.13

The units are km s−1 kpc−1.

In accordance with the epicyclic theory (Binney and
Tremaine 2008; Mignard and Froeschle 2000), the
Oort parameters allow the ratio of the epicyclic fre-
quency to the angular velocity of Galactic rotation in
the solar neighborhood to be estimated:

F = 2

√
−B

A−B
. (40)

Determining the mass of the Galaxy within the solar
orbit (Ogorodnikov 1965) is also of great interest:

M =
RS × V 2

S

G
, (41)

where G is the gravitational constant.
Tables 11 and 12 give the absolute and relative

changes in the fundamental Oort constants A, B, C,
K and the physical parameters V , P , F , S, M when
passing from the Tycho-2 frame to the TGAS one for
the adopted RS = 8 kpc. The original results in the
Tycho-2 frame were taken from Bobylev et al. (2009);
the values in the TGAS frame were obtained from
our estimates. Analysis of these tables shows that
the absolute shifts in parameters depend on the mag-
nitude of stars. Among the Oort parameters, C is

the parameter most sensitive to the transition to the
TGAS frame. Its relative error in the Tycho-2 frame
reaches 100% for faint stars. The results in Table 12
show a very interesting feature. Here, we see that
whereas the parameters V , P , F , M have shifts of
2–10%, the estimates of the slope of the Galactic
rotation curve change from 16 to 56%.

5. CONCLUSIONS

Below we list the main results obtained in our
paper.

(1) The systematic differences between the stel-
lar positions and proper motions of the TGAS and
Tycho-2 catalogues were represented as decomposi-
tions into vector spherical harmonics with allowance
made for the magnitude equation. The systematic
components were extracted from the individual differ-
ences with a probability of 0.977–0.999. The model
of systematic differences (8), whose coefficients are
given in Tables 13–18, allows any position mea-
surements performed using Tycho-2 as a reference
catalogue to be transformed to the TGAS frame.

(2) Our study of the derived systematic differ-
ences showed that they depend on the magnitude of
stars. The systematic position differences can change
when passing from bright, G = 10−11, to faint, G =
12−13, stars within the range from approximately
−40 to 15 mas, while the systematic proper motion
differences change from −3 to 3 mas yr−1. The reason
why the magnitude equation exists in the investigated
systematic differences is that old photographic cat-
alogues were used to determine the Tycho-2 stellar
proper motions.

(3) The derived systematic stellar position and
proper motion differences were studied in terms of the
model of rigid-body mutual rotation and displacement
of the Tycho-2 and TGAS reference frames. We
showed that the basic equations of this model could
be written as a linear combination of vector spherical
harmonics. This immediately allows the model pa-
rameters to be directly calculated via the coefficients
of the decomposition of systematic differences into
vector spherical harmonics. We found that in con-
trast to the mutual orientation of the Hipparcos and
TGAS reference frames, the orientation and mutual
rotation parameters of the Tycho-2 and TGAS frames
depend on the magnitude of stars. We showed that
when passing from bright to faint stars, the Tycho-
2 frame is turned relative to the TGAS one through
an angle from 3.51 to 5.63 mas and rotates with an
angular velocity from 0.35 to 1.22 mas yr−1. The
fact that the orientation, rotation, and displacement
parameters of the Tycho-2 reference frame relative
to TGAS, first, depend on the magnitude of stars
and, second, differ from the rotation parameters of
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Table 11. Oort constants A, B, C, K in the TGAS frame and their relative changes R =
TGAS − Tycho-2

TGAS
when passing

from the Tycho-2 frame to the TGAS one

A B C K

Tycho-2 15.9± 0.2 −12.0± 0.2 −3.9± 0.2 −2.6± 0.5

TGAS G = 10−11 16.6± 0.2 −12.0± 0.2 −3.8± 0.2 −2.8± 0.5

R 4.3% 0% −3.0% 6.1%

TGAS G = 11−12 18.0± 0.2 −11.1± 0.2 −2.5± 0.2 −2.9± 0.5

R 11.5% −8.5% −56.6% 11.0%

TGAS G = 12−14 19.2± 0.2 −10.3± 0.2 −1.89± 0.2 −3.3± 0.5

R 17.3% −17.0% −106.3% 21.9%

The first row gives the Oort constants in the Tycho-2 frame from the results of Bobylev et al. (2009). The units are km s−1 kpc−1.

Table 12. Physical parameters V , P , S, F , M and their relative changes R =
TGAS − Tycho-2

TGAS
when passing from the

Tycho-2 frame to the TGAS one

Parameters V P S F M

Tycho-2 223.2± 2.3 220.2± 2.3 3.9± 0.3 1.312± 0.008 (9.2± 0.2)× 1010

TGAS G1 228.6± 2.4 215.0± 2.2 4.7± 0.3 1.294± 0.008 (9.7± 0.2)× 1010

R 2.3% −2.4% 16.1% −1.4% 4.6%

TGAS G2 232.2± 2.4 211.7± 2.5 6.9± 0.3 1.235± 0.0098 (10.0± 0.2)× 1010

R 3.9% −4.0% 43.5% −6.2% 7.6%

TGAS G3 235.9± 2.6 208.3± 2.6 9.0± 0.3 1.180± 0.010 (10.3± 0.2)× 1010

R 5.4% −5.7% 56.5% −11.2% 10.5%

The first row gives the parameters from the results of Bobylev et al. (2009). The parameters: V is the linear rotation velocity of the Sun
relative to the Galactic center (km s−1); P is the revolution period of the Sun around the Galactic center (Myr); S is the slope of the
Galactic rotation curve in the solar neighborhood (km s−1 kpc−1); F is the ratio of the epicyclic frequency to the angular velocity of
Galactic rotation in the solar neighborhood; M is the mass of the Galaxy within the solar orbit (in solar masses).

the Hipparcos catalogue relative to TGAS found by
Lindegren et al. (2016) deserves attention. This is
well explained by the fact that the Hipparcos and
TGAS stellar proper motions were obtained without
using ground-based catalogues.

(4) We developed a method of allowance for the
influence of systematic errors in the stellar proper mo-
tions of a catalogue in the equatorial coordinate sys-
tem on the determination of kinematic Ogorodnikov–
Milne model parameters from the proper motions in

the Galactic coordinate system. We showed that
when passing from the Tycho-2 frame to the TGAS
one, the largest changes are observed for the esti-
mates of the Oort parameter C (100%) and the slope
of the Galactic rotation curve in the solar neighbor-
hood S (−56%). The corresponding changes in the
Oort parameters A and B as well as the linear velocity
of the Sun relative to the Galactic center, the Galactic
rotation period, the ratio of the epicyclic frequency to
the angular velocity of Galactic rotation, and the mass
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Table 13. Spheroidal decomposition coefficients snkpr (mas yr−1) of the field of position differences Δα cos δeα +Δδeδ
TGAS–Tycho-2 corrected for the magnitude equation; u is the ratio of the absolute value of the coefficient to its rms error

n k p r snkpr u n k p r snkpr u n k p r snkpr u

1 0 1 0 23.66 20.07 9 0 1 2 –1.24 2.73 1 1 0 1 –2.08 2.77

1 0 1 1 4.37 5.81 10 0 1 0 2.07 1.76 1 1 0 2 –0.50 1.10

1 0 1 2 –2.03 4.48 10 0 1 1 0.00 0.00 2 1 1 0 4.13 3.50

2 0 1 0 –10.76 9.12 10 0 1 2 –0.93 2.05 2 1 1 1 0.85 1.12

2 0 1 1 5.86 7.80 11 0 1 0 –2.77 2.35 2 1 1 2 –2.50 5.52

2 0 1 2 0.27 0.60 11 0 1 1 0.00 0.00 3 1 0 0 4.02 3.41

3 0 1 0 –5.49 4.65 11 0 1 2 1.24 2.74 3 1 0 1 –0.97 1.29

3 0 1 1 2.85 3.79 12 0 1 0 2.97 2.52 3 1 0 2 –1.05 2.31

3 0 1 2 0.25 0.55 12 0 1 1 0.00 0.00 4 1 0 0 2.65 2.25

4 0 1 0 –3.24 2.75 12 0 1 2 –1.33 2.93 4 1 0 2 –1.19 2.62

4 0 1 1 2.01 2.67 13 0 1 0 –0.33 0.28 5 1 1 0 2.27 1.92

4 0 1 2 –0.11 0.23 13 0 1 1 1.14 1.52 5 1 1 1 0.00 0.00

5 0 1 0 –0.28 0.24 13 0 1 2 –0.74 1.63 5 1 1 2 –1.01 2.24

5 0 1 1 0.98 1.30 14 0 1 0 –4.37 3.70 6 1 1 0 2.90 2.46

5 0 1 2 –0.63 1.40 14 0 1 1 1.14 1.52 6 1 1 1 –0.78 1.03

7 0 1 0 0.50 0.42 14 0 1 2 1.07 2.36 6 1 1 2 –0.69 1.53

7 0 1 1 –1.74 2.31 21 0 1 0 2.30 1.95 6 1 0 0 –0.23 0.20

7 0 1 2 1.12 2.47 21 0 1 1 –0.83 1.10 6 1 0 1 0.81 1.08

8 0 1 0 6.08 5.15 21 0 1 2 –0.39 0.86 6 1 0 2 –0.52 1.16

8 0 1 1 –2.27 3.02 22 0 1 0 0.38 0.32 8 1 1 0 –0.27 0.23

8 0 1 2 –0.96 2.12 22 0 1 1 –1.33 1.77 8 1 1 1 0.92 1.23

9 0 1 0 4.42 3.75 22 0 1 2 0.86 1.89 8 1 1 2 –0.60 1.32

9 0 1 1 –0.96 1.27 1 1 0 0 4.71 4.00 2 2 1 0 –0.88 0.74
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Table 14. Spheroidal decomposition coefficients snkpr (mas) of the field of position differences Δα cos δeα +Δδeδ
TGAS–Tycho-2 corrected for the magnitude equation; u is the ratio of the absolute value of the coefficient to its rms
error (the continuation of Table 13)

n k p r snkpr u n k p r snkpr u n k p r snkpr u

2 2 1 1 3.04 4.05 7 4 1 2 –0.53 1.17 9 8 1 0 2.65 2.25

2 2 1 2 –1.96 4.34 5 5 1 0 2.17 1.84 9 8 1 1 0.00 0.00

3 2 1 0 8.43 7.15 5 5 1 1 0.00 0.00 9 8 1 2 –1.19 2.62

3 2 1 1 0.76 1.01 5 5 1 2 –0.97 2.14 10 9 0 0 –2.00 1.69

3 2 1 2 –0.74 1.65 5 5 0 0 3.23 2.74 10 9 0 1 –2.59 3.45

6 2 0 0 2.51 2.13 5 5 0 1 –1.03 1.37 10 9 0 2 –1.12 2.46

6 2 0 1 0.00 0.00 5 5 0 2 –0.65 1.43 13 12 1 0 –2.09 1.78

6 2 0 2 –1.12 2.48 9 5 0 0 –2.63 2.23 13 12 1 1 –2.72 3.62

7 2 1 0 3.35 2.84 9 5 0 1 0.77 1.03 13 12 1 2 –1.17 2.58

7 2 1 1 –1.31 1.74 9 5 0 2 0.58 1.28 14 14 1 0 2.00 1.69

7 2 1 2 –0.49 1.08 10 5 0 0 2.33 1.97 14 14 1 1 2.59 3.45

3 3 0 0 2.53 2.15 10 5 0 1 0.00 0.00 14 14 1 2 1.12 2.46

3 3 0 1 0.00 0.00 10 5 0 2 –1.04 2.30 17 17 1 0 –2.27 1.93

3 3 0 2 –1.13 2.50 6 6 0 0 2.42 2.05 17 17 1 1 –2.95 3.93

5 3 1 0 2.57 2.18 6 6 0 1 0.83 1.10 17 17 1 2 –1.27 2.81

5 3 1 1 –1.18 1.58 6 6 0 2 –1.73 3.81 41 29 0 0 2.23 1.89

5 3 1 2 –0.23 0.51 10 6 0 0 2.25 1.91 41 29 0 1 0.00 0.00

4 4 1 0 –2.82 2.40 10 6 0 1 0.00 0.00 41 29 0 2 –1.00 2.20

4 4 1 1 1.00 1.34 10 6 0 2 –1.01 2.22 38 37 1 0 1.91 1.62

4 4 1 2 0.48 1.07 8 8 1 0 2.38 2.02 38 37 1 1 2.48 3.30

7 4 1 0 2.61 2.22 8 8 1 1 0.00 0.00 38 37 1 2 1.07 2.36

7 4 1 1 –0.82 1.10 8 8 1 2 –1.06 2.35 . .

of the Galaxy within the Galactocentric distance of
the Sun are not so large, being 2–10%.

Gaia Data Release 1 allowed the Tycho-2 cata-
logue to be supplied with stellar parallaxes and new
proper motions. Undoubtedly, the addition of paral-
laxes for ∼2 million stars was a radical improvement
of the Tycho-2 catalogue. As regards the stellar
proper motions, we showed here that from the view-

point of studying the kinematic parameters of the
stellar velocity field, the new stellar proper motions
obtained from the observations in space onboard the
Hipparcos and Gaia spacecraft lead to a significant
revision of the numerical values of the Oort parame-
ter C and the slope of the Galactic rotation curve in
the solar neighborhood. The improvements of other
kinematic parameters are not so significant.
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Table 15. Toroidal decomposition coefficients tnkpr (mas) of the field of position differences Δα cos δeα +Δδeδ TGAS–
Tycho-2 corrected for the magnitude equation; u is the ratio of the absolute value of the coefficient to its rms error

n k p r snkpr u n k p r snkpr u n k p r snkpr u

1 0 1 0 9.74 8.26 2 1 0 0 3.45 2.93 9 9 1 0 –3.08 2.61

1 0 1 1 1.09 1.46 2 1 0 1 –0.77 1.03 9 9 1 1 –4.00 5.32

1 0 1 2 –0.31 0.68 2 1 0 2 –0.95 2.09 9 9 1 2 –1.72 3.80

4 0 1 0 4.66 3.95 3 1 0 0 0.35 0.30 24 23 0 0 1.95 1.65

4 0 1 1 –1.49 1.98 3 1 0 1 –1.22 1.63 24 23 0 1 2.53 3.36

4 0 1 2 –0.93 2.06 3 1 0 2 0.79 1.75 24 23 0 2 1.09 2.40

5 0 1 0 4.09 3.47 5 1 1 0 –0.27 0.22 24 23 1 0 1.69 1.43

5 0 1 1 0.00 0.00 5 1 1 1 0.92 1.22 24 23 1 1 2.20 2.92

5 0 1 2 –1.83 4.04 5 1 1 2 –0.59 1.31 24 23 1 2 0.95 2.09

6 0 1 0 –5.99 5.08 12 1 1 0 –1.67 1.41 28 28 0 0 –2.37 2.01

6 0 1 1 1.96 2.61 12 1 1 1 –2.16 2.88 28 28 0 1 0.00 0.00

6 0 1 2 1.16 2.55 12 1 1 2 –0.93 2.06 28 28 0 2 1.06 2.34

9 0 1 0 2.60 2.21 3 2 1 0 5.18 4.39 30 28 1 0 –2.09 1.78

9 0 1 1 0.00 0.00 3 2 1 1 0.00 0.00 30 28 1 1 –2.72 3.62

9 0 1 2 –1.16 2.57 3 2 1 2 –2.31 5.11 30 28 1 2 –1.17 2.58

10 0 1 0 0.23 0.19 4 2 0 0 –0.29 0.24 34 34 1 0 2.76 2.34

10 0 1 1 –0.79 1.05 4 2 0 1 0.99 1.32 34 34 1 1 3.58 4.76

10 0 1 2 0.51 1.12 4 2 0 2 –0.64 1.41 34 34 1 2 1.54 3.40

15 0 1 0 –2.69 2.29 5 2 1 0 –0.46 0.39 39 38 1 0 –1.81 1.54

15 0 1 1 0.86 1.15 5 2 1 1 1.59 2.12 39 38 1 1 –2.36 3.13

15 0 1 2 0.54 1.19 5 2 1 2 –1.03 2.27 39 38 1 2 –1.01 2.24

23 0 1 0 1.99 1.69 3 3 1 0 2.11 1.79 53 38 0 0 0.23 0.20

23 0 1 1 0.00 0.00 3 3 1 1 2.74 3.64 53 38 0 1 –0.81 1.08

23 0 1 2 –0.89 1.97 3 3 1 2 1.18 2.60 53 38 0 2 0.52 1.15

1 1 0 0 13.43 11.39 5 4 1 0 2.32 1.97 40 39 1 0 –2.67 2.27

1 1 0 1 9.14 12.16 5 4 1 1 0.00 0.00 40 39 1 1 0.00 0.00

1 1 0 2 –4.03 8.90 5 4 1 2 –1.04 2.29 40 39 1 2 1.19 2.64

1 1 1 0 4.84 4.10 7 6 1 0 –0.29 0.24 55 39 1 0 –2.23 1.89

1 1 1 1 –1.42 1.89 7 6 1 1 1.00 1.33 55 39 1 1 0.00 0.00

1 1 1 2 –1.07 2.36 7 6 1 2 –0.65 1.43 55 39 1 2 1.00 2.20
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Table 16. Spheroidal decomposition coefficients snkpr (mas yr−1) of the field of proper motion differences Δμα cos δeα +
Δμδeδ TGAS–Tycho-2 corrected for the magnitude equation; u is the ratio of the absolute value of the coefficient to its
rms error

n k p r snkpr u n k p r snkpr u n k p r snkpr u

1 0 1 0 2.37 33.83 10 0 1 2 –0.06 1.59 2 1 1 1 –0.38 7.16

1 0 1 1 0.42 8.01 13 0 1 0 –0.32 4.53 2 1 1 2 0.06 1.68

1 0 1 2 –0.09 2.37 13 0 1 1 0.08 1.46 3 1 1 0 –0.02 0.30

2 0 1 0 –1.64 23.36 13 0 1 2 0.08 2.27 3 1 1 1 0.07 1.39

2 0 1 1 –0.29 5.47 14 0 1 0 –0.62 8.86 3 1 1 2 –0.05 1.32

2 0 1 2 0.06 1.78 14 0 1 1 –0.12 2.31 2 2 1 0 –0.30 4.27

3 0 1 0 –1.15 16.48 14 0 1 2 0.03 0.85 2 2 1 1 –0.39 7.32

3 0 1 1 –0.36 6.78 20 0 1 0 –0.28 4.00 2 2 1 2 –0.17 4.64

3 0 1 2 0.06 1.68 20 0 1 1 0.09 1.62 6 2 0 0 0.13 1.86

7 0 1 0 0.47 6.70 20 0 1 2 0.06 1.63 6 2 0 1 –0.08 1.46

7 0 1 1 –0.20 3.70 22 0 1 0 0.60 8.50 6 2 0 2 0.00 0.05

7 0 1 2 –0.06 1.61 22 0 1 1 0.00 0.08 7 2 1 0 0.18 2.56

8 0 1 0 0.28 3.97 22 0 1 2 –0.03 0.81 7 2 1 1 –0.08 1.46

8 0 1 1 –0.08 1.46 1 1 0 0 –0.68 9.78 7 2 1 2 –0.02 0.56

8 0 1 2 –0.06 1.78 1 1 0 1 –0.10 1.85 4 3 1 0 –0.18 2.60

9 0 1 0 0.78 11.08 1 1 0 2 0.07 2.00 4 3 1 1 –0.24 4.47

9 0 1 1 0.18 3.47 1 1 1 0 –0.14 2.07 4 3 1 2 –0.10 2.83

9 0 1 2 –0.05 1.46 1 1 1 1 –0.19 3.54 9 3 0 0 0.21 2.99

10 0 1 0 0.60 8.59 1 1 1 2 –0.08 2.24 9 3 0 1 –0.08 1.46

10 0 1 1 0.10 1.93 2 1 1 0 –0.45 6.48 9 3 0 2 –0.03 0.93

APPENDIX

In this paper we use real scalar spherical harmon-
ics of the following form:

Knkp(α, δ) (42)

= Rnk

⎧
⎪⎨

⎪⎩

Pn,0(δ), k = 0, p = 1

Pnk(δ) sin kα, k �= 0, p = 0

Pnk(δ) cos kα, k �= 0, p = 1,

Rnk =

√
2n + 1

4π

{√
2(n−k)!
(n+k)! , k > 0

1, k = 0,
(43)

where α and δ are the right ascension (longitude) and
declination (latitude) of a point on the celestial sphere,

respectively (0 ≤ α ≤ 2π; −π/2 ≤ δ ≤ π/2); Pnk(δ)
are Legendre polynomials (at k = 0) and associated
Legendre polynomials (at k > 0), which can be cal-
culated using the following recurrence relation:

Pnk(δ) = sin δ
2n − 1

n− k
Pn−1,k(δ) (44)

− n+ k − 1

n− k
Pn−2,k(δ),

k = 0, 1, . . . ; n = k + 2, k + 3, . . . ;

Pkk(δ) =
(2k)!

2kk!
cosk δ,

Pk+1,k(δ) =
(2k + 2)!

2k+1(k + 1)!
cosk δ sin δ.

When working with spherical harmonics, one index j
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Table 17. Spheroidal decomposition coefficients snkpr (mas yr−1) of the field of proper motion differences Δμα cos δeα +
Δμδeδ TGAS–Tycho-2 corrected for the magnitude equation; u is the ratio of the absolute value of the coefficient to its
rms error (the continuation of Table 16)

n k p r snkpr u n k p r snkpr u n k p r snkpr u

4 4 0 0 –0.18 2.54 7 7 0 0 –0.23 3.23 31 30 0 0 0.02 0.30

4 4 0 1 –0.33 6.16 7 7 0 1 –0.20 3.85 31 30 0 1 –0.07 1.39

4 4 0 2 –0.07 1.83 7 7 0 2 –0.16 4.39 31 30 0 2 0.05 1.32

4 4 1 0 –0.14 2.07 8 8 1 0 –0.33 4.67 34 33 1 0 –0.17 2.42

4 4 1 1 –0.19 3.54 8 8 1 1 –0.42 8.01 34 33 1 1 –0.22 4.16

4 4 1 2 –0.08 2.24 8 8 1 2 –0.18 5.08 34 33 1 2 –0.09 2.64

5 4 1 0 –0.30 4.25 9 9 1 0 –0.21 2.96 48 36 1 0 0.02 0.30

5 4 1 1 0.08 1.46 9 9 1 1 –0.27 5.08 48 36 1 1 –0.07 1.39

5 4 1 2 0.07 2.03 9 9 1 2 –0.12 3.22 48 36 1 2 0.05 1.32

9 4 0 0 0.41 5.81 10 9 0 0 –0.15 2.11 38 37 1 0 0.25 3.59

9 4 0 1 0.11 2.08 10 9 0 1 –0.19 3.62 38 37 1 1 0.24 4.47

9 4 0 2 0.03 0.83 10 9 0 2 –0.08 2.29 38 37 1 2 0.17 4.78

6 6 0 0 –0.19 2.69 22 22 1 0 –0.14 2.07 40 39 0 0 –0.18 2.51

6 6 0 1 –0.24 4.62 22 22 1 1 –0.19 3.54 40 39 0 1 –0.23 4.31

6 6 0 2 –0.11 2.93 22 22 1 2 –0.08 2.24 40 39 0 2 –0.10 2.73

6 6 1 0 –0.29 4.18 43 29 0 0 –0.02 0.30 45 39 1 0 0.21 3.02

6 6 1 1 –0.38 7.16 43 29 0 1 0.07 1.39 45 39 1 1 –0.09 1.62

6 6 1 2 –0.16 4.54 43 29 0 2 –0.05 1.32 45 39 1 2 –0.03 0.78

is often used for their numbering, with

j = n2 + 2k + p− 1. (45)

The introduced functions satisfy the following rela-
tions:

∫∫

Ω

(Ki ·Kj) dω =

{
0, i �= j

1, i = j.
(46)

In other words, the set of functions Knkp forms an
orthonormal system of functions on a sphere.

The systematic position and proper motion dif-
ferences are the components of some vector field.
Therefore, it seems appropriate to apply the method of
decomposing this field into a system of vector spheri-
cal harmonics to study the systematic differences. In
this paper we use the apparatus of vector spherical
harmonics in the form in which it was applied in
our previous papers on a kinematic analysis of stellar
proper motions (Vityazev and Tsvetkov 2013, 2014).
In this notation the toroidal, Tnkp, and spheroidal,

Snkp, vector spherical harmonics are specified as

Tnkp(α, δ) =
1

√
n(n+ 1)

(47)

×
(
∂Knkp(α, δ)

∂δ
eα − 1

cos δ

∂Knkp′(α, δ)

∂α
eδ

)
,

Snkp(α, δ) =
1

√
n(n+ 1)

(48)

×
(

1

cos δ

∂Knkp(α, δ)

∂α
eα +

∂Knkp(α, δ)

∂δ
eδ

)
.

Denote the components of the unit vector eα by Tα
nkp

and Sα
nkp and of the unit vector eδ by T δ

nkp and Sb
nkp,

respectively:

Tnkp = Tα
nkpeα + T δ

nkpeδ, (49)

Snkp = Sα
nkpeα + Sδ

nkpeδ. (50)

Given that Pn,k+1(b) = 0 at n < k + 1, these compo-
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Table 18. Toroidal decomposition coefficients tnkpr (mas yr−1) of the field of proper motion differences Δμα cos δeα +
Δμδeδ TGAS–Tycho-2 corrected for the magnitude equation; u is the ratio of the absolute value of the coefficient to its
rms error

n k p r snkpr u n k p r snkpr u n k p r snkpr u

1 0 1 0 0.99 14.13 15 0 1 1 0.07 1.23 7 1 1 2 0.03 0.93

1 0 1 1 0.13 2.39 15 0 1 2 –0.04 1.17 9 1 0 0 –0.13 1.89

1 0 1 2 0.00 0.07 18 0 1 0 0.16 2.23 9 1 0 1 –0.17 3.24

2 0 1 0 –0.18 2.52 18 0 1 1 0.10 1.93 9 1 0 2 –0.07 2.05

2 0 1 1 0.13 2.54 18 0 1 2 0.12 3.42 2 2 1 0 0.48 6.90

2 0 1 2 –0.03 0.71 1 1 1 0 0.28 3.95 2 2 1 1 0.07 1.39

3 0 1 0 –0.21 3.05 1 1 1 1 –0.18 3.31 2 2 1 2 0.01 0.15

3 0 1 1 –0.28 5.24 1 1 1 2 0.01 0.34 3 2 1 0 –0.71 10.20

3 0 1 2 –0.12 3.32 1 1 0 0 –3.46 49.43 3 2 1 1 –0.49 9.17

4 0 1 0 1.05 15.04 1 1 0 1 –1.09 20.64 3 2 1 2 0.06 1.76

4 0 1 1 0.10 1.85 1 1 0 2 0.23 6.44 7 2 0 0 0.12 1.66

4 0 1 2 –0.03 0.78 2 1 1 0 –0.12 1.71 7 2 0 1 0.15 2.85

5 0 1 0 –0.36 5.16 2 1 1 1 –0.16 2.93 7 2 0 2 0.07 1.81

5 0 1 1 –0.47 8.86 2 1 1 2 –0.07 1.85 9 2 1 0 0.12 1.72

5 0 1 2 –0.20 5.61 3 1 0 0 0.20 2.87 9 2 1 1 –0.08 1.46

6 0 1 0 –0.92 13.12 3 1 0 1 0.26 4.93 9 2 1 2 0.01 0.17

6 0 1 1 –0.08 1.54 3 1 0 2 0.11 3.12 5 4 1 0 –0.24 3.47

6 0 1 2 0.04 1.22 4 1 0 0 0.44 6.22 5 4 1 1 –0.25 4.70

10 0 1 0 0.72 10.31 4 1 0 1 0.06 1.16 5 4 1 2 0.04 1.17

10 0 1 1 0.11 2.08 4 1 0 2 0.00 0.12 9 5 0 0 –0.02 0.27

10 0 1 2 –0.01 0.27 5 1 1 0 –0.19 2.69 9 5 0 1 0.07 1.23

13 0 1 0 0.02 0.27 5 1 1 1 –0.24 4.62 9 5 0 2 –0.04 1.17

13 0 1 1 –0.07 1.23 5 1 1 2 –0.11 2.93 7 7 1 0 0.19 2.74

13 0 1 2 0.04 1.17 7 1 1 0 –0.21 2.99 7 7 1 1 0.25 4.70

15 0 1 0 –0.02 0.27 7 1 1 1 0.08 1.46 7 7 1 2 0.11 2.98

nents as defined as

Tα
nkp = Sδ

nkp =
Rnk√

n(n+ 1)
(51)

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pn,1(δ),

k = 0, p = 1

(−k tan δPnk(δ) + Pn,k+1(δ)) sin kα,

k �= 0, p = 0

(−k tan δPnk(δ) + Pn,k+1(δ)) cos kα,

k �= 0, p = 1;

T δ
nkp = −Sα

nkp =
Rnk√
n(n+ 1)

(52)

×

⎧
⎪⎨

⎪⎩

0, k = 0, p = 1

− k
cos δPnk(δ) cos kα, k �= 0, p = 0

+ k
cos δPnk(δ) sin kα, k �= 0, p = 1.

The introduced functions form an orthonormal sys-
tem of functions on a sphere:

∫∫

Ω

(Ti ·Tj) dω (53)
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=

∫∫

Ω

(Si · Sj) dω =

{
0, i �= j

1, i = j;

∫∫

Ω

(Si ·Tj) dω = 0, ∀i, j. (54)

Normalized Legendre polynomials are used in
Eq. (8) to describe the magnitude equation:

tnkp(G) =
∑

r

tnkprQr(Ḡ); (55)

snkp(G) =
∑

r

snkprQr(Ḡ),

where the transformation

Ḡ = 2
G−Gmin

Gmax −Gmin
− 1 (56)

transforms the segment [Gmin ≤ G ≤ Gmax] to the
segment [−1 ≤ m̄ ≤ +1].

Normalized Legendre polynomials are used in
Eq. (55):

Qr(Ḡ) =

√
2r + 1

2
Pr(Ḡ), (57)

while Pr(Ḡ) are Legendre polynomials; the following
recurrence relation can be used to calculate the latter:

Pr+1(Ḡ) =
2r + 1

r + 1
ḠPr(Ḡ)− r

r + 1
Pr−1(Ḡ), (58)

r = 1, 2, . . . , P0 = 1, P1 = Ḡ.
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