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Abstract—This paper is a continuation of our work. The proper motions and radial velocities of stars from
the Gaia DR2 with RV catalogue have been decomposed. We have confirmed that the Ogorodnikov–Milne
model is consistent with the observational data and found the kinematic components that are not described
by this model. The beyond-the-model harmonics have been partially identified with the nonlinear terms of
the extended Oort model and the parameters of the second-order kinematic model.
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INTRODUCTION

A kinematic analysis of the proper motions and
radial velocities of 6 million stars from the Gaia DR2
with RV catalogue was performed by Tsvetkov and
Amosov (2019). The parameters of the linear three-
dimensional Ogorodnikov–Milne model (Ogorod-
nikov 1965) were determined from separate and
simultaneous solutions. However, the traditional
approach, which consists in solving the conditional
equations by the least-squares method, has well-
known shortcomings, because it does not allow the
systematic components in the observational data that
initially were not included in the model equations to
be revealed. Using the apparatus of vector (when
analyzing the proper motions) and scalar (when
analyzing the radial velocities) spherical harmonics
allows one not only to detect the disregarded system-
atic effects, but also to check whether the model is
consistent with the observations. This technique was
apparently first described by Vityazev and Tsvetkov
(1989) and applied by Vityazev and Tsvetkov (1990)
based data from the FK4 and earlier catalogues.

The complete form and the algorithm of calculat-
ing the vector spherical harmonics as well as the re-
lations of the spherical harmonic decomposition coef-
ficients to the Ogorodnikov–Milne model parameters
(and the equations themselves) are given in Vityazev
and Tsvetkov (2009, 2013). Similar information,
but for the radial velocities, and the relations for the
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scalar spherical harmonic decomposition coefficients
are presented in Vityazev and Tsvetkov (2014).

For the convenience of readers, in this paper
we present only the tables of relations between the
kinematic parameters and decomposition coefficients.
The standard notation for the kinematic parameters is
adopted in Tables 1 and 2:

U, V, W are the components of the translational
velocity vector of the Sun V0 among the stars, 〈r〉 is
the mean distance of the group of stars under consid-
eration;

ω1, ω2, ω3 are the components of the angular
velocity vector Ω;

M+
11, M+

22, M+
33 are the parameters of the defor-

mation tensor describing the contraction–expansion
along the principal axes of the Galactic coordinate
system;

M+
12, M+

13, M+
23 are the parameters of the tensor

M+ describing the velocity field deformation in the
principal plane and two perpendicular planes.

The inverse relations, which we will not provide
here, are also presented in Vityazev and Tsvetkov
(2009).

DETERMINING THE DECOMPOSITION
COEFFICIENTS FROM OBSERVATIONAL

DATA

To maintain continuity and to be able to prop-
erly compare the results, we decomposed the stellar
proper motions and radial velocities into vector and
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Table 1. Relations of the kinematic Ogorodnikov–Milne
model parameters to the vector spherical decomposition
coefficients of the stellar proper motions

Coefficient tnkp or
snkp

Value

t101 2.89ω3

t110 2.89ω2

t111 2.89ω1

s101 −2.89W/〈r〉

s110 −2.89V/〈r〉

s111 −2.89U/〈r〉

s201 −0.65M+
11 − 0.65M+

22 + 1.29M+
33

s210 2.24M+
23

s211 2.24M+
13

s220 2.24M+
12

s221 1.12M+
11 − 1.12M+

22

Table 2. Relation of the kinematic Ogorodnikov–Milne
model parameters to the scalar spherical harmonic decom-
position coefficients of the stellar radial velocities

Coefficient tnkp or
snkp

Value

v001 1.18M+
11 + 1.18M+

22 + 1.18M+
33

v101 −2.05W/〈r〉

v110 −2.05V/〈r〉

v111 −2.05U/〈r〉

v201 −0.53M+
11 − 0.53M+

22 + 1.06M+
33

v210 1.83M+
23

v211 1.83M+
13

v220 1.83M+
12

v221 0.92M+
11 − 0.92M+

22

scalar spherical harmonics, respectively, based on
distance samples of 400 000 stars, as was done in our
previous paper (Tsvetkov and Amosov 2019). Since
there is no multiband photometry in Gaia DR2, we
did not separate the stars by any parameters except
the distance. Here we will give only the boundaries
of the samples of stars and the mean distance of the
sample stars in Table 3.

For each sample we calculated the coefficients of
the decomposition of the stellar proper motions into
vector spherical harmonics (Tables 4 and 5) and of the
radial velocities into scalar spherical harmonics (Ta-
ble 6). We performed our calculations by directly us-
ing individual stars without any averaging. Since all
spherical harmonics are orthonormal on the sphere,
the root-mean-square (rms) errors of all coefficients
are the same for each sample and we provide only one
value. For the reader’s convenience, the coefficients
whose absolute value exceeds three rms errors (the
so-called 3σ criterion) are highlighted in boldface in
the tables.

ANALYSIS OF THE DECOMPOSITION
COEFFICIENTS

Comparison of Tables 4 and 5 with Table 1 shows
the presence of significant coefficients t101, t110, and
t111 responsible for the solid-body rotation of the
group of stars. The coefficient t111 showing the pres-
ence of rotation around the X axis is rather large.
The remaining toroidal harmonics should be zero.
However, we see that t301, t411, t321, and some other
harmonics are significant, but the main beyond-the-
model component is the harmonic t211; it is only
slightly smaller than the main effect—the harmonic
t101 due to the Galactic rotation around the Z axis.

A similar picture is observed when analyzing the
spheroidal harmonics. The harmonics describing the
translational motion of the Sun among the stars (s101,
s110, and s111) are very significant. As it must be,
their values decrease with increasing distance. The
harmonic s220 generated by the Oort parameter A
is also large and does not depend on distance. The
model harmonics s201 and s210 are small. Only the
harmonic s211 responsible for the difference of the
stellar sample contraction–expansion along the X
and Y axes is fairly significant. Out of the beyond-
the-model harmonics, s310 has a large value. This
effect is also of the order of the Galactic rotation.
The remaining beyond-the-model harmonics, though
formally significant, are small.

To illustrate the data from Tables 4 and 5, we
propose a technique that may be called the “spec-
trum” of proper motions. Figure 1 presents this spec-
trum for distances 835–1040 pc. For more compact
data presentation we used the linear numbering of
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Table 3. Boundaries of the samples of 400 000 star groups in pc

Min 3 208 300 386 474 571 687 835 1040 1303 1594 1897 2220 2582 3031

Max 208 300 386 474 571 687 835 1040 1303 1594 1897 2220 2582 3031 3677

Avr 144 255 343 430 522 627 757 933 1168 1447 1745 2056 2396 2796 3328

Table 4. Toroidal coefficients (in km s−1 kpc−1) of the decomposition of the proper motions into vector spherical
harmonics. The coefficients that are significant according to the 3σ criterion are highlighted in boldface

Min 3 208 300 386 474 571 687 835 1040 1303 1594 1897 2220 2582 3031

Max 208 300 386 474 571 687 835 1040 1303 1594 1897 2220 2582 3031 3677

t101 –35.8 –36.5 –35.9 –37.3 –37.9 –38.2 –38.4 –38.8 –39.8 –40.7 –41.2 –41.6 –41.7 –41.6 –41.2

t110 –15.6 –6.4 –3.1 –3.0 –3.4 –3.6 –1.5 –0.4 0.5 1.3 1.5 1.4 0.8 1.1 0.9

t111 2.2 4.3 2.0 3.1 2.5 1.2 –0.3 0.7 1.9 3.7 3.5 4.9 3.3 3.8 2.6

t201 0.2 0.5 0.3 –0.8 –1.3 –1.4 –2.1 –1.3 –1.0 –0.7 0.3 0.7 1.4 1.2 1.4

t210 –1.2 –0.4 –1.3 –2.3 –3.0 –3.5 –4.6 –3.6 –3.6 –2.9 –2.6 –1.9 –1.6 –0.3 –0.2

t211 19.2 11.5 9.9 10.6 9.2 8.9 10.5 14.8 17.9 20.4 20.8 21.0 21.5 22.7 22.1

t220 –0.3 0.3 0.0 –0.2 –0.6 0.1 –0.4 –0.4 –0.3 –0.8 –1.0 –0.9 –0.5 0.0 –0.2

t221 1.8 0.5 –0.3 –0.5 0.1 0.9 1.0 1.3 1.2 0.0 0.4 –0.5 –0.2 –0.8 –0.1

t301 –5.4 –2.0 –1.3 –0.8 –0.2 –0.8 –1.9 –3.1 –3.9 –3.4 –2.7 –1.7 –0.6 0.1 1.6

t310 2.0 4.9 2.5 1.4 –0.3 0.0 1.6 2.3 2.1 1.8 0.7 0.5 0.3 0.5 0.2

t311 –0.8 –1.9 –2.1 0.0 –0.2 –1.5 –2.1 –0.3 0.4 1.6 1.2 1.4 0.3 0.6 –0.1

t320 0.0 0.2 –0.6 0.5 0.6 1.4 1.0 –0.3 0.3 –0.3 –0.1 –0.2 0.0 –0.5 0.1

t321 –1.2 0.8 –0.6 0.4 0.4 1.0 1.3 2.5 2.4 3.1 3.6 3.5 3.9 4.1 4.3

t330 –1.0 0.2 –0.3 –0.6 0.1 –0.3 –0.6 –0.3 0.0 –0.3 0.2 0.0 0.5 0.0 0.2

t331 2.0 –0.9 0.0 0.0 –0.4 –0.3 0.1 0.3 0.1 0.3 0.2 0.3 0.3 0.0 0.0

t401 4.5 0.1 –2.0 –0.9 –1.2 –1.2 –0.4 0.5 1.3 0.4 1.0 1.4 1.4 1.2 1.0

t410 –0.5 –2.1 –1.3 –0.5 0.0 –0.5 –0.9 –0.2 –0.3 0.6 1.0 0.7 0.8 0.9 0.8

t411 –3.3 –2.7 –2.2 –1.0 –2.2 –1.0 1.4 1.5 –0.2 –1.0 –2.4 –3.3 –3.4 –2.4 –2.4

t420 1.8 –0.4 –0.5 0.3 –0.4 0.2 –0.4 0.4 –0.3 –0.2 –0.1 0.0 0.4 0.7 0.3

t421 –3.2 1.1 –1.1 1.1 0.5 0.7 0.5 0.4 0.7 –0.9 –0.3 –0.8 –0.5 –0.8 –0.1

t430 –1.1 –0.6 0.6 0.2 –0.3 –0.7 –0.1 0.3 0.3 0.0 0.1 0.3 0.3 0.5 0.4

t431 –1.5 0.1 –0.6 –1.0 –0.3 –0.1 0.0 0.6 0.9 0.5 0.6 0.7 0.0 0.0 –0.4

t440 0.7 0.1 –0.2 –0.2 –0.2 0.0 –0.1 0.0 –0.2 0.0 0.0 0.0 –0.1 0.0 0.0

t441 1.2 –0.8 –0.1 0.0 0.4 0.0 –0.2 –0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0

σ 1.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
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Table 5. Spheroidal coefficients (in km s−1 kpc−1) of the decomposition of the proper motions into vector spherical
harmonics. The coefficients that are significant according to the 3σ criterion are highlighted in boldface

Min 3 208 300 386 474 571 687 835 1040 1303 1594 1897 2220 2582 3031

Max 208 300 386 474 571 687 835 1040 1303 1594 1897 2220 2582 3031 3677

s101 –179 –88.2 –66.4 –52.8 –43.7 –36.7 –30.9 –25.9 –21.1 –16.7 –14.3 –11.9 –10.5 –9.2 –8.5

s110 –517 –255 –194 –156 –130 –110 –98.3 –93.8 –91.1 –86.9 –82.6 –79.6 –77.7 –77.6 –77

s111 –229 –110 –85.5 –69.4 –59.1 –50.1 –44.7 –38.1 –31.9 –27 –23.5 –19.9 –17.4 –14.3 –12.5

s201 –2.9 2.4 2.6 3.3 3.2 2.9 2.8 2.2 2.5 2 1.4 2 1.4 1.8 1.9

s210 –1.5 –2.5 0.5 –0.8 –1 0.9 2.8 1.5 –0.5 –2.1 –2.3 –3.2 –1.5 –1.8 –1

s211 –6.1 –2.5 –0.4 –2.5 –2.9 –2.8 –0.7 –0.4 –0.4 –0.3 –0.3 –0.4 –1.2 –0.8 –1

s220 38.7 36.2 34.6 33.7 33.6 34.1 33.5 31.5 30.1 28 26.9 25.6 24.4 23.3 21.3

s221 –3.5 –6.1 –7.3 –7.4 –7.8 –7.2 –5.8 –4.7 –3.6 –3.3 –2.8 –3.2 –2.4 –2.6 –1.2

s301 –5.8 –0.9 –1.1 –0.6 –1.6 –1.9 –2.4 –2 –1.7 –0.5 –1.1 –0.5 –0.6 –0.7 –1.4

s310 –15.4 –7.5 –7.2 –8 –7.7 –7.6 –8.8 –12.1 –14.4 –15.5 –15.3 –15.8 –16.4 –17.2 –17.5

s311 –2.5 –0.1 –0.2 –1.2 –1 –1.3 –2.5 –2.3 –1.7 –1.2 –0.9 –0.6 –0.5 –0.1 0.1

s320 –3.4 0 –0.3 0.6 –0.2 –0.7 –1.5 –1.8 –1.3 –0.1 –0.3 0.6 0.2 0.7 0.3

s321 –1.3 –0.4 –0.8 –0.6 –0.7 –0.3 –0.3 –0.4 –0.2 –0.6 –0.6 –0.5 –0.2 0.2 0.2

s330 2 1.9 2.1 2.1 2 2 1.5 1.6 2.1 3.2 3.3 3.5 4 3.9 4.3

s331 –0.3 –1.3 –1.4 –1.9 –0.9 –1.1 –1.3 –1 –1 –1.6 –1.6 –1.3 –1.2 –1.1 –1.1

s401 0.4 –1.3 0.7 –0.3 –0.3 –0.1 –0.2 –0.4 0.8 0.5 0.6 0.6 0.4 0.7 0.9

s410 0.2 –0.3 1.2 –1.3 –0.6 0.7 1.3 0.4 –0.7 –1 –0.9 –0.6 0 0.2 0.4

s411 5.6 3 1.4 –0.3 –0.5 0.7 1.1 0.6 –0.3 –0.6 –0.9 –0.6 –0.9 –0.5 –0.7

s420 0.5 –0.1 0 –0.7 –1.3 –0.8 –1 –2 –2.2 –2.9 –3.1 –3 –3.4 –3.3 –3.9

s421 –4.1 –1.1 –0.4 –0.2 1.3 1.3 1 0.3 0 –0.2 –0.3 –0.7 0 –0.3 0.1

s430 –0.4 1.9 0.9 0.6 0.6 0.6 –0.1 –0.4 –0.2 –0.5 0 –0.2 –0.3 0.2 0

s431 –1.3 0.2 0.1 –0.7 –0.2 –0.2 0.1 –0.3 –0.1 –0.3 0 0 0.4 0 0.3

s440 0 0.2 0 0.7 0.7 –0.1 –0.8 –0.7 –0.9 0 0.1 0 0.3 0.6 0.9

s441 4.1 0.5 –0.5 0 –0.4 0.7 0.7 0.8 0.7 0.6 0.4 0.1 0 –0.2 –0.1

σ 1.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
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Table 6. Coefficients of the decomposition of the radial velocities (km s−1) into spherical harmonics. The coefficients that
are significant according to the 3σ criterion are highlighted in boldface

Min 3 208 300 386 474 571 687 835 1040 1303 1594 1897 2220 2582 3031

Max 208 300 386 474 571 687 835 1040 1303 1594 1897 2220 2582 3031 3677

v001 0.8 –0.6 –1.0 –2.0 –2.8 –2.7 –3.4 –4.0 –5.1 –4.7 –2.6 –2.8 –0.7 –0.2 –0.3

v101 –16.2 –16.3 –16.0 –16.9 –17.6 –16.7 –16.0 –16.4 –16.3 –17.0 –16.1 –16.5 –16.6 –16.2 –18.3

v110 –43.9 –44.0 –43.8 –43.7 –43.8 –43.6 –44.3 –48.6 –57.7 –65.7 –73.5 –81.6 –90.2 –99.5 –110.3

v111 –20.6 –20.3 –20.8 –21.0 –20.9 –21.0 –21.2 –22.0 –22.9 –24.4 –25.4 –26.2 –25.5 –25.5 –24.3

v201 0.1 0.3 0.2 0.4 1.1 1.6 2.2 2.1 1.7 2.0 3.8 3.0 4.6 2.8 2.4

v210 –0.5 0.0 0.1 –0.1 –0.2 –0.2 0.1 0.4 0.9 –1.2 –0.7 –2.2 –2.3 –3.6 –1.7

v211 –1.4 –1.8 –1.2 –1.3 –1.5 –1.7 –2.4 –2.2 –1.8 –1.5 –0.9 –1.6 –0.2 –1.1 0.5

v220 4.8 8.1 10.3 12.3 15.1 17.5 20.2 23.6 28.1 32.5 37.0 41.8 46.4 51.2 55.1

v221 –0.7 –1.9 –2.2 –2.7 –3.6 –3.4 –3.5 –3.5 –2.7 –2.8 –1.8 –1.2 –1.0 –0.7 0.1

v301 0.4 0.0 –0.8 –0.7 –0.7 –0.8 –0.2 –0.6 –0.7 –1.8 –1.7 –2.1 –3.0 –3.7 –5.2

v310 –0.8 –1.9 –2.5 –3.2 –3.6 –4.5 –5.3 –8.5 –15.0 –20.4 –26.1 –32.1 –38.7 –46.5 –53.4

v311 0.5 0.3 0.0 –0.1 –0.7 –0.5 –1.1 –1.4 –1.5 –2.0 –1.8 –1.6 –0.5 0.1 1.6

v320 –0.2 –0.2 0.4 0.1 –0.3 –0.5 –0.2 –0.8 –0.5 –0.5 –0.6 –0.5 0.6 –0.1 0.2

v321 –0.2 0.0 0.0 –0.1 –0.3 0.1 0.0 –0.2 –0.5 –0.2 –0.4 –0.7 –0.4 –1.2 –1.5

v330 0.0 0.2 0.7 0.8 0.9 1.0 1.1 1.6 2.4 3.5 4.4 5.9 7.6 9.7 13.0

v331 –0.2 –0.1 0.0 –0.4 –0.2 –0.3 –0.5 –1.0 –1.9 –2.4 –2.8 –2.9 –3.2 –2.8 –3.2

v401 0.0 0.0 0.2 0.0 0.3 0.5 0.6 0.2 0.1 –0.3 0.1 0.5 2.0 1.4 2.6

v410 –0.1 0.2 0.5 0.5 0.0 –0.2 0.4 0.6 1.1 –0.1 –0.1 –0.8 –0.3 –0.4 1.1

v411 0.2 0.8 1.1 0.0 0.0 0.3 0.3 0.6 0.9 1.2 1.6 1.4 2.7 2.6 3.6

v420 –0.1 –0.1 –0.3 –0.5 –0.8 –0.8 –1.6 –2.3 –3.3 –5.7 –7.8 –9.6 –12.4 –15.2 –20.3

v421 0.1 0.1 0.0 0.3 –0.1 0.6 1.0 1.1 1.1 –0.3 –0.3 –1.0 –2.4 –3.6 –3.0

v430 –0.2 0.3 0.1 0.3 0.3 0.0 –0.4 –0.4 –0.6 –0.6 –1.1 –1.0 –0.8 –0.3 –0.4

v431 0.1 0.1 –0.2 –0.3 0.0 –0.2 –0.5 –0.2 0.0 0.2 0.9 0.4 0.6 0.1 –0.3

v440 0.0 –0.1 0.4 0.4 0.1 –0.4 –0.5 –0.8 –0.7 –0.2 0.3 1.0 1.8 2.9 3.9

v441 –0.3 0.2 –0.1 –0.1 –0.1 0.2 0.4 0.5 0.9 1.3 1.2 1.0 0.7 0.6 –0.7

∑
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7
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Fig. 1. Decomposition spectrum of the stellar proper motions for distances 835–1040 pc: the coefficients tj (left) and sj (right).
The linear numbering of the coefficients is used. The coefficients in km s−1 kpc−1 are along the vertical axis.

the coefficients according to the following formula
(Brosche 1966):

j = n2 + 2k + p− 1, (1)

which allows the three indices n, k, p to be trans-
formed into one.

In this numbering the strong beyond-the-model
harmonics are designated as t6 and s10 and are
hatched in the figure.

Let us now analyze the decomposition coefficients
of the radial velocities (Table 6) and compare them
with the data from Table 2. The strongest effect, this
is the solar motion, corresponds to the coefficients
v101, v110, and v111. The differential Galactic rotation
is clearly traceable by the coefficient v220 beginning
from distances of several hundred parsecs. The re-
maining significant model harmonics are compara-
tively small (v221, v001). Again, v310 and, for large
distances, v420 strongly stand out among the beyond-
the-model harmonics. We observe a growth of the
harmonics v220 and v310 due to their kinematic na-
ture, because the Ogorodnikov–Milne model for the
radial velocities has no distances only in the functions
at the solar motion parameters, while they are present
for the remaining terms. The reverse is true for the
proper motions. The solar terms depend on distance,
while the terms describing the Galactic kinematics
do not depend on distance in the linear approxima-
tion. For this reason, the distance dependence of the
beyond-the-model harmonic v310 serves as evidence

for its kinematic nature of the disregarded stellar mo-
tion.

The decomposition spectrum of the radial veloci-
ties for stars at the same distances 835–1040 pc is
presented in Fig. 2. It also uses the linear numbering
of the coefficients. The strong beyond-the-model
harmonic, v10, is hatched.

Below we summarize the results of our analysis of
the decomposition coefficients for both stellar proper
motions and radial velocities.

1. The kinematics of the nearest stars differs sig-
nificantly from the kinematics of more distant
stars in both systematic and random terms
(large errors of the coefficients). This is a well-
known fact stemming from the presence of an
anomaly in the kinematics of the Local System
of stars (Tsvetkov 1995, 1999) and the peculiar
velocities, which distort noticeably the proper
motions of nearby stars.

2. There exist stable kinematic effects in the stel-
lar motions that are not described by the model,
namely the coefficients t211, s310, and v310 (or
t6, s10, and v10). This fact is less known,
although it was revealed when analyzing the
stellar proper motions from the Tycho-2 cat-
alogue and the radial velocities from the OS-
ACA catalogue (Vityazev and Shuksto 2004;
Vityazev and Tsvetkov 2009). The latter means
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Fig. 2. Decomposition spectrum of the stellar radial velocities for distances 835–1040 pc. The linear numbering of the
coefficients is used. The coefficients in km s−1 are along the vertical axis.

that, apparently, disregarded effects are indeed
present in the kinematic picture of the stellar
motions in circumsolar space. Before the ap-
pearance of the Gaia catalogue, there was a
slight probability that these harmonics could
result from the systematic errors in the stellar
proper motions of the catalogues.

POSSIBLE NATURE OF THE
BEYOND-THE-MODEL TERMS IN THE

DECOMPOSITIONS

The systematic significance of the harmonics t211,
s310, and v310 needs an explanation. A possible ex-
planation is the presence of nonlinear terms in the
Galactic rotation model. In the simplest case, this is
a generalized Oort–Lindblad model. Generally, these
equations are a special case of Bottlinger’s formulas
described in detail by Bobylev and Bajkova (2014,
2017). We present these equations as they are given
in Vityazev and Tsvetkov (2009):

kμl cos b = U/r sin l − V/r cos l (2)

+A cos b cos 2l +B cos b− rF cos2 b cos3 l

− rG(3 cos2 b cos l − cos2 b cos3 l),

kμb = U/r cos l sin b+ V/r sin l sin b (3)

−W/r cos b−A sin b cos b sin 2l

+ rF cos2 b sin b sin l cos2 l + rG cos2 b sin b sin3 l

−K cos b sin b,

Vr/r = −U/r cos b cos l − V/r cos b sin l (4)

−W/r sin b+A cos2 b sin 2l − rF cos3 b sin l cos2 l

− rG cos3 b sin3 l +K cos2 b.

Here:

• k = 4.738 is the conversion factor from mas yr−1

to km s−1 kpc−1;

• l, b, r are the stellar Galactic coordinates;

• U, V, W are the components of the transla-
tional velocity vector of the Sun V0 among the
stars;

• A = 0.5R0ω
′
0 and B = 0.5R0ω

′
0 + ω0 are the

Oort parameters, R0 is the distance to the
Galactic center, ω0 is the angular velocity of
Galactic rotation (recall that A = M+

12 and
B = ω3);

• K is the total contraction–expansion of the
system in the XY plane;

• F and G are the second-order Oort parame-
ters, F = 0.5R0ω

′′
0 and G = A/R0.

If we perform a theoretical decomposition of
Eqs. (2)–(4) into spherical harmonics, then, in
addition to Tables 1 and 2, we will obtain the result
presented in Table 7.
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Table 7. Contribution of the generalized Oort model to the scalar and vector spherical harmonic decomposition
coefficients

j n k p vnkp tnkp snkp

0 0 0 1 2.363K

1 1 0 1 −2.047W/〈r〉 2.894B −2.894W/〈r〉

2 1 1 0 −2.047V/〈r〉
−0.409F 〈r〉 − 1.228G〈r〉

−2.894V/〈r〉
−1.158F 〈r〉 − 3.473G〈r〉

3 1 1 1 −2.047U〈r〉 −2.894U/〈r〉

4 2 0 1 −1.057K −1.294K

5 2 1 0

6 2 1 1 −0.747F 〈r〉 − 2.242G〈r〉

7 2 2 0 1.831A 2.242A

8 2 2 1

9 3 0 1

10 3 1 0 0.109F 〈r〉+ 0.328G〈r〉 0.126F 〈r〉+ 0.379G〈r〉

11 3 1 1

12 3 2 0

13 3 2 1

14 3 3 0 −0.424F 〈r〉+ 0.424G〈r〉 −0.489F 〈r〉+ 0.489G〈r〉

15 3 3 1

We see that the presence of t211 and s310 in the
proper motions and v310 in the radial velocities can be
explained by the extended Oort model. Unfortunately,
it is impossible to separately obtain F and G from
these three harmonics due to the linear dependence.
Indeed,

v310 = 0.109(F + 3G) 〈r〉 , (5)

t211 = −0.747(F + 3G) 〈r〉 ,
s310 = 0.126(F + 3G) 〈r〉 ,

i.e., we can determine the combination (F + 3G) 〈r〉.
For stars at 835–1040 pc (the mean distance is about

0.933 kpc) we have

v310 → F + 3G = −8.5/0.109/0.933 = −83.6, (6)

t211 → F + 3G = 14.8/(−0747)/0.933 = −21.2,

s310 → F + 3G = −12.1/0.126/0/933 = −83.6.

As we see, the values obtained from the radial
velocities and spheroidal harmonics are close to one
another, while the value determined from the toroidal
harmonic stands out.

A further examination of Table 7 forces us to check
the coefficients v330 and s330 that are also generated
by the parameters F and G. An analysis of these
harmonics shows that, on the whole, they are small
(with the exception of v330 for distant stars). This
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Table 8. Parameters of the extended Oort model derived from the simultaneous solution of Eqs. (2)–(4)

Min 3 208 300 386 474 571 687 835

Max 208 300 386 474 571 687 835 1040

U 9.2± 0.0 8.9± 0.0 9.3 ± 0.0 9.4± 0.0 9.6± 0.0 9.8 ± 0.0 10.1± 0.0 10.6± 0.1

V 19.5± 0.1 19.9± 0.1 20.1± 0.1 20.4± 0.1 20.4± 0.1 20.3± 0.1 20.4± 0.1 22.0± 0.1

W 7.9± 0.0 7.8± 0.0 7.8 ± 0.0 7.9± 0.0 7.9± 0.0 7.9 ± 0.0 7.8± 0.0 8.0± 0.0

A 16.5± 0.5 15.8± 0.2 15.1± 0.1 14.8± 0.1 15.0± 0.1 15 ± 0.1 14.8± 0.1 14.5± 0.0

B −11.0± 0.5 −11.0± 0.2 −11.1± 0.1 −11.7± 0.1 −12.1± 0.1 −12.3± 0.1 −12.3± 0.1 −12.3± 0.0

F −13.9± 11.8 −10.5± 2.7 −10.2± 1.5 −8.1± 0.9 −6.3± 0.4 −4.8± 0.4 −2.7± 0.2 −2.6± 0.1

G 2.9± 4.4 2.4± 1.1 3.2 ± 0.6 1.5± 0.4 1.6± 0.2 1.5 ± 0.2 1.6± 0.1 1.4± 0.1

K 2.8± 0.5 −1.2± 0.2 −1.2± 0.1 −1.8± 0.1 −2.0± 0.1 −1.7± 0.1 −1.8± 0.1 −1.7± 0.0

Min 1040 1303 1594 1897 2220 2582 3031

Max 1303 1594 1897 2220 2582 3031 3677

U 11.1± 0.1 11.6± 0.1 12.1± 0.1 12.5± 0.1 12.6± 0.1 13.0± 0.1 13.2± 0.1

V 25.1± 0.1 27.8± 0.1 29.8± 0.1 31.2± 0.1 32.7± 0.1 33.3± 0.1 33.6± 0.1

W 8.1± 0.0 8.2 ± 0.1 8.3 ± 0.1 8.5 ± 0.1 8.7 ± 0.1 8.8± 0.1 9.1± 0.1

A 14.0± 0.0 13.6± 0.0 13.3± 0.0 12.9± 0.0 12.6± 0.0 12.1± 0.0 11.4± 0.0

B −12.5± 0.0 −13.0± 0.0 −13.3± 0.0 −13.7± 0.0 −14.1± 0.0 −14.3± 0.0 −14.6± 0.0

F −2.9± 0.1 −3.4± 0.1 −2.9± 0.1 −2.7± 0.0 −2.4± 0.0 −2.0± 0.0 −1.6± 0.0

G 1.1± 0.1 1.1 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0± 0.0 1.1± 0.0

K −1.7± 0.0 −1.4± 0.0 −1.1± 0.0 −0.8± 0.0 −0.6± 0.0 −0.3± 0.0 −0.1± 0.0

means that either these kinematic effects are absent
or the parameters F and G are approximately equal.

A comparison of these facts points to a contra-
diction in the direct interpretation of the beyond-the-
model harmonics as a manifestation of the effects of
the extended Oort model.

For ultimate clarification, we simultaneously solved
Eqs. (2)–(4) based on the stellar proper motions
and radial velocities using the same samples by
taking into account the individual distances to the

stars. The results are presented in Table 8. For
the same sample of stars with a mean distance of
about 0.93 kpc we have F = −2.9 km s−1 kpc−2

and G = 1.4 km s−1 kpc−2, which is in excellent
agreement with the values obtained by Bobylev and
Bajkova (2014), but is in serious contradiction to
Eqs. (6), from which it follows that F and G should
be much greater in absolute value. Thus, the large
values of the harmonics t211, s310, and v310 cannot be
explained by the extended Oort model. Although the
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Fig. 3. (Color online) Distance dependence of the parameters F and G. The coefficients in km s−1 kpc−1 are along the vertical
axis.

harmonic s330 = 0.42(G−F ) is in good agreement
with the parameters F and G found, if we attempt
to derive F and G, for example, from a combination
of the harmonics s310 and s330, then we will obtain
unrealistically large values, F ≈ 26 km s−1 kpc−2 and
G ≈ −23 km s−1 kpc−2.

There is another fact from which it follows that
the parameters F and G should have relatively small
values. The nonlinear terms have the meaning of
the derivatives of the Oort parameters with respect
to the distance. However, the results of our previous
paper (Tsvetkov and Amosov 2019) showed a sur-
prising stability of the Oort parameters (B = ω3, A =
M+

12) for significant distance ranges; consequently,
the derivatives of these parameters should be small.
The values of many kinematic parameters are large
for nearby stars, which is explained by the anomalies
of the Local System of stars (Tsvetkov 1995). The
parameters F and G decrease from distances greater
than 500 pc and are stabilized (Fig. 3).

CONTRIBUTION OF THE SECOND-ORDER
THREE-DIMENSIONAL MODEL TO THE

SPHERICAL HARMONIC DECOMPOSITION
COEFFICIENTS

We may consider a complete second-order three-
dimensional model. Apparently, a separate paper
should be devoted to a detailed derivation of the equa-
tions due to fairly cumbersome calculations. First
it should be said that it apparently makes no sense
to solve the second-order equations in view of the
correlations, because it will be possible to obtain only
linear combinations of the parameters. In this case,

it seems most appropriate to apply the spherical har-
monic decomposition method and to use the derived
coefficients to analyze the nonlinear part of the model.

Let us introduce the partial derivatives of the kine-
matic parameters along the principal X, Y, Z axes of
the Galactic coordinate system denoted by ∂

∂r1
, ∂
∂r2

,
∂

∂r3
, respectively. The decomposition of the derived

second-order equations into scalar (for the radial ve-
locities) and vector (for the proper motions) spher-
ical harmonics is presented in Tables 9–11, where,
for compactness, we omit the factor 〈r〉 (the mean
distance to the group of stars under consideration) in
each partial derivative. The contribution of the first-
order linear model, which has already been presented
in Tables 1 and 2, is also present in these tables.

We see that a large number of derivatives of the
kinematic parameters enter into the individual har-
monics as a linear combination. In some cases, the
second-order parameters are superimposed on the
coefficients that were previously assumed to be de-
pendent only on the first-order parameters (s101, s110,
s111, v101, v110, v111).

Let us return, however, to the harmonics under
consideration that have a large value. Let us write
out the complete expressions from Tables 9–11 sepa-
rately for them by grouping the terms in such a way
that it is convenient to analyze them. We have (to
within the factor 〈r〉)

s310 = 0.13

(

−∂M+
11

∂r2
− 2

∂M+
12

∂r1
(7)

− 3
∂M+

22

∂r2
+ 4

∂M+
33

∂r2
+ 8

∂M+
23

∂r3

)

,
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Table 9. Contribution of the second-order kinematic model to the toroidal vector spherical harmonic decomposition
coefficients of the stellar radial velocities. In all partial derivatives the factor 〈r〉 was omitted

j N k p tj

1 1 0 1 2.89ω3

2 1 1 0 2.89ω2

3 1 1 1 2.89ω1

4 2 0 1 −0.65
∂ω1

∂r1
− 0.65

∂ω2

∂r2
+ 1.30

∂ω3

∂r3
− 0.65

∂M+
13

∂r2
+ 0.65

∂M+
23

∂r1

5 2 1 0 1.12
∂ω2

∂r3
+ 1.12

∂ω3

∂r2
− 0.37

∂M+
12

∂r2
+ 0.37

∂M+
13

∂r3
+ 0.37

∂M+
22

∂r1
− 0.37

∂M+
33

∂r1

6 2 1 1 1.12
∂ω1

∂r3
+ 1.12

∂ω3

∂r1
− 0.37

∂M+
11

∂r2
+ 0.37

∂M+
12

∂r1
− 0.37

∂M+
23

∂r3
+ 0.37

∂M+
33

∂r2

7 2 2 0 1.12
∂ω1

∂r2
+ 1.12

∂ω2

∂r1
+ 0.37

∂M+
11

∂r3
− 0.37

∂M+
13

∂r1
− 0.37

∂M+
22

∂r3
+ 0.37

∂M+
23

∂r2

8 2 2 1 1.12
∂ω1

∂r1
− 1.12

∂ω2

∂r2
− 0.75

∂M+
12

∂r3
+ 0.37

∂M+
13

∂r2
+ 0.37

∂M+
23

∂r1

v310 = 0.11

(

−∂M+
11

∂r2
− 2

∂M+
12

∂r1
(8)

− 3
∂M+

22

∂r2
+ 4

∂M+
33

∂r2
+ 8

∂M+
23

∂r3

)

,

t211 = 0.37

(

−∂M+
11

∂r2
+

∂M+
12

∂r1
− ∂M+

23

∂r3
(9)

+
∂M+

33

∂r2
+ 3

(
∂ω1

∂r3
+

∂ω3

∂r1

))

.

An analysis of Eqs. (7)–(9) shows that there are

four kinematic parameters, ∂M+
11

∂r2
, ∂M+

12
∂r1

, ∂M+
23

∂r3
, and

∂M+
33

∂r2
, that enter into all three coefficients. In addition,

the parameter ∂M+
22

∂r2
enters into the coefficients s310

and v310, while ∂ω1
∂r3

and ∂ω3
∂r1

enter into t211. This can
probably explain the similarity of the behavior of s310
and v310 and the difference of t211 if our analysis is
performed within the extended Oort model.

The theoretical ratio of the coefficients s310 and
v310 coincides almost exactly with the ratio of the
coefficients derived using the catalogue data. This
means that the linear combination of parameters in
Eqs. (7) and (8) has the same value when analyzing
the radial velocities and proper motions.

The above reasoning does not solve the problem
of identifying the beyond-the-model harmonics with

some specific parameters of the kinematic model, be-
cause the system of equations specified by Tables 9–
11 is underdetermined. The number of parameters to
be determined exceeds the number of decomposition
coefficients. Furthermore, we see that the coefficients
can be proportional to one another and only some
additional criteria for the model consistency with ob-
servations can be used.

Some additional information (for example, about
the insignificance of some second-order parameters)
that would allow us, if not to completely obtain the
values of all parameters, to obtain at least the values
of their less complex linear combinations, is needed
for a complete description of the system within the
second-order model.

We can only propose the following simplification:
let us leave only the derivatives of M+

12 = A and ω3 =
B with respect to r1 in Eqs. (7)–(9) by assuming the
remaining values to be small; then, Eqs. (7)–(9) are
reduced to

s310 = −0.26
∂M+

12

∂r1
〈r〉 , (10)

v310 = −0.22
∂M+

12

∂r1
〈r〉 ,

t211 = 0.37

(
∂M+

12

∂r1
+ 3

∂ω3

∂r1

)

〈r〉 .

Here we did not omit the factor 〈r〉. Taking the
coefficients for the range 835–1040 from Tables 4–6
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Table 10. Contribution of the second-order kinematic model to the spheroidal vector spherical harmonic decomposition
coefficients of the stellar proper motions. In all partial derivatives the factor 〈r〉 was omitted

j N k p tj

1 1 0 1 −2.89W/r + 1.45
∂ω1

∂r2
− 1.45

∂ω2

∂r1
− 0.29

∂M+
11

∂r3
+ 0.87

∂M+
13

∂r1
− 0.29

∂M+
22

∂r3
+ 0.87

∂M+
23

∂r2
+ 0.56

∂M+
33

∂r3

2 1 1 0 −2.89V/r− 1.45
∂ω1

∂r3
+ 1.45

∂ω3

∂r1
− 0.29

∂M+
11

∂r2
+ 0.87

∂M+
12

∂r1
+ 0.58

∂M+
22

∂r2
+ 0.87

∂M+
23

∂r3
− 0.29

∂M+
33

∂r1

3 1 1 1 −2.89U/r+ 1.45
∂ω2

∂r3
− 1.45

∂ω3

∂r2
+ 0.58

∂M+
11

∂r1
+ 0.87

∂M+
12

∂r2
+ 0.87

∂M+
13

∂r3
− 0.29

∂M+
22

∂r1
− 0.29

∂M+
33

∂r1

4 2 0 1 −0.65M+
11 −−0.65M+

22 + 1.30M+
33

5 2 1 0 2.24M+
23

6 2 1 1 2.24M+
13

7 2 1 0 2.24M+
12

8 2 2 1 1.12M+
11 − 1.12M+

22

9 3 0 1 −0.31
∂M+

11

∂r3
− 0.62

∂M+
13

∂r1
− 0.31

∂M+
12

∂r3
− 0.62

∂M+
23

∂r2
+ 0.62

∂M+
33

∂r3

10 3 1 0 −0.13
∂M+

11

∂r2
− 0.25

∂M+
12

∂r1
− 0.38

∂M+
22

∂r2
+ 1.01

∂M+
23

∂r3
+ 0.51

∂M+
33

∂r2

11 3 1 1 −0.38
∂M+

11

∂r1
− 0.25

∂M+
12

∂r2
+ 1.01

∂M+
13

∂r3
− 0.13

∂M+
22

∂r2
+ 0.51

∂M+
33

∂r1

12 3 2 0 0.80
∂M+

12

∂r3
+ 0.80

∂M+
13

∂r2
+ 0.80

∂M+
23

∂r1

13 3 2 1 0.40
∂M+

11

∂r3
+ 0.80

∂M+
13

∂r1
− 0.40

∂M+
22

∂r3
− 0.80

∂M+
23

∂r2

14 3 3 0 0.49
∂M+

11

∂r2
+ 0.98

∂M+
12

∂r1
− 0.49

∂M+
22

∂r2

15 3 3 1 0.49
∂M+

11

∂r1
− 0.98

∂M+
12

∂r2
− 0.49

∂M+
22

∂r1

with the mean 〈r〉 = 0.933 kpc:
t211 = 14.8, s310 = −12.1, v310 = −8.5,

from s310 and v310 we obtain the mean ∂M+
12

∂r1
=

44 km s−1 kpc2, while ∂ω3
∂r1

≈ 0!

This is a rather strange result, given that ∂M+
12

∂r1
=

∂A
∂r1

, which largely coincides in its meaning with the
Oort parameter F . We assumed other partial deriva-
tives of the kinematic Ogorodnikov–Milne model pa-
rameters to be close to zero simply because these

parameters themselves are usually small. However, a
small value of the parameters does not imply that their
derivatives are also small. Thus, the question about
the nonlinear effects in the stellar velocity field needs
to be investigated further. Some evidence that the
beyond-the-model coefficients t211, s310, and v310 are
a manifestation of the nonlinear effects is the increase
in their absolute values with distance, because 〈r〉,
the mean distance to the group of stars under consid-
eration, always enters into the nonlinear parameters.
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Table 11. Contribution of the second-order kinematic model to the spherical harmonic decomposition coefficients of the
stellar radial velocities. In all partial derivatives the factor 〈r〉 was omitted

j N k p vj/r

0 0 0 1 1.18M+
11 + 1.18M+

22 + 1.18M+
33

1 1 0 1 −2.05W/r + 0.41
∂M+

11

∂r3
+ 0.41

∂M+
22

∂r3
+ 1.23

∂M+
33

∂r3
+ 0.82

∂M+
13

∂r1
+ 0.82

∂M+
23

∂r2

2 1 1 0 −2.05V/r+ 0.41
∂M+

11

∂r2
+ 1.23

∂M+
22

∂r2
+ 0.41

∂M+
33

∂r2
+ 0.82

∂M+
12

∂r1
+ 0.82

∂M+
23

∂r3

3 1 1 1 −2.05U/r+ 1.23
∂M+

11

∂r1
+ 1.41

∂M+
22

∂r1
+ 0.41

∂M+
33

∂r1
+ 0.82

∂M+
12

∂r2
+ 0.82

∂M+
13

∂r3

4 2 0 1 −0.53M+
11 −−0.53M+

22 + 1.06M+
33

5 2 1 0 1.83M+
23

6 2 1 1 1.83M+
13

7 2 1 0 1.831M+
12

8 2 2 1 0.92M+
11 − 0.92M+

22

9 3 0 1 −0.27
∂M+

11

∂r3
− 0.27

∂M+
22

∂r3
+ 0.54

∂M+
33

∂r3
− 0.54

∂M+
23

∂r2

10 3 1 0 −0.11
∂M+

11

∂r2
− 0.33

∂M+
22

∂r2
+ 0.44

∂M+
33

∂r2
− 0.22

∂M+
12

∂r1
+ 0.88

∂M+
23

∂r3

11 3 1 1 −0.33
∂M+

11

∂r1
− 0.11

∂M+
22

∂r1
+ 0.44

∂M+
33

∂r1
− 0.22

∂M+
12

∂r2
+ 0.88

∂M+
13

∂r3

12 3 2 0 0.69
∂M+

12

∂r3
+ 0.69

∂M+
13

∂r2
+ 0.69

∂M+
23

∂r1

13 3 2 1 0.35
∂M+

11

∂r3
− 0.35

∂M+
22

∂r3
+ 0.69

∂M+
13

∂r1
− 0.69

∂M+
23

∂r2

14 3 3 0 0.42
∂M+

11

∂r2
− 0.42

∂M+
22

∂r2
+ 0.85

∂M+
12

∂r1

15 3 3 1 0.42
∂M+

11

∂r1
− 0.42

∂M+
22

∂r1
− 0.85

∂M+
12

∂r2

There are probably local kinematic effects closer than
500 pc (Fig. 4).

The nature of the harmonics t211, s310, and v310
may be different altogether (peculiarities of the dis-
tribution of stars, stellar streams, something else).
Interestingly, there exist significant coefficients (for
example, v420 for large distances) that cannot be in-
terpreted even within the second-order model.

CONCLUSIONS

Our study showed that such kinematic effects as
the translational motion of the Sun and the solid-
body rotation mainly around the Z axis are definitely
present in the stellar proper motions and radial ve-
locities, but there is also a smaller effect around the
X axis. The presence of velocity field deformation in
the XY plane is also beyond doubt. The remaining
components of the linear model are minor. The ex-
istence of strong harmonics t211, s310, and v310 that
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Fig. 4. (Color online) Distance dependence of the harmonics t211, s310, and v310. The coefficients in km s−1 kpc−1 are along
the vertical axis.

are not described by the linear Oort–Lindblad and
Ogorodnikov–Milne stellar-kinematics models is a
puzzle. An attempt to directly tie them to the ex-
tended Oort–Lindblad model allowed their existence
to be explained only partly because of the emerging
contradiction in determining the parameters from the
harmonics s310, v310, and t211. The key to under-
standing the nature of these harmonics may lie in
using the complete second-order three-dimensional
model. However, this is a complicated question that
needs additional studies. We are planning to devote a
special publication to the second-order model.
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