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Abstract—We have solved the Ogorodnikov–Milne stellar-kinematics equations in the Galactic rectan-
gular coordinate system based on the total velocities for a special sample of stars with radial velocities from
the final Gaia Data Release 3 catalogue. We have found the region of applicability of the linear model and
the regions that it describes poorly. We have constructed a second-order model that takes into account the
peculiarities of stellar kinematics more accurately and showed its applicability for stars at distances up to
5 kpc.
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INTRODUCTION

The construction of stellar-kinematics models for
the stellar velocity field in circumsolar space has a
long history. The proper motions of stars were first
detected by E. Halley in 1718. It was suggested
that the systematic effects in the proper motions of
stars were caused by the motion of the Sun in space.
Indeed, for the nearest stars this is the most signif-
icant effect. The solar apex was first determined by
W. Herschel back in 1806. In 1859 M. Kowalski
and, subsequently, G. Airy proposed an up-to-date
method of determining the apex coordinates and de-
rived equations that now bear their names.

The next most significant effect, Galactic rotation,
began to be actively studied in the 1920s. In 1925–
1927 Lindblad (1927) assumed that the rotating sys-
tem consisted of a number of subsystems rotating
around a single axis, but with different velocities.
In 1927 Oort (1927) tested the hypothesis of Galac-
tic rotation observationally. He derived formulas to
determine the rotation both from the proper motions
of stars and from their radial velocities. In these for-
mulas no assumptions about the character of rotation
(“rigid-body,” “Keplerian”) are made. The angular
velocity of Galactic rotation Ω(R) is represented as
a segment of the Taylor series limited by the first two
terms. Generally, these equations are a special case
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of Bottlinger’s formulas, which are described in detail
in Bobylev (2007) and Bobylev et al. (2014).

Before the introduction of the J2000.0 system,
parameters to the precession constant were also in-
cluded into the stellar-kinematics equations (Fricke
1977; Vityazev 2000).

In 1930 Ogorodnikov (1958) outlined a more gen-
eral approach to analyzing the proper motions of stars
based on Helmholtz’s theorem for the motion of con-
tinuous media. A classic form of these equations,
often called the Ogorodnikov–Milne model, can be
found, for example, in Clube (1972).

In the second half of the 20th century the attention
of researchers was drawn to the anomalies of local
kinematics, often called the “local system of stars”
(Shatsova 1950). This was explained primarily by the
observational material, since the catalogues at that
time contained mostly nearby stars, while stars at
distances closer than 100 pc indeed have special kine-
matics (Tsvetkov 1995). The Hipparcos catalogue
(Perryman 1997) allowed the kinematics of nearby
stars to be investigated quite accurately. However,
despite the revolutionary significance of this cata-
logue, it contained mostly nearby stars. The pres-
ence of individual parallaxes allowed the parameters
of the local system of stars to be estimated reliably
(Tsvetkov 1998).

With the appearance of extensive stellar cata-
logues, such as XPM (Fedorov et al. 2009), PPMXL
(Roeser et al. 2010), and UCAC4 (Zacharias et al.
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Fig. 1. Distributions of stars from Gaia DR3 with RV in distance and parallax.

2013), it became possible to investigate the kine-
matics of large volumes of the Galaxy. However, the
absence of individual parallaxes allowed the statistical
distances to stars to be determined only by indi-
rect methods. Nevertheless, new formal kinematic
models using scalar and vector spherical harmonics
were based on the material of these (and earlier)
catalogues. These studies confidently showed the
presence of systematic components in the proper
motions of stars that are not described by the com-
plete linear Ogorodnikov–Milne model (Vityazev and
Tsvetkov 2013).

Searching for new models led to an extension of
the linear model by additional components, which
became possible with the publication of the latest
releases of the Gaia catalogue (ESA, Gaia), since
almost any nonlinear models require knowing the dis-
tances. The main approach used in these models in-
volves an expansion of the angular velocity of Galactic
rotation into a higher-order Taylor series. Of special
note is the paper by Bobylev and Bajkova (2023),
where the angular velocity was expanded to the fourth
order and the expansion coefficients were determined.

In this paper we construct a complete second-
order model including the derivatives of all parameters
of the linear Ogorodnikov–Milne kinematic model in
three directions. As observational material we use the
entire subset of Gaia stars with radial velocities.

CHARACTERISTICS OF THE GAIA DR3
WITH RV CATALOGUE

The Gaia DR3 catalogue contains information
about 1.8 billion stars in our Galaxy (ESA, Gaia);
1.47 billion stars have data on both proper motions
and parallaxes. To construct a complete three-
dimensional model of stellar velocities, it is necessary

to also have information about the radial velocities.
The Gaia DR3 catalogue contains 33 812 183 stars
with information about their radial velocities, giving
us all three components of the stellar space velocity.
This subcatalogue may be called “Gaia DR3 with
RV”. This is the most important supplement to
the previous version of the Gaia Early Release 3
catalogue (ESA, Gaia EDR3), from which the astro-
metric part (namely the coordinates, parallaxes, and
proper motions) entered into the final third version
(Brown et al. 2021) almost without changes. The
next version is expected no earlier than 2025.

Most of the stars in the Gaia DR3 with RV sub-
catalogue are concentrated at distances from 0 to
2 kpc, but there are also stars at distances greater
than 10 kpc (Fig. 1). Despite the fact that the
authors of Gaia claim the accuracy of parallaxes to
be 0.01 milliarcseconds (mas) for stars brighter than
15m, the actual accuracy of Gaia (at least of the cur-
rent version) has turned out to be considerably lower.
In the full catalogue more than 15% of the stars have
a negative parallax (Tsvetkov 2021). At the same
root-mean-square error and different parallaxes, it is
natural to expect that the relative distance estimation
accuracy will be lower for more distant stars. In par-
ticular, the relative accuracy of the parallaxes of stars
located at distances of a few kpc can be even poorer
than 100%. However, in our subset most of the stars
are nearby and have a relative parallax accuracy better
than 1%, which is evidence for a higher astrometric
quality of the Gaia DR3 with RV catalogue.

An interesting feature can be noticed in the spatial
distribution of stars. Figure 2 presents the density
of the distribution of stars in a thin disk of thickness
200 pc in the Galactic XY plane. Dark “rays” are
clearly seen. We interpret them as possible manifes-
tations of dust that shields distant regions and, for
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Fig. 2. Density of the distribution of stars from Gaia DR3 with RV in projection onto the Galactic plane. The units of
measurement along the axes are kpc, the Galactic center is on the right.

this reason, we record a smaller number of stars in
them. However, this fact needs a further study.

It should be noted that the stars with radial veloci-
ties probably also have a better, in general, astromet-
ric accuracy. In this sample the parallax accuracy is
better than 1 mas for 99.5% of the stars and the rel-
ative parallax accuracy is better than 10% for 76.7%
(Fig. 3), whereas in the full catalogue only 5% have a
relative parallax accuracy better than 10%.

The proper motions have a highly satisfactory ac-
curacy (Fig. 4). The relative proper motion accuracy
is better than 20% almost for all of the stars in our list.

As regards the radial velocities, the initial Gaia
plan was greatly reduced, and one should not expect
an increase in the number of stars with information
about their radial velocities. The accuracy of the
stellar radial velocities in the Gaia DR3 with RV
subcatalogue themselves is low, being ∼3 km s−1.
This leads to a fairly high relative radial velocity error
(Fig. 5).

Nevertheless, there is a unique material at our
disposal: 30 million stars with all three spatial coordi-
nates and three velocity components. This allows one
to pass to a rectangular coordinate system in which

many of the kinematic effects are seen more clearly.
To carry out our calculations, we restricted ourselves
to stars with distances up to 8 kpc (30 667 161 of the
33 812 183 stars in Gaia DR3 with RV). The stars
with negative parallaxes were discarded.

We deliberately make no additional restrictions on
the sample (by color index, luminosity, and other
possible characteristics), since our work is rather
mathematical, proposing a new method of describing
the stellar kinematics of a large sample of stars.

In our calculations we used simple estimates of the
distance 1/π, although other methods are also used
(see, e.g., Bailer-Jones et al. 2021).

THE OGORODNIKOV–MILNE MODEL
IN CARTESIAN COORDINATES

In view of the peculiarities of constructing any
stellar catalogues and, particularly, our poor knowl-
edge of parallaxes, the representation of stellar proper
motion and radial velocity models in a spherical
(equatorial or Galactic) heliocentric coordinate sys-
tem is traditionally used. The derivation of such
equations is presented in detail, for example, in
Tsvetkov and Amosov (2019). This approach spawns
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Fig. 3. Distributions of stars from Gaia DR3 with RV in absolute and relative parallax accuracies.
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Fig. 4. Distributions of stars from Gaia DR3 with RV in absolute and relative accuracies of their total proper motions.
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Fig. 5. Distributions of stars from Gaia DR3 with RV in absolute and relative accuracies of their radial velocities.
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rather cumbersome equations with an abundance of
trigonometric functions, but it has remained the only
justified one for a long time. In contrast, having three
spatial coordinates and all three velocity components,
the total velocity of a star can be represented in the
Galactic rectangular coordinate system in a very
simple form (Ogorodnikov 1965):⎛

⎜⎜⎜⎝

vx

vy

vz

⎞
⎟⎟⎟⎠ =

⎛
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⎞
⎟⎟⎟⎠ ,

where U , V , and W are the velocity of the Sun relative
to the local standard of rest, ωx, ωy, and ωz are the
rigid-body rotation parameters of the stellar system,
M is the symmetric deformation tensor of the velocity
field, and x, y, and z are the Galactic Cartesian stellar
coordinates.

Representation (1) is transformed to the form

vx = −U +M11x+ (M12 − ωz)y (2)

+ (M13 + ωy)z,

vy = −V + (M12 + ωz)x+M22y + (M23 − ωx)z,

vz = −W + (M13 − ωy)x+ (M23 + ωx)y +M33z.

If we redesignate the coefficients at x, y, and z,
then we will obtain a linear decomposition of the
velocity in the Cartesian coordinate system:

vx = −U + axx+ ayy + azz, (3)

vy = −V + bxx+ byy + bzz,

vz = −W + cxx+ cyy + czz.

The coefficients of this system can be easily de-
termined by the least-squares method. All of the
Ogorodnikov–Milne model parameters (2) are un-
ambiguously derived from them through elementary
transformations.

The result of our calculation of the linear model
parameters from 30 million nearest stars in the
Gaia DR3 with RV subcatalogue is presented in
Table 1. The parameters of the Ogorodnikov–Milne
model given in Table 2 correspond to this solution.

THE REGION OF APPLICABILITY
OF THE LINEAR MODEL

The region of applicability of the linear kinematic
model is thought to be no more than 1–1.5 kpc from

the Sun, with local anomalies of stellar kinematics, as
has already been said previously, manifesting them-
selves in the immediate solar neighborhood. In our
previous paper (Tsvetkov 2022) we showed the stabil-
ity of the Ogorodnikov–Milne model parameters for
samples up to 1 kpc and even, unexpectedly for us, for
samples at great distances with one exception—the
parameter of the solar motion V along the Y Galactic
rotation axis begins to increase with distance. We
will reveal the cause of this phenomenon. In this
paper we perform the solution for the entire group of
stars (since we take into account the individual stellar
parallaxes), but here we also see an anomalously
higher velocity of the Sun V (Table 2). In the same
paper (Tsvetkov 2022) we demonstrated that distant
stars make a major contribution to the increase in this
parameter.

We can make sure that the linear model is inappli-
cable farther than 1 kpc by examining the behavior of
the residual velocities with increasing distance. The
residual velocity is the velocity of a star minus the
velocity calculated from the model

dvx = vx − (−U + axx+ ayy + azz), (4)

dvy = vy − (−V + bxx+ byy + bzz),

dvz = vz − (−W + cxx+ cyy + czz).

The derived residual velocities dvx, dvy , and dvz
can be depicted in projection onto the Galactic XY
plane (Fig. 6). The numerical values of the residual
velocities along the X and Y axes are presented in
Tables 3 and 4.

We see that the residual stellar velocities are less
than 10 km s−1 in a small solar neighborhood. At
greater distances the difference between them begins
to increase and reaches tens of km s−1. In Fig. 6 the
region of low residual velocities is clearly seen and is
elongated along the direction of Galactic rotation.

THE QUADRATIC MODEL

A natural extension of the linear model (4) is the
quadratic model (5). In this case, the coefficients at
the second-order functions are linear combinations of
the partial derivatives of various Ogorodnikov–Milne
model parameters in different directions:

vx = −U + axx+ ayy + azz + axxx
2 (5)

+ ayyy
2 + azzz

2 + axyxy + axzxz + ayzyz,

vy = −V + bxx+ byy + bzz + bxxx
2

+ byyy
2 + bzzz

2 + bxyxy + bxzxz + byzyz,

vz = −W + cxx+ cyy + czz + cxxx
2

+ cyyy
2 + czzz

2 + cxyxy + cxzxz + cyzyz.
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Table 1. The coefficients of the linear model determined from Gaia DR3 with RV stars within 8 kpc

U 11.264± 0.009 ax −0.865± 0.005 ay 27.823± 0.005 az −0.343± 0.015

V 30.753± 0.009 bx −11.174± 0.004 by 0.338± 0.005 bz −0.576± 0.014

W 7.906± 0.006 cx −0.437± 0.003 cy 0.217± 0.003 cz 0.212± 0.009

km s−1 km s−1 kpc−1 km s−1 kpc−1 km s−1 kpc−1

Table 2. The parameters of the Ogorodnikov–Milne model determined from Gaia DR3 with RV stars within 8 kpc

U 11.264± 0.009 ωx 0.397± 0.007 M11 −0.865± 0.005 M12 8.324± 0.003

V 30.753± 0.009 ωy 0.047± 0.008 M22 0.338± 0.005 M13 −0.390± 0.008

W 7.906± 0.006 ωz −19.498± 0.003 M33 0.212± 0.009 M23 −0.180± 0.007

km s−1 km s−1 kpc−1 km s−1 kpc−1 km s−1 kpc−1

Table 3. Averaged values of the residual velocities dvx, dvy , and dvz for the samples along the X axis of the Galactic
coordinate system for stars with |y| < 100 pc and |z| < 100 pc. The distance to the left boundary of the sample in kpc is
specified as x. The residual velocities are given in km s−1

x −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

dvx −9.6 −9.4 −8.5 −6.6 −5.8 −4.2 0.4 2.8 5.4 1.8 0.5−3.0−3.0 0.4 1.3 1.6 1.1 2.4 7.4 6.8

dvy −53.0−45.9−40.3−34.8−28.9−21.0−15.5−8.3 0.2 6.8 11.8 19.3 25.0 29.5 29.9 31.5 31.8 29.9 22.6 26.3

dvz 2.2 0.4 0.0 0.1 0.0 0.2 0.3−0.5 0.2 0.0 0.4 0.8 0.6 0.5 0.4−0.5−0.7−1.2−0.2−1.4

Table 4. Averaged values of the residual velocities dvx, dvy, and dvz for the samples along the Y axis of the Galactic
coordinate system for stars with |x| < 100 pc and |z| < 100 pc. The distance to the left boundary of the sample in kpc is
specified as y. The residual velocities are given in km s−1

y −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

dvx 17.2 7.1 2.2 8.3 3.0 2.4 1.7 0.6 0.4 1.3 1.5 1.7 1.6 −0.2 −0.6 −3.2 −3.6 −6.9 −8.9 −7.5

dvy −9.5 −5.6 −8.9 −1.6 −1.4 0.5 4.1 8.6 9.8 8.9 9.5 10.6 8.9 5.2 0.9 −3.5 −8.9 −12.6 −16.6 −21.7

dvz −3.3 −0.8 −1.3 0.2 −0.1 −0.1 0.2 0.6 0.5 0.3 0.2 0.5 0.5 0.3 0.2 −0.6 −0.7 −1.4 −1.4 −1.2

The result of our calculation of the coefficients in
Eq. (5) by the least-squares method from 30 million
Gaia DR3 with RV stars is presented in Table 5.

We see that V = 21.64 km s−1 took its usual value
obtained for the immediate solar neighborhood. Thus,
this model, on the one hand, provides reliable parame-

ters of the solar motion relative to the local standard of
rest and, on the other hand, works at great distances,
up to the Galactic center, due to the quadratic terms.

By analogy with the residual velocities of the linear
model dvx, dvy , and dvz , we can calculate the residual
velocities of the quadratic model dv′x, dv′y, and dv′z .

ASTRONOMY LETTERS Vol. 49 No. 6 2023
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Table 5. Coefficients of the quadratic model constructed from Gaia DR3 with RV stars

U 11.405± 0.010 ax −0.493± 0.006 ay 25.046± 0.005 az −0.404± 0.017

V 21.644± 0.008 bx −4.774± 0.005 by −0.023± 0.005 bz −1.83± 0.014

W 7.838± 0.006 cx −0.507± 0.004 cy 0.190± 0.003 cz 0.148± 0.011

km s−1 km s−1 kpc−1 km s−1 kpc−1 km s−1 kpc−1

axx −0.507± 0.004 ayy 0.049± 0.001 azz 0.065± 0.007

bxx −1.811± 0.001 byy −1.115± 0.001 bzz −8.727± 0.006

cxx 0.037± 0.001 cyy −0.036± 0.001 czz −0.181± 0.004

axy 2.306± 0.002 axz 0.092± 0.005 ayz −0.122± 0.006

bxy 0.117± 0.002 bxz 0.273± 0.004 byz 0.332± 0.005

cxy 0.027± 0.001 cxz 0.060± 0.003 cyz 0.312± 0.004

km s−1 kpc−1 km s−1 kpc−1 km s−1 kpc−1

Table 6. Averaged values of the residual velocities dv′x, dv′y , and dv′z for the samples along the X axis of the Galactic
coordinate system for stars with |y| < 100 pc and |z| < 100 pc. The distance to the left boundary of the sample in kpc is
specified as x. The residual velocities are given in km s−1

x −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

dvx −5.5 −5.9 −6.0 −5.0 −3.8 −1.9 0.9 3.3 4.4 2.5 0.0 −2.6 −2.6 −1.7 −1.8 0.4 2.4 3.4 5.5 5.2

dvy 11.9 7.4 2.4 −1.6 −3.7 −5.2 −6.3 −5.9 −3.4 −0.8 2.7 6.6 8.5 9.7 11.5 14.4 16.3 17.1 17.7 18.6

dvz 0.8 −0.4 −0.2 −0.5 −0.3 −0.1 −0.3 −0.6 −0.2 0.2 0.3 0.5 0.4 0.5 0.3 −0.1 −0.5 −0.8 −1.4 −2.5

Table 7. Averaged values of the residual velocities dv′x, dv′y, and dv′z for the samples along the Y axis of the Galactic
coordinate system for stars with |x| < 100 pc and |z| < 100 pc. The distance to the left boundary of the sample in kpc is
specified as r. The residual velocities are given in km s−1

r −5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

dvx 0.7 −1.9 −3.6 −4.9 −5.9 −5.9 −4.6 −3.3 −1.7 −0.1 1.8 3.0 4.3 5.5 6.3 6.0 5.0 4.0 2.3 −0.6

dvy −0.4 −1.6 −2.0 −1.4 −0.5 0.8 2.6 3.9 3.6 2.3 2.6 4.2 5.8 5.4 3.1 1.2 −0.1 −0.6 −0.7 −0.4

dvz 0.2 −0.2 0.2 0.2 0.1 0.0 0.1 0.2 0.2 0.2 0.3 0.4 0.3 0.0 −0.2 −0.4 −0.2 −0.6 −0.7 −0.7
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Fig. 6. Residual velocities dvx, dvy, and dvz of stars with |z| < 100 kpc in projection onto the Galactic XY plane for stars
within 8 kpc. The Galactic center is on the right. Each arrow corresponds to the projected averaged velocity in a column along
the Z axis.

These data are given in Tables 6 and 7 and are illus-
trated in Fig. 7.

The data in Tables 6 and 7 show that the region
of applicability of the quadratic model is consider-
ably wider than that for the linear one and can reach
4–5 kpc, except for the small region closer to the
Galactic center (Fig. 8). The presence of systematic
components in the residual velocities of stars farther
than 5 kpc can be due to both more complex Galactic
rotation and an insufficient number of stars with a
good accuracy of all six kinematic parameters at such
distances.

THE MEANING OF THE QUADRATIC
MODEL PARAMETERS

To explain the physical meaning of the coefficients
at the quadratic functions, let us represent the coef-
ficients of the linear model not as constants common
to the entire sample, but as functions of x, y, and z:

vx(x, y, z) = −U + ax(x, y, z)x (6)

+ ay(x, y, z)y + az(x, y, z)z,

vy(x, y, z) = −V + bx(x, y, z)x

+ by(x, y, z)y + bz(x, y, z)z,

vz(x, y, z) = −W + cx(x, y, z)x

+ cy(x, y, z)y + cz(x, y, z)z,

where

ax(x, y, z) = M11(x, y, z), (7)

ay(x, y, z) = M12(x, y, z) − ωz(x, y, z),

az(x, y, z) = M13(x, y, z) + ωy(x, y, z),

bx(x, y, z) = M12(x, y, z) + ωz(x, y, z),

by(x, y, z) = M22(x, y, z),

bz(x, y, z) = M23(x, y, z)− ωz(x, y, z),

cx(x, y, z) = M13(x, y, z) − ωy(x, y, z),

cy(x, y, z) = M23(x, y, z) + ωx(x, y, z),

cz(x, y, z) = M33(x, y, z).
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Fig. 7. Residual velocities dv′x, dv′y, and dv′z of stars with |z| < 100 pc in projection onto the Galactic XY plane. The Galactic
center is on the right. Each arrow corresponds to the projected averaged velocity in a column along the Z axis.

To estimate the possible values of these derivatives
at zero, we will use a Taylor (Maclaurin) series expan-
sion of the velocity field. Using the formula for the
expansion of a function of three variables f(x, y, z)
into a Taylor series to the second order (8), it is easy
to obtain this expansion for the functions vx, vy, and
vz near zero (9):

f(x, y, z) = f0 + x
∂f0
∂x

+ y
∂f0
∂y

+ z
∂f0
∂z

(8)

+
x2

2

∂2f0
∂x2

+
y2

2

∂2f0
∂y2

+
z2

2

∂2f0
∂z2

+ xy
∂2f0
∂x∂y

+ xz
∂2f0
∂x∂z

+ yz
∂2f0
∂y∂z

+ o(x2 + y2 + z2),

vx = −U + axx+ ayy + azz +
∂ax
∂x

x2 (9)

+
∂ay
∂y

y2 +
∂az
∂z

z2 +

(
∂ax
∂y

+
∂ay
∂z

)
xy

+

(
∂ax
∂z

+
∂az
∂x

)
xz +

(
∂ay
∂z

+
∂az
∂y

)
yz,

vy = −V + bxx+ byy + bzz +
∂bx
∂x

x2

+
∂by
∂y

y2 +
∂bz
∂z

z2 +

(
∂bx
∂y

+
∂by
∂z

)
xy

+

(
∂bx
∂z

+
∂bz
∂x

)
xz +

(
∂by
∂z

+
∂bz
∂y

)
yz,

vz = −W + cxx+ cyy + czz +
∂cx
∂x

x2

+
∂cy
∂y

y2 +
∂cz
∂z

z2 +

(
∂cx
∂y

+
∂cy
∂z

)
xy

+

(
∂cx
∂z

+
∂cz
∂x

)
xz +

(
∂cy
∂z

+
∂cz
∂y

)
yz.

Here, for a more compact form, we keep in mind
that the values of all coefficients and derivatives are
taken at point (0, 0, 0):

ax = ax(0, 0, 0), ay = azy(0, 0, 0), . . . ;
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Fig. 8. Pictorial comparison of the residual velocities of the linear model dvx, dvy , dvz (left) with the residual velocities of the
quadratic model dv′x, dv′y, dv′z (right) on a larger scale (±5 kpc). The residual velocities are given in one scale.

∂ax
∂x

=
∂ax
∂x

(0, 0, 0),
∂ay
∂y

=
∂ay
∂y

(0, 0, 0), . . . .

Substituting (7) into (9) gives

vx = −U +M11x+ (M12 − ωz)y (10)

+ (M13 + ωy)z +
∂M11

∂x
x2

+

(
∂M12

∂y
− ∂ωz

∂y

)
y2 +

(
∂M13

∂z
+

∂ωy

∂z

)
z2

+

(
∂M11

∂y
+

∂M12

∂x
− ∂ωz

∂x

)
xy

+

(
∂M11

∂z
+

∂M13

∂x
+

∂ωy

∂x

)
xz

+

(
∂M13

∂y
+

∂ωy

∂y
+

∂M12

∂z
− ∂ωz

∂z

)
yz,

vy = −V + (M12 + ωz)x+M22y

+ (M23 − ωx)z +

(
∂M12

∂x
+

∂ωz

∂x

)
x2

+
∂M22

∂y
y2 +

(
∂M23

∂z
− ∂ωx

∂z

)
z2

+

(
∂M22

∂x
+

∂M12

∂y
+

∂ωz

∂y

)
xy

+

(
∂M23

∂x
− ∂ωx

∂x
+

∂M12

∂z
+

∂ωz

∂z

)
xz

+

(
∂M23

∂y
− ∂ωx

∂y
+

∂M22

∂z

)
yz,

vz = −W + (M13 − ωy)x+ (M23 + ωx)y

+M33z +

(
∂M13

∂x
− ∂ωy

∂x

)
x2

+

(
∂M23

∂y
+

∂ωx

∂y

)
y2 +

∂M33

∂z
z2

+

(
∂M23

∂x
+

∂ωx

∂x
+

∂M13

∂y
− ∂ωy

∂y

)
xy

+

(
∂M33

∂x
+

∂M13

∂z
− ∂ωy

∂z

)
xz

+

(
∂M33

∂y
+

∂M23

∂z
+

∂ωx

∂z

)
yz.

Let us compare Table 5 and Eq. (10), write out the
coefficients at the quadratic terms, and highlight the
four most significant coefficients in boldface (Table 8).

Since there are only 18 quadratic terms, while
there are 27 partial derivatives of the Ogorodnikov–
Milne model parameters in them, it is impossible to
determine all of them independently. We can obtain
only some of their linear combinations. It should
be said that when determining the parameters of the
deformation tensor from the proper motions alone,
we encounter such a problem when determining the
parameters of the standard kinematic model as well.
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Table 8. Linear combinations of the partial derivatives of the Ogorodnikov–Milne model parameters at zero point. The
most significant coefficients are highlighted in boldface

Parameters Formulas Values

axx
∂M11

∂x
−0.507± 0.004

ayy
∂M12

∂y
− ∂ωz

∂y
0.049± 0.001

azz
∂M13

∂z
+

∂ωy

∂z
0.065± 0.007

axyaxyaxy
∂M11

∂y
+

∂M12

∂x
− ∂ωz

∂x

∂M11

∂y
+

∂M12

∂x
− ∂ωz

∂x

∂M11

∂y
+

∂M12

∂x
− ∂ωz

∂x
2.306± 0.0022.306± 0.0022.306± 0.002

axz
∂M11

∂z
+

∂M13

∂x
+

∂ωy

∂x
0.092± 0.005

ayz
∂M13

∂y
+

∂ωy

∂y
+

∂M12

∂z
− ∂ωz

∂z
−0.122± 0.006

bxxbxxbxx
∂M12

∂x
+

∂ωz

∂x

∂M12

∂x
+

∂ωz

∂x

∂M12

∂x
+

∂ωz

∂x
−1.811± 0.001−1.811± 0.001−1.811± 0.001

byybyybyy
∂M22

∂y

∂M22

∂y

∂M22

∂y
−1.115± 0.001−1.115± 0.001−1.115± 0.001

bzzbzzbzz
∂M23

∂z
− ∂ωx

∂z

∂M23

∂z
− ∂ωx

∂z

∂M23

∂z
− ∂ωx

∂z
−8.727± 0.006−8.727± 0.006−8.727± 0.006

bxy
∂M22

∂x
+

∂M12

∂y
+

∂ωz

∂y
0.117± 0.002

bxz
∂M23

∂x
− ∂ωx

∂x
+

∂M12

∂z
+

∂ωz

∂z
0.273± 0.004

byz
∂M23

∂y
− ∂ωx

∂y
+

∂M22

∂z
0.332± 0.005

cxx
∂M13

∂x
− ∂ωy

∂x
0.037± 0.001

cyy
∂M23

∂y
+

∂ωx

∂y
−0.036± 0.001

czz
∂M33

∂z
−0.181± 0.004

cxy
∂M23

∂x
+

∂ωx

∂x
+

∂M13

∂y
− ∂ωy

∂y
0.027± 0.001

cxz
∂M33

∂x
+

∂M13

∂z
− ∂ωy

∂z
0.060± 0.003

cyz
∂M33

∂y
+

∂M23

∂z
+

∂ωx

∂z
0.312± 0.004

km s−1 kpc−2
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Stellar velocity along the y axis for stars near the x axis

�200

�150

�100

�50

0

50

�8 �6 �4 �2 0

Ogorodnikov�Milne model (Tables 1, 2)
Quadratic model (Table 5)
Averaged stellar 

X, kpc
2 4 6 8

, k
m

 s�
1

Fig. 9. Change of the component in the stellar velocities along the X axis (directed to the Galactic center). The averaging was
performed for stars with |y| < 10 kpc and |z| < 10 kpc. The theoretical values of the velocity derived from the Ogorodnikov–
Milne model and the quadratic model are shown on the graph.
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Fig. 10. Residual velocities of the linear model dvx, dvy, dvz for stars with |x| < 100 pc in projection onto Y Z (normal to the
Galactic center direction).

If we depart from the formal mathematic point of
view and turn to the physical picture, then, obviously,
there is no need to determine all 27 derivatives. Note

that, apart from the solar motion parameters U , V ,
and W , only two quantities remain significant in the
Ogorodnikov–Milne model: ωz and M12 (which are
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known in the simpler Oort–Lindblad model as the
Oort parameters B and A). It is reasonable (at least
the first time) to restrict our analysis to the derivatives
of only these quantities.

In this case, the following values can be unam-
biguously determined from the quadratic coefficients:

∂M12

∂x
= 0.247 ± 0.002 km s−1 kpc−2,

∂ωz

∂x
= −2.059 ± 0.002 km s−1 kpc−2.

The partial derivatives of the Oort parameters
along the direction to the Galactic center turn out
to be significant. If this change in the linear model
is ignored, then these effects penetrate into the
solar motion parameter V , leading to its noticeable
increase when it is determined from distant stars.
Including the quadratic terms brings the parameter V
with a value of 30.8 km s−1 to its usual value of
21.6 km s−1. The adequacy of this extension of the
standard model can be illustrated by the dependence
of the stellar velocity (the component vy) at various
distances from the Galactic center. It is clearly seen
from Fig. 9 that the traditional linear Ogorodnikov–
Milne model is able to describe the motion of stars
in the region from 0 to 3–4 kpc, whereas the actual
stellar velocities (blue line) are far from the linear law;
the quadratic approximation describes them much
better. Similar conclusions are also reached by other
researchers (see, e.g., Bobylev and Bajkova 2022).

Attention should also be paid to the significant
coefficient ∂M23/∂z − ∂ωx/∂z at z2 in the equation
for vy . This parameter is responsible for the nonlinear
vertical change in velocity vy (Fig. 10). Vityazev
et al. (2012) have already analyzed the asymmetry in
the kinematics of stars in the northern and southern
Galactic hemispheres and considered the model of
“stratified” Galactic rotation.

The coefficient ∂M22/∂y at y2 responsible for the
change of the component as the y coordinate changes
also shows significance.

CONCLUSIONS

We formulated the linear and quadratic stellar-
kinematics models in the rectangular Galactic coor-
dinate system. We found a relationship of all coeffi-
cients to the standard stellar-kinematics parameters
and their partial derivatives in all three directions. The
quadratic model was shown to have a considerably
larger spatial region of applicability. We explained
the behavior of the kinematic parameters of the lin-
ear Ogorodnikov–Milne model as a function of the
distances to the stars being used. Four significant
second-order effects were found:

(1)
∂M12

∂x
= 0.247 ± 0.002 km s−1 kpc−2 is the

change in the velocity field deformation parameter in
the XY plane (the Oort parameter A) with distance
in the Galactic center–anticenter direction;

(2)
∂ωz

∂x
= −2.059 ± 0.002 km s−1 kpc−2 is the

vertical gradient of the angular velocity of rotation of
the set of stars (the Oort parameter B);

(3)
∂M22

∂y
= −1.115 ± 0.001 km s−1 kpc−2 is the

change in the parameter responsible for the contrac-
tion/extension of the system of stars in the XZ plane
with distance along the direction of Galactic rotation;

(4)
∂M23

∂z
− ∂ωx

∂z
= −8.727± 0.006 km s−1 kpc−2

is a linear combination of inseparable parameters,
the difference of the vertical gradient of the rotation
velocity along the axis directed to the Galactic center
and the velocity field deformation in the Y Z plane.
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