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Abstract—The PPMXL and UCAC4 catalogs are compared by representing the differences between the
positions and proper motions of stars as decompositions into a set of orthogonal vector harmonics with
allowance made for the magnitude equation. A list of 41 316 676 common stars has been compiled using the
star identification procedure in the J band (2MASS photometric system). The mean differences between
the stellar positions and proper motions have been referred to the centers of 1200 HealPix pixels on the
sphere. These data have been generated in the equatorial coordinate system for the stars belonging to 12
J magnitude bins with a width of 0.5m for mean values from 10m. 25 to 15m. 75. For each sample of stars,
the differences have been approximated by vector spherical harmonics. A new statistical criterion that is
oriented to using HealPix data pixelization and that allows the significance of all the accessible harmonics
to be determined is proposed to extract the signal from noise. An analytical method that includes the
effects dependent on the magnitude of the stars has been proposed for the first time in the vector spherical
harmonics technique, i.e., a new model of systematic differences based on a system of basis functions that
are the products of vector spherical harmonics and Legendre polynomials has been generated. The influence
of the magnitude equation on the determination of the mutual orientation and rotation of the PPMXL and
UCAC4 reference frames has been studied. It has been established that the extreme systematic differences
do not exceed in absolute value 20 mas and 4 mas yr−1 for the positions and proper motions, respectively.
The largest differences between the PPMXL and UCAC4 catalogs are shown to be explained by their
random rather than systematic errors.
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INTRODUCTION

In anticipation of catalogs within the framework of
the GAIA project, the PPMXL (Roeser et al. 2010)
and UCAC4 (Zacharias et al. 2013) all-sky astro-
metric catalogs provide a basis for performing various
astronomical studies. The PPMXL catalog contains
information about the ICRS positions and proper
motions of ∼900 million stars down to magnitude
V = 20 with complete sky coverage. The mean errors
of the proper motions lie within the range from 4
to 10 mas yr−1, while the positional accuracy at
epoch 2000.0 is estimated to be from 80 to 120 mas
for 410 million objects for which the positions in the
2MASS catalog (Skrutskie et al. 2006) are known.
For the remaining stars, the positional accuracy
varies between 150 and 300 mas.

The UCAC4 catalog contains 113 million stars
from magnitude 8 to 16 in a nonstandard photometric
band between V and R. It also covers the entire
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sky. The positional accuracy at the mean epoch is
estimated to be within the range 15–100 mas, while
the formal errors of the proper motions are within the
range 1–10 mas yr−1. The systematic errors of the
proper motions lie within the range 1–4 mas yr−1.
The catalog was constructed in the ICRS and is
deemed complete down to R = 16. The UCAC4 is the
last catalog in the UCAC (USNO CCD Astrograph
Catalog) project. No photographic observations were
used in this project, because all measurements were
made between 1998 and 2004 using only CCD de-
tectors.

At present, these catalogs are widely used as the
reference frames extending the ICRS in the optical
range to hundreds of millions of stars. In accordance
with the requirements of astrometry, it is necessary to
have the opportunity to pass from the system of one
catalog to the system of another catalog. The authors
of the UCAC4 catalog (Zacharias et al. 2013) com-
pared the proper motions of stars from the PPMXL
and UCAC4 catalogs in a narrow RA zone from 6.0
to 6.1 h in the declination range from −60◦ to −30◦.
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Farnocchia et al. (2015) obtained the corrections to
the UCAC4 stellar positions and proper motions in
the form of differences PPMXL–UCAC4 referred to
the centers of the pixels produced by the HealPix
partition of the celestial sphere (Gorski et al. 2005).
Such an approach suggests using numerical interpo-
lation to calculate the differences for a specific point
on the sphere. In addition, the dependence of these
differences on the magnitude of stars was disregarded
in the presented data, and no smoothing over the right
ascension and declination was performed to reduce
the random errors.

A proper solution of the problem of comparing cat-
alogs (Bien et al. 1978; Mignard and Froeschle 2000)
suggests representing the systematic differences by
the systems of orthogonal harmonics describing their
dependence on the coordinates and magnitudes of
stars. To all appearances, the PPMXL and UCAC4
catalogs have not yet subjected to comparison with
such a degree of completeness, and this paper is
devoted to remedying this shortcoming. It is based
on pre-pixelization of the individual differences be-
tween stars from different magnitude groups followed
by their approximation by vector spherical harmon-
ics. In contrast to previous similar works, here we
propose a new statistical criterion that allows one to
estimate the significance of all the harmonics that
can be calculated on the chosen HealPix pixelization
scheme. Normalized Legendre polynomials are used
to approximate the decomposition coefficients derived
from groups of stars with different magnitudes. The
constructed models of systematic differences are used
to analyze the systematic differences as functions of
three variables (α, δ,m).

MODELING THE SYSTEMATIC
DIFFERENCES. THE SCALAR CASE

Brosche (1966) was the first to represent the sys-
tematic differences between the positions and proper
motions of stars by scalar spherical harmonics. In his
method, the model of systematic position differences
appeared as follows:

Δα cos δ =
∑

nkp

vα
nkpKnkp(α, δ), (1)

Δδ =
∑

nkp

vδ
nkpKnkp(α, δ), (2)

where vα
nkp and vδ

nkp are the coefficients of the decom-
position of data into a system of spherical harmonics
defined by the expression

Knkp(α, δ) (3)

= Rnk

⎧
⎪⎨

⎪⎩

Pn,0(δ), k = 0, p = 1,
Pnk(δ) sin kα, k �= 0, p = 0,
Pnk(δ) cos kα, k �= 0, p = 1;

Rnk =

√
2n + 1

4π

{√
2(n−k)!
(n+k)! , k > 0,

1, k = 0,
(4)

where α and δ are the right ascension (longitude)
and declination (latitude) of a point on the sphere,
respectively (0 ≤ α ≤ 2π; −π/2 ≤ δ ≤ π/2); Pnk(δ)
are Legendre polynomials (at k = 0) and associated
Legendre functions (at k > 0), which can be calcu-
lated using the following recurrence relations:

Pnk(δ) = sin δ
2n − 1
n − k

Pn−1,k(δ) (5)

− n + k − 1
n − k

Pn−2,k(δ),

k = 0, 1, . . . n = k + 2, k + 3, . . . ,

Pkk(δ) =
(2k)!
2kk!

cosk δ,

Pk+1,k(δ) =
(2k + 2)!

2k+1(k + 1)!
cosk δ sin δ.

When working with spherical harmonics, one index j
is often used for the convenience of their numbering,
with

j = n2 + 2k + p − 1. (6)

The introduced functions satisfy the relation
∫∫

Ω

(Ki · Kj) dω =

{
0, i �= j,

1, i = j.
(7)

In other words, the set of functions Knkp forms an
orthonormal system of functions on the sphere.

USING VECTOR SPHERICAL HARMONICS
TO REPRESENT THE SYSTEMATIC

DIFFERENCES BETWEEN THE POSITIONS
AND PROPER MOTIONS OF STARS

The systematic differences between the positions
and proper motions are the components of some vec-
tor field. Therefore, it seems appropriate to use the
technique of decomposing this field into a system
of vector spherical harmonics (below referred to as
VSHs) to study the systematic differences. Note
that VSHs were first used by Mignard and Moran-
do (1990) and Mignard and Froeschle (2000) in as-
trometric problems related to the comparison of cat-
alogs to represent the systematic differences between
Hipparcos and FK5. A further development of this
technique aimed at its application in the GAIA project
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can be found in Mignard and Klioner (2012). In this
paper, we will use the VSH apparatus in the form
in which it was applied in our previous papers on a
kinematic analysis of stellar proper motions (Vityazev
and Tsvetkov 2013, 2014).

Consider a system of mutually orthogonal unit
vectors eα and eδ, respectively, in the directions of
change in right ascension and declination in a plane
tangential to the sphere. Using the definitions of
VSHs in Arfken (1966), let us introduce toroidal,
Tnkp, and spheroidal, Snkp, VSHs via the relations

Tnkp(α, δ) =
1√

n(n + 1)
(8)

×
(

∂Knkp(α, δ)
∂δ

eα − 1
cos δ

∂Knkp′(α, δ)
∂α

eδ

)
,

Snkp(α, δ) =
1√

n(n + 1)
(9)

×
(

1
cos δ

∂Knkp(α, δ)
∂α

eα +
∂Knkp(α, δ)

∂δ
eδ

)
,

where Knkp(α, δ) are the scalar spherical harmonics
specified by Eq. (3).
Denote the components of the unit vector eα as Tα

nkp

and Sα
nkp and the components of the unit vector eδ as

T δ
nkp and Sb

nkp, respectively:

Tnkp = Tα
nkpeα + T δ

nkpeδ, (10)

Snkp = Sα
nkpeα + Sδ

nkpeδ. (11)

Given that Pn,k+1(b) = 0 at n < k + 1, these compo-
nents are defined as

Tα
nkp =

Rnk√
n(n + 1)

(12)

×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pn,1(δ), k = 0, p = 1,
(−k tan δPnk(δ) + Pn,k+1(δ)) sin kα,

k �= 0, p = 0,
(−k tan δPnk(δ) + Pn,k+1(δ)) cos kα,

k �= 0, p = 1;

(13)

T δ
nkp =

Rnk√
n(n + 1)

(14)

×

⎧
⎪⎨

⎪⎩

0, k = 0, p = 1,
− k

cos δPnk(δ) cos kα, k �= 0, p = 0,
+ k

cos δPnk(δ) sin kα, k �= 0, p = 1;
(15)

Sα
nkp =

Rnk√
n(n + 1)

(16)

×

⎧
⎪⎨

⎪⎩

0, k = 0, p = 1,
+ k

cos δPnk(δ) cos kα, k �= 0, p = 0,
− k

cos δPnk(δ) sin kα, k �= 0, p = 1;
(17)

Sδ
nkp =

Rnk√
n(n + 1)

(18)

×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pn,1(δ), k = 0, p = 1,
(−k tan δPnk(δ) + Pn,k+1(δ)) sin kα,

k �= 0, p = 0,
(−k tan δPnk(δ) + Pn,k+1(δ)) cos kα,

k �= 0, p = 1.

The introduced functions satisfy the relations
∫∫

Ω

(Ti ·Tj) dω (19)

=
∫∫

Ω

(Si · Sj) dω =

{
0, i �= j,

1, i = j,

∫∫

Ω

(Si ·Tj) dω = 0, ∀i, j. (20)

In other words, the set of functions Tnkp and Snkp

forms a orthonormal system of functions on the
sphere.

VSH DECOMPOSITION OF THE STELLAR
VELOCITY FIELD

Consider the actual field of systematic stellar po-
sition differences on the celestial sphere:

ΔF(α, δ) = Δα cos δ eα + Δδ eδ. (21)

We will also use a similar expression to represent
the systematic differences between the stellar proper
motions.
Using the system of VSHs defined above, we can
decompose the field of differences as

ΔF(α, δ) =
∑

nkp

tnkpTnkp(α, δ) (22)

+
∑

nkp

snkpS(α, δ)nkp(α, δ),

where, since the basis is orthonormal, the decomposi-
tion coefficients tnkp and snkp can be calculated from
the formulas

tnkp =
∫∫

Ω

(ΔF · Tnkp) dω (23)
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=

2π∫

0

dα

+π/2∫

−π/2

(
Δα cos δTα

nkp + Δδ T δ
nkp

)
cos δdδ,

snkp =
∫∫

Ω

(ΔF · Snkp) dω (24)

=

2π∫

0

dα

+π/2∫

−π/2

(
Δα cos δSα

nkp + Δδ Sδ
nkp

)
cos δdδ.

When catalogs containing hundreds of millions of
stars are compared, it is appropriate to use data pre-
pixelization. We will assume equal-area pixels to be
constructed on the sphere according to the HealPix
scheme (Gorski et al. 2005). In this scheme, the
number Npix is the key parameter (resolution param-
eter) defining the partition of the sphere into equal
pixels. The total number of pixels is N = 12N2

pix. The
entire sphere is divided by two parallels with decli-
nations ± arcsin(2/3) into three parts, the equatorial
and two polar ones. Npix − 1 parallels is chosen in
each of the polar zones; the number of parallels in the
equatorial zone is (2Npix + 1). The centers of 4Npix

pixels lie on each parallel of the equatorial region.
Two parallels closest to the poles always contain four
pixels, while the number of pixels on each parallel
increases by one when moving from the poles to the
equator in the polar zones. The pixels are numbered
j = 0, 1, . . . , N − 1 along the parallels from north to
south.

To calculate the coefficients of the VSH decompo-
sition of the systematic differences, we now have the
following formulas instead of Eqs. (23) and (24):

tnkp =
4π
N

N−1∑

j=0

ΔF(αj , δj)Tn,k1,p(αj , δj), (25)

snkp =
4π
N

N−1∑

j=0

ΔF(αj, δj)Sn,k1,p(αj , δj). (26)

Calculating the toroidal and spheroidal coefficients
is the main goal of the problem of representing the
systematic differences between the positions and
proper motions of stars from two catalogs by VSHs.

STATISTICAL CRITERIA
FOR DETERMINING SIGNIFICANT TERMS

IN THE VSH DECOMPOSITION
OF SYSTEMATIC DIFFERENCES

In the analytical method (Brosche 1966; Bien
et al. 1978), the highest-order decomposition term
fixes the boundary between the systematic and ran-
dom components. In the scalar case, to find the
highest-order decomposition term, Fisher’s F-test is
applied to test the hypothesis that the systematic part
in each g decomposition step is limited by number
g − 1; therefore, the true values of the coefficients
ag, ag+1, . . . are zero. If Fisher’s test is fulfilled with
a specified probability, then the hypothesis is deemed
admissible. However, it is not accepted automatically,
because significant decomposition terms can be
found for higher-order decomposition terms. Taking
this into account, the decompositions are continued
to some number of harmonics (�50), and if there
is no significant harmonic among them, then the
hypothesis is accepted with the initial g. Obviously,
the absence of a well-defined criterion for determining
the highest-order decomposition term (�50) breaks
the strictness of this method.

When using VSHs, Mignard and Klioner (2012)
proposed testing the significance of not each decom-
position term but the whole set of harmonics with
the same index n. In their opinion, this approach is
appropriate, because the established statistical sig-
nificance of such a set of harmonics is invariant with
respect to rotation of the initial coordinate system. In
other words, if a group of terms in the decomposition
of the systematic differences with fixed index n is
statistically significant in the equatorial coordinate
system, then it will also have the same significance
level in the Galactic coordinate system.

Nevertheless, it should be said that this approach
can cause the general set of decomposition terms
to be “littered,” because each set of harmonics with
fixed index n consists of 2n + 1 terms, while a high
statistical significance can be provided only by one
harmonic. In contrast to this, we can propose a
method that allows the signal (not noise) components
of the decomposition to be extracted with a specified
probability among all the admissible indices k and
n for the pixelization scheme used, following which
the numerical values of the significant decomposition
coefficients are immediately determined from a sin-
gle application of the least-squares method (LSM).
This approach is analogous to the spectral analysis of
evenly spaced time series, where the significance of
the periodogram peaks is determined for all its peaks
in the frequency range specified by the sampling step.
In our case, the squares of the coefficients snkp and
tnkp may be considered as the periodogram values,
and the determination of their significance is based
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on the fact that the coefficients snkp and tnkp for nor-
mally distributed centered noise with variance σ2

0 = 1
are normally distributed random variables with zero
mean and unit variance. Consequently, the squares
of the amplitudes s2

nkp and t2nkp are random variables
distributed according to the chi-square law with one
degree of freedom. On this basis, we can estimate the
probability q that s2

nkp and t2nkp exceed a threshold X:

q =

∞∫

X

pk(x)dx, (27)

where pk(x) is the density of the χ2 distribution with
k degrees of freedom. Hence it follows that the de-
termination of the significance of each harmonic is
based on testing the a priori hypothesis that the initial
data are discrete centered noise with unit variance.
This hypothesis is tested for each harmonic and is
rejected with a probability p = 1 − q if the square of
the decomposition coefficient of the centered normal-
ized data sequence exceeds the detection threshold X
determined from Eq. (27).

As has been said above, to determine the sig-
nificance of the decomposition coefficients, it is
necessary to exhaust all of the harmonics that can
be calculated on a chosen grid of points. This
requirement is reduced to establishing the bound-
ary values of the indices k and n. To choose
the largest kmax, we can use the fact that the or-
thogonality condition on the HealPix grid with the
key parameter Npix is violated for the products
of the harmonics Tk1,k1,p(lj , bj)Tk2,k2,p(lj , bj) and
Sk1,k1,p(lj , bj)Sk2,k2,p(lj , bj) when the following re-
lation holds:

k1 + k2 = 8rNpix, r = 1, 2, . . . . (28)

This means that k = kmax = 4Npix is the bound-
ary value in the sense that each VSH with indices
n = k > 4Npix will give a false decomposition coef-
ficient with indices n = k < 4Npix. Therefore, the
harmonics should be exhausted in index k for k =
0, 1, . . . , 4Npix − 1. Continuing the analogy with time
series, it can be said that 4Npix in our problem is an
analog of the Nyquist frequency.

A constraint on the index n can be derived from
the condition that the sought-for decomposition coef-
ficients are obtained with a specified accuracy. Since
there exists a constraint on the accuracy of calculat-
ing the squares of the norms of the basis functions
in index n on a discrete grid of HealPix pixel centers,
the limiting value of our series n = k, k + 1, . . . , nmax
for each admissible index k is determined from the
condition that a specified accuracy (for example, one

percent) of calculating the squares of the norms of the
basis functions breaks down:∣∣∣∣∣1 − 4π

N

N−1∑

j=0

S(nmax, k, p, αj , δj) (29)

× S(nmax, k, p, αj , δj)

∣∣∣∣∣ > 0.01, p = 0, 1,

∣∣∣∣∣1 − 4π
N

N−1∑

j=0

T(nmax, k, p, αj , δj) (30)

× T(nmax, k, p, αj , δj)

∣∣∣∣∣ > 0.01, p = 0, 1.

Thus, within the ranges of admissible indices k
and n, the inequalities

N

4π
s̃2
nkp > X,

N

4π
t̃2nkp > X (31)

suggest that the coefficients with indices n, k, and p
are determined with a specified probability p = 1 − q
by the presence of a corresponding harmonic rather
than noise.

In these formulas, s̃nkp and t̃nkp are calculated
from Eqs. (25) and (26) based on the normalized
initial data

ΔF̃(α, δ) =
Δα cos δ − 〈Δα cos δ〉

σα
eα (32)

+
Δδ − 〈Δδ〉

σδ
eδ,

where the means and variances of the initial differ-
ences were obtained as follows:

〈Δα cos δ〉 =
1
N

N−1∑

j=0

(Δα cos δj), (33)

σ2
α =

1
N − 1

N−1∑

j=0

(Δα cos δj − 〈Δα cos b〉)2, (34)

〈Δδ〉 =
1
N

N∑

j=0

(Δδj), (35)

σ2
δ =

1
N − 1

N−1∑

j=0

(Δδj − 〈Δδ〉)2. (36)

Centering and normalizing the differences
Δα cos δj and Δδj allow the hypothesis about the chi-
square distribution of the sought-for coefficients with
one degree of freedom to be used. However, for the
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coefficients tn,0,1 and sn,0,1 at odd indices n, not the
coefficients themselves but only the following values
are tested:

N

4π
(s̃nkp − ŝnkp)2 > X, n = 1, 3, 5, . . . , (37)

N

4π
(t̃nkp − t̂nkp)2 > X, n = 1, 3, 5, . . . , (38)

where ŝnkp and t̂nkp correspond to (25) and (26), with

ΔF̃(α, δ) =
〈Δα cos δ〉

σα
eα +

〈Δδ〉
σδ

eδ. (39)

Obviously, in this case, we can judge only the proba-
bility of a deviation of the sought-for coefficient from
its value corresponding to the case where the individ-
ual differences do not depend on the coordinates.

Thus, after the selection of the indices n, k, and
p for which the decomposition coefficients are signif-
icant, the numerical values of the coefficients them-
selves and their root-mean-square (rms) errors are
determined by the LSM from the selected set of func-
tions. Since the significance test based on the chi-
square distribution cannot be applied to the zonal
functions with odd indices n, the zonal functions
Sn,0,1 and Tn,0,1 at n = 1, 3, 5, . . . , nmax, where nmax
is assigned from conditions (29) and (30) at k = 0
and p = 1, should always be included in the set of
functions for the LSM solution.

DESCRIPTION OF THE MAGNITUDE
EQUATION

In analyzing astrometric catalogs, the dependence
of systematic differences on the magnitude of stars in
a particular photometric band is traditionally called
the “magnitude equation.” Already in his pioneering
paper, Brosche (1966) found that the decomposition
coefficients of the systematic differences between the
FK4 and GC catalogs differed significantly when they
were determined from bright and faint stars. To
take this dependence into account, Brosche proposed
to use the products of scalar spherical harmonics
and Legendre polynomials as basis functions. Bien
et al. (1978) proposed a modification of this approach
in which Legendre–Fourier–Hermit functions were
used. This system of functions, in which the mag-
nitude equation was taken into account using Hermit
polynomials, became a basis for the standard method
of a separate comparison of the systems of right
ascensions and declinations for astrometric catalogs
with the application of scalar basis functions. It can
be shown that, in the scalar case, this approach is
based on the following model of the representation of
systematic differences:

f(α, δ,m) =
∑

j

bj(m)Zj(α, δ), (40)

where it is explicitly specified that the coefficients of
the decomposition of systematic differences into basis
functions Zj(α, δ) are functions of the magnitude.

The described approach to take into account the
magnitude equation using scalar harmonics can also
be easily extended to VSHs. In this case, an analog of
model (40) is the expression

ΔF(α, δ,m) =
∑

nkp

tnkp(m)Tnkp(α, δ) (41)

+
∑

nkp

snkp(m)Snkp(α, δ),

where the coefficients tnkp(m) and snkp(m) are func-
tions of the magnitude. These coefficients are ap-
proximated using appropriate polynomials Qr(m) by
expressions of the form

tnkp(m) =
∑

r

tnkprQr(m), (42)

snkp(m) =
∑

r

snkprQr(m).

Substituting (42) into (41) gives the final form of the
model of systematic differences

ΔF(α, δ,m) =
∑

nkpr

tnkprTnkp(α, δ)Qr(m) (43)

+
∑

nkpr

snkprSnkp(α, δ)Qr(m).

Obviously, there exist two approaches to consider
the magnitude equation when the systematic differ-
ences are approximated by orthogonal functions. In
the first method, model (41) is used to first deter-
mine the coefficients tnkp(m) and snkp(m) from the
stars belonging to small magnitude bins, and then
the derived decomposition coefficients referred to the
mean values of the magnitude bins are approximated
by expressions of form (42). This approach is pos-
sible if all-sky catalogs are available, when samples
containing a sufficiently large number of stars with
approximately the same magnitude can be produced.
The second method is based on the direct solution
of conditional equations of form (43) without any
pre-averaging of the systematic differences over the
magnitude bins. It is quite clear that it is appro-
priate to apply this approach when the number of
stars in the comparison catalogs is small. In the
scalar case, the standard method using Legendre–
Fourier–Hermit functions was based precisely on this
approach. The coefficients tnkpr and snkpr have not
yet been determined for VSHs.
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Fig. 1. Magnitude distribution of stars from the sample of 41 316 676 stars. The J magnitudes and the number of stars (in
thousands) are along the horizontal and vertical axes, respectively.

NUMERICAL RESULTS

In our work, we used a method based on VSHs
with allowance made for the magnitude equation to
study the systematic differences between the PPMXL
and UCAC4 catalogs. The systematic differences
between the proper motions were obtained in three
steps.

In the first step, we partitioned the sphere by the
HealPix method into 1200 pixels with an area of
34.4 sq. deg. Using the star identification proce-
dure in the J band (2MASS photometric system),
we compiled a list of 41 316 676 stars belonging to
the PPMXL, UCAC4, and XPM catalogs (Fedorov
et al. 2009). The distribution of stars in magnitudes is
shown in Fig. 1.

After averaging the differences between the stellar
positions and proper motions over the pixels, we
formed the differences PPMXL–UCAC4 between
the stellar positions and proper motions in the equa-
torial coordinate system referred to the centers of
our pixels. These data were generated for the stars
belonging to 12 J magnitude bins with a width of 0m. 5
with mean values from 10m. 25 to 15m. 75. On average,
there were up to 1000 stars for each pixel; therefore,
the noise level in the averaged proper motion differ-
ences decreased approximately by a factor of 30 com-
pared to that in the individual proper motions. From
this standpoint, the catalogs of mean differences may
be considered as the tables of systematic differences
using which the systematic differences for any point
on the sphere and any magnitude can be obtained
by interpolation. Note that such a representation
of systematic differences was used by Mignard and
Froeschle (2000) and Farnocchia et al. (2015).

In the second step, the tabular differences were
approximated by VSHs in accordance with Eq. (41).
The coefficients tnkp(m) and snkp(m) in this formula

were obtained for each mean magnitude of the sam-
ples of stars used.

The algorithm for the VSH decomposition of the
systematic differences consists of the following steps:

—Determining the indices of the statistically
significant harmonics. This procedure consisted in
checking conditions (31) at X = 6.7, which corre-
sponds to the detection of harmonics with a probabil-
ity of 0.99 according to the chi-square test. For our
pixelization scheme, the limiting value of the index k
is k = 39, while the highest values of the indices n
were determined from conditions (29) and (30).

—Determining the numerical values of the co-
efficients tnkp(mi) and snkp(mi) and their rms er-
rors σs(mi) and σt(mi) by the LSM from the set of
statistically significant harmonics selected in step 1.
The final set of statistically significant harmonics is
established using the (2–3) σ criterion. Obviously,
the significance level of such a list is 97.7–99.9%.

In the third step, the coefficients tnkp(m) and
snkp(m) were approximated by normalized Legendre
polynomials,

tnkp(m) =
∑

r

tnkprLr(m̄), (44)

snkp(m) =
∑

r

snkprLr(m̄),

where

Lr(m̄) =

√
2r + 1

2
Pr(m̄), (45)

and Pr(m̄) are Legendre polynomials; the following
recurrence relation can be used to calculate the latter:

Pr+1(m̄) =
2r + 1
r + 1

m̄Pr(m̄) − r

r + 1
Pr−1(m̄), (46)

r = 1, 2, . . . , P0 = 1, P1 = m̄.
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Table 1. Toroidal decomposition coefficients tnkpr of the field of stellar position differences PPMXL–UCAC4
Δα cos δ eα + Δδ eδ with the index r due to the magnitude equation. The units of measurement are mas

tnkpr Value tnkpr Value tnkpr Value

t1,0,1,0 −14.18± 0.31 t4,0,1,0 6.05 ± 0.31 t7,0,1,1 −1.09 ± 0.36

t1,0,1,1 −9.51 ± 0.36 t4,0,1,1 −2.46 ± 0.36 t7,0,1,2 0.90 ± 0.38

t1,0,1,2 −2.41 ± 0.38 t4,0,1,2 −1.61 ± 0.38 t7,1,1,0 −1.92 ± 0.34

t1,1,0,0 −2.55 ± 0.29 t4,2,1,0 −1.24 ± 0.29 t8,0,1,0 1.21 ± 0.31

t1,1,1,0 7.89 ± 0.31 t4,2,1,1 1.61 ± 0.36 t8,0,1,1 −1.10 ± 0.36

t1,1,1,2 −1.08 ± 0.38 t5,0,1,0 −6.04 ± 0.31 t8,0,1,2 −1.54 ± 0.38

t2,0,1,0 2.33 ± 0.31 t5,0,1,1 −1.60 ± 0.36 t9,1,1,0 −3.23 ± 0.32

t2,0,1,1 −10.12± 0.43 t5,0,1,2 −0.80 ± 0.38 t9,1,1,1 −2.63 ± 0.39

t2,0,1,2 −6.78 ± 0.38 t5,1,0,0 2.13 ± 0.29 t10,0,1,0 2.65 ± 0.29

t2,0,1,3 −4.46 ± 0.40 t5,1,0,1 1.50 ± 0.36 t16,0,1,0 1.69 ± 0.29

t2,2,0,0 −1.84 ± 0.31 t5,4,0,0 −1.00 ± 0.29 t16,3,0,0 1.96 ± 0.29

t2,2,0,2 −3.05 ± 0.38 t6,0,1,0 −6.81 ± 0.29 t56,39,1,0 2.38 ± 0.29

t3,3,1,0 −2.58 ± 0.31 t6,0,1,1 −2.51 ± 0.36 t56,39,1,1 1.86 ± 0.36

t3,3,1,2 1.21 ± 0.38 t7,0,1,0 −1.64 ± 0.31

If mmin ≤ m ≤ mmax, then the argument of the
Legendre polynomials belonging to the
interval [−1;+1] is calculated from the formula

m̄ = 2
m − mmin

mmax − mmin
− 1. (47)

We established the statistically significant har-
monics in index r by taking into account the fact that
the same toroidal or spheroidal coefficient with a set
of indices nkp could be significant according to the
chi-square test for one J sample and insignificant for
another. For this reason, the magnitude equation was
determined only for those coefficients that turned out
to be significant at least in three magnitude sam-
ples. In this case, the values for such a coefficient
were determined for all twelve J samples. Otherwise,
the harmonic was rejected. The coefficients were
obtained by solving the systems of equations (44)
by the LSM, with the degree of the approximating
polynomial having been taken to be three to avoid
strong correlations of the sought-for coefficients at
our comparatively small number of J samples. In
addition, in order that the rms errors of the sought-
for coefficients reflect the accuracy of the initial coef-

ficients tnkp(m) and snkp(m) rather than the accuracy
of the formal approximation of the curves s = snkp(m)
and t = tnkp(m), the rms errors of the approximation
coefficients snkpr = sjr and tnkpr = tjr were calcu-
lated from the formulas

σ(sjr) =

√√√√
3∑

q=0

w2
rq

11∑

i=0

Q2
r(mi)σ2

s(mi), (48)

σ(tjr) =

√√√√
3∑

q=0

w2
rq

11∑

i=0

Q2
r(mi)σ2

t (mi),

where wrq denote the elements of the inverse matrix of
the normal system of equations corresponding to the
LSM solution of Eqs. (44), while σs(mi) and σt(mi)
denote the rms errors of the coefficients tnkp(mi) and
snkp(mi) found in step 2.

The final toroidal and spheroidal decomposition
coefficients tnkpr and snkpr of the systematic differ-
ences between the PPMXL and UCAC4 stellar posi-
tions and proper motions in the equatorial coordinate
system are given in Tables 1–4.

ASTRONOMY LETTERS Vol. 41 No. 7 2015



SYSTEMATIC DIFFERENCES BETWEEN THE POSITIONS 325

Table 2. Spheroidal decomposition coefficients snkpr of the field of stellar position differences PPMXL–UCAC4
Δα cos δ eα + Δδ eδ with the index r due to the magnitude equation. The units of measurement are mas

snkpr Value snkpr Value snkpr Value

s1,0,1,0 4.53 ± 0.31 s3,1,1,1 1.15 ± 0.36 s6,2,1,1 1.91 ± 0.36

s1,0,1,1 6.57 ± 0.43 s3,1,1,2 −2.23 ± 0.38 s6,4,1,0 2.45 ± 0.29

s1,0,1,2 4.33 ± 0.38 s3,2,1,0 2.41 ± 0.31 s6,5,1,0 −2.64± 0.29

s1,0,1,3 4.65 ± 0.40 s3,2,1,1 1.03 ± 0.36 s6,6,1,0 1.72 ± 0.29

s1,1,0,0 5.81 ± 0.31 s3,2,1,2 2.46 ± 0.38 s6,6,1,3 −0.91± 0.35

s1,1,0,1 2.76 ± 0.36 s3,3,1,0 −1.91 ± 0.31 s7,4,1,0 −2.06± 0.29

s1,1,0,2 3.00 ± 0.38 s3,3,1,2 −1.16 ± 0.38 s8,2,1,0 −2.03± 0.29

s2,0,1,0 6.00 ± 0.31 s4,0,1,1 1.30 ± 0.36 s8,2,1,1 −1.77± 0.36

s2,0,1,1 5.86 ± 0.36 s4,0,1,2 2.61 ± 0.36 s8,6,1,0 −2.54± 0.29

s2,0,1,2 −1.45 ± 0.38 s4,2,1,0 −3.12 ± 0.29 s9,0,1,0 2.58 ± 0.31

s2,1,0,0 −2.26 ± 0.31 s4,3,1,0 2.40 ± 0.31 s9,0,1,1 1.05 ± 0.36

s2,1,0,2 1.03 ± 0.38 s4,3,1,2 1.02 ± 0.38 s9,0,1,2 −1.06± 0.38

s2,2,0,0 −3.56 ± 0.31 s4,4,1,0 −2.65 ± 0.29 s10,0,1,0 1.99 ± 0.29

s2,2,0,1 −1.25 ± 0.36 s5,0,1,0 1.43 ± 0.29 s10,0,1,1 3.96 ± 0.36

s2,2,0,2 −0.90 ± 0.38 s5,0,1,1 1.56 ± 0.36 s11,0,1,0 2.23 ± 0.29

s2,2,1,0 2.91 ± 0.31 s5,4,0,0 −1.88 ± 0.29 s11,0,1,1 −1.03± 0.36

s2,2,1,2 −1.02 ± 0.38 s5,4,0,1 1.03 ± 0.36 s32,30,0,0 2.02 ± 0.29

s3,0,1,0 7.29 ± 0.31 s6,0,1,0 1.56 ± 0.29 s32,30,0,1 1.50 ± 0.36

s3,0,1,1 −1.98 ± 0.43 s6,0,1,1 3.71 ± 0.36 s51,39,0,0 −1.90± 0.29

s3,0,1,2 −1.25 ± 0.38 s6,1,0,0 −2.26 ± 0.31 s51,39,0,1 −2.11± 0.36

s3,0,1,3 1.44 ± 0.40 s6,1,0,1 −1.96 ± 0.38

s3,1,1,0 1.88 ± 0.31 s6,2,1,0 0.70 ± 0.29

ANALYSIS OF THE SYSTEMATIC
DIFFERENCES

The main purpose of the systematic differences
between the positions and proper motions of stars
is the possibility to reduce the stellar positions and
proper motions from the system of one catalog to the
system of another catalog. In our case, this problem
is solved for the PPMXL and UCAC4 catalogs using

the formula

ΔF(α, δ,m) =
∑

nkpr

tnkprTnkp(α, δ)Lr(m̄) (49)

+
∑

nkpr

snkprSnkp(α, δ)Lr(m̄).

When using this formula to reduce the stellar posi-
tions and proper motions from the UCAC4 system
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Table 3. Toroidal decomposition coefficients tnkpr of the stellar proper motion differences PPMXL–UCAC4
Δμα cos δ eα + Δμδ eδ with the index r due to the magnitude equation. The units of measurement are mas and mas yr−1

tnkpr Value tnkpr Value tnkpr Value

t1,0,1,0 −1.62 ± 0.05 t2,2,1,1 0.28 ± 0.04 t7,0,1,2 0.12 ± 0.04

t1,0,1,1 −0.27 ± 0.05 t3,0,1,0 −1.15 ± 0.05 t7,1,1,0 0.55 ± 0.05

t1,0,1,2 0.72 ± 0.04 t3,0,1,1 −0.87 ± 0.04 t7,1,1,2 −0.12± 0.04

t1,0,1,3 0.09 ± 0.04 t3,0,1,2 −0.10 ± 0.04 t7,4,1,0 0.50 ± 0.04

t1,1,0,0 0.74 ± 0.04 t3,1,0,0 0.95 ± 0.05 t7,4,1,1 0.16 ± 0.04

t1,1,1,0 0.89 ± 0.05 t3,1,0,1 0.18 ± 0.04 t8,0,1,0 0.45 ± 0.04

t1,1,1,1 −0.28 ± 0.04 t3,1,0,2 −0.10 ± 0.04 t10,0,1,0 −0.46± 0.04

t1,1,1,2 0.16 ± 0.04 t3,3,1,0 −0.61 ± 0.05 t10,0,1,1 0.15 ± 0.04

t2,0,1,0 −3.24 ± 0.05 t3,3,1,2 0.09 ± 0.04 t13,0,1,0 −0.63± 0.05

t2,0,1,1 −0.77 ± 0.05 t4,0,1,0 0.55 ± 0.04 t13,0,1,2 0.10 ± 0.04

t2,0,1,2 0.61 ± 0.04 t4,0,1,1 0.74 ± 0.05 t13,3,1,0 −0.43± 0.05

t2,0,1,3 −0.31 ± 0.04 t4,0,1,3 −0.17 ± 0.04 t13,3,1,1 −0.11± 0.05

t2,1,0,0 −0.31 ± 0.04 t4,1,0,0 −0.60 ± 0.05 t14,0,1,0 −0.55± 0.04

t2,1,0,1 0.12 ± 0.04 t5,0,1,0 −0.75 ± 0.05 t14,0,1,1 −0.23± 0.04

t2,1,1,0 −0.33 ± 0.04 t5,0,1,1 −0.38 ± 0.04 t15,0,1,0 0.46 ± 0.04

t2,1,1,1 −0.30 ± 0.05 t5,0,1,2 0.11 ± 0.04 t15,0,1,1 −0.11± 0.04

t2,1,1,3 0.09 ± 0.04 t5,5,0,0 0.54 ± 0.04 t18,0,1,0 −0.57± 0.04

t2,2,0,0 −1.01 ± 0.05 t6,0,1,0 −0.63 ± 0.05 t23,0,1,0 −0.47± 0.04

t2,2,0,1 −0.31 ± 0.04 t6,0,1,1 −0.47 ± 0.04 t23,0,1,1 −0.12± 0.04

t2,2,0,2 −0.14 ± 0.04 t6,0,1,2 0.12 ± 0.04

t2,2,1,0 −0.67 ± 0.04 t7,0,1,0 0.47 ± 0.05
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Table 4. Spheroidal decomposition coefficients snkpr of the stellar proper motion differences PPMXL–UCAC4
Δμα cos δ eα + Δμδ eδ with the index r due to the magnitude equation. The units of measurement are mas and mas yr−1

snkpr Value snkpr Value snkpr Value

s1,0,1,0 −3.85 ± 0.05 s3,1,0,0 −0.13± 0.04 s6,2,1,2 −0.10 ± 0.04

s1,0,1,1 −1.10 ± 0.05 s3,1,0,1 0.25 ± 0.04 s6,5,1,0 −0.44 ± 0.04

s1,0,1,2 −0.52 ± 0.04 s3,1,1,0 0.60 ± 0.05 s6,6,1,0 0.66 ± 0.05

s1,0,1,3 0.21 ± 0.04 s3,1,1,1 −0.18± 0.04 s6,6,1,1 0.14 ± 0.04

s1,1,0,0 3.37 ± 0.04 s3,1,1,2 −0.10± 0.04 s6,6,1,2 −0.10 ± 0.04

s1,1,0,1 0.13 ± 0.05 s3,3,0,0 −0.35± 0.04 s7,0,1,0 −0.23 ± 0.04

s1,1,0,3 0.18 ± 0.04 s3,3,0,1 −0.27± 0.04 s7,0,1,1 −0.27 ± 0.04

s2,0,1,0 −1.67 ± 0.05 s4,0,1,0 0.69 ± 0.05 s7,3,0,0 −0.41 ± 0.05

s2,0,1,1 −0.46 ± 0.05 s4,0,1,1 0.42 ± 0.04 s7,3,0,1 −0.18 ± 0.05

s2,0,1,2 0.20 ± 0.04 s4,0,1,2 −0.18± 0.04 s7,4,1,0 −0.63 ± 0.04

s2,0,1,3 −0.13 ± 0.04 s4,2,1,0 −0.58± 0.05 s8,0,1,0 −0.45 ± 0.05

s2,1,0,0 1.16 ± 0.05 s4,2,1,1 −0.15± 0.04 s8,0,1,1 0.11 ± 0.04

s2,1,0,1 0.49 ± 0.04 s4,2,1,2 0.21 ± 0.04 s8,0,1,2 0.13 ± 0.04

s2,1,0,2 −0.19 ± 0.04 s4,3,0,0 −0.59± 0.04 s8,2,1,0 −0.53 ± 0.05

s2,1,1,0 −0.77 ± 0.04 s4,3,1,0 0.76 ± 0.04 s8,2,1,2 0.13 ± 0.04

s2,1,1,1 −0.24 ± 0.04 s4,3,1,1 0.18 ± 0.04 s8,3,1,0 −0.44 ± 0.04

s2,2,0,0 −1.14 ± 0.05 s5,2,0,0 −0.58± 0.04 s9,5,1,0 −0.46 ± 0.04

s2,2,0,2 0.13 ± 0.04 s5,2,0,1 −0.11± 0.04 s10,5,1,0 0.48 ± 0.04

s3,0,1,0 0.78 ± 0.05 s6,0,1,0 −1.06± 0.05 s13,5,0,0 −0.51 ± 0.04

s3,0,1,1 −0.14 ± 0.05 s6,0,1,1 0.25 ± 0.04 s13,5,0,1 −0.13 ± 0.04

s3,0,1,2 −0.16 ± 0.04 s6,0,1,2 0.13 ± 0.04 s16,0,1,0 −0.69 ± 0.04

s3,0,1,3 0.25 ± 0.04 s6,2,1,0 0.73 ± 0.05
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Fig. 2. Maps of systematic position differences PPMXL–UCAC4 for J = 11m. The left and right panels show Δα cos δ and
Δδ, respectively. The right ascension (deg) and declination (deg) are along the horizontal and vertical axes, respectively. The
units are mas.
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Fig. 3. Maps of systematic position differences PPMXL–UCAC4 for J = 13m. The left and right panels show Δα cos δ and
Δδ, respectively. The right ascension (deg) and declination (deg) are along the horizontal and vertical axes, respectively. The
units are mas.
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Fig. 4. Maps of systematic position differences PPMXL–UCAC4 for J = 15m. The left and right panels show Δα cos δ and
Δδ, respectively. The right ascension (deg) and declination (deg) are along the horizontal and vertical axes, respectively. The
units are mas.

to the PPMXL system, the corrections should be
calculated with the coefficients tnkpr and snkpr from
Tables 1, 2 and 3, 4, respectively.

Figures 2–4 give an idea of the form of the sys-
tematic differences Δα cos δ and Δδ in the equatorial
coordinate system for three magnitudes of stars, J =
11m, 13m, 15m, while Figs. 5–7 give the form of the
systematic differences Δμα cos δ and Δμδ. In addi-
tion, the largest and smallest systematic differences
between the positions and proper motions as well as

their rms deviations from the means are shown in
Tables 5 and 6.

One may think that the decomposition of the
systematic differences between the positions and
proper motions into systems of orthogonal functions
is used only to perform the reduction procedures.
However, the systematic differences between the
positions and proper motions of the same stars
reveal the differences between the reference frames
that are realized by the catalogs under consider-
ation. Froeschle and Kovalevsky (1982) showed
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Fig. 5. Maps of systematic proper motion differences PPMXL–UCAC4 for J = 11m. The left and right panels show Δμα cos δ
and Δμδ , respectively. The right ascension (deg) and declination (deg) are along the horizontal and vertical axes, respectively.
The units of measurement are mas yr−1.
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Fig. 6. Maps of systematic proper motion differences PPMXL–UCAC4 for J = 13m. The left and right panels show Δμα cos δ
and Δμδ , respectively. The right ascension (deg) and declination (deg) are along the horizontal and vertical axes, respectively.
The units of measurement are mas yr−1.
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Fig. 7. Maps of systematic proper motion differences PPMXL–UCAC4 for J = 15m. The left and right panels show Δμα cos δ
and Δμδ , respectively. The right ascension (deg) and declination (deg) are along the horizontal and vertical axes, respectively.
The units of measurement are mas yr−1.

that the rotation angles of the coordinate systems
and the rates of their change could be determined
by analyzing the systematic differences between the
positions and proper motions. The same effects
also manifest themselves in the coefficients of the
decomposition of the systematic stellar position and
proper motion differences into orthogonal functions.
Within the model of solid-body rotation, the relation-
ship between the rotation angles of one coordinate
system relative to another and the coefficients of the

decomposition of the systematic differences between
the right ascensions and declinations of stars into
scalar harmonics was established by Vityazev and
Tsvetkov (1989) and Vityazev (1993). When using
VSHs, such a relationship was found by Mignard and
Morando (1990). Here, it was shown that the first-
order toroidal coefficients in the decomposition of
the systematic position differences define the mutual
orientation of the reference frames associated with
the catalogs under study, while the same coefficients
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Table 5. Boundaries of variations and rms deviations from the means for the systematic stellar position differences
PPMXL–UCAC4 as a function of the J magnitude of stars, mas

J (Δα cos δ)min (Δα cos δ)max σΔα cos δ (Δδ)min (Δδ)max σΔδ

11m –9.7 6.5 3.6 –7.5 8.1 2.6

13m –12.9 7.2 4.1 –10.3 7.8 2.9

15m –18.9 10.2 5.3 –11.6 12.0 4.2

Table 6. Boundaries of variations and rms deviations from the means for the systematic stellar proper motion differences
PPMXL–UCAC4 as a function of the J magnitude of stars, mas yr−1

J (Δμα cos δ)min (Δμα cos δ)max σΔμα cos δ (Δμδ)min (Δμδ)max σΔμδ

11m –2.23 1.76 0.82 –2.41 2.34 0.87

13m –3.50 2.36 1.11 –2.86 2.13 0.96

15m –3.84 2.93 1.22 –3.45 1.43 1.02

in the decomposition of the systematic stellar proper
motion differences allow the rate of mutual rotation
of these frames to be calculated. In the notation
of this paper, the working formulas establishing the
relationships between the rotation vector components
and first-order toroidal coefficients are presented, for
example, in Vityazev and Tsvetkov (2009, 2014). As
follows from these papers, the mutual orientation
angles εx, εy, and εz of the axes of the coordinate
systems realized by our catalogs are defined via the
VSH decomposition coefficients t101, t110, and t111 of
the stellar position differences (Table 1). Similarly,
the components of the angular velocity of mutual
rotation ωx, ωy, and ωz of the axes of the coordinate
systems are defined via the VSH decomposition
coefficients t101, t110, and t111 of the stellar proper
motion differences (Table 3). The dependence of these
components on the magnitude of stars is shown in
Fig. 8.

Obviously, the first-order toroidal coefficients cor-
responding to the systematic position and proper mo-
tion differences allow the position of the pole of the
mutual rotation axis on the celestial sphere to be de-
termined. Figure 9 shows the mutual rotation angles
around the pole, the coordinates of the pole, and a
vector map of the components of the systematic posi-
tion differences that are formed by these rotations for
stars with various magnitudes. We see that the rota-
tion angles change for different magnitude groups and

can reach ∼10 mas. The analogous data characteriz-
ing the rates of mutual rotation are shown in Fig. 10.
It follows from these figures that the rate of mutual
rotation of the PPMXL and UCAC4 reference frames
can reach 0.7 mas yr−1. Since the absolute value of
the systematic difference does not exceed the sum of
the absolute values of the errors for our catalogs, it
can be said that the absolute values of the errors for
each catalog are 0.35 mas yr−1. If we recall that the
measure of inertiality of the Hipparcos reference frame
(the accuracy with which the Hipparcos catalog is
tied to the ICRS) is defined by 0.25 mas yr−1 (Per-
ryman et al. 1997), then it can be concluded that the
residual rotations of the PPMXL and UСAС4 frames
essentially reproduce the measure of inertiality of the
HCRF.

In conclusion, it should be said that the system-
atic stellar position and proper motion differences
PPMXL–UCAC4 show a pronounced dependence
on the magnitude of stars. This manifests itself in the
fact that almost all coefficients tnkp and snkp are func-
tions of the magnitude (Tables 1–4). Accordingly,
there are marked differences in the maps of systematic
differences (Figs. 2–7) and in the mutual orientation
and spin of the PPMXL and UCAC4 reference frames
(Figs. 9 and 10). A strong manifestation of the mag-
nitude equation in the mutual orientation and rotation
of the coordinate systems around the z axis (Fig. 8)
deserves our attention. We see that the PPMXL
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The vector field of systematic differences Δα cos δ and Δδ corresponding to the position of the pole at J = 13m. The right
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zero point of right ascensions relative to the UCAC4
zero point at epoch J2000 decreases monotonically as
we pass to faint stars and reaches −10 mas for J =
16m. Because of the pronounced extremum of the
component ωz at J = 13m, this zero point is shifted
considerably in the direction of decrease with time
under mutual rotation of our reference frames. Table 7
gives a quantitative estimate of the influence of the

magnitude equation on the systematic differences. It
shows the ranges of systematic differences for various
magnitudes. We see that a minimal manifestation
of the magnitude equation is observed for the bright
stars of our range (J = 11), while the range of sys-
tematic position differences increases approximately
by a factor of 2 when passing from J = 11 to 15.
The same increase is also observed for the range of
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systematic differences between the proper motions in
right ascension, while the range of systematic dif-
ferences between the proper motions in declination
changes only slightly. In this case, it is important to
emphasize that the extreme values of the systematic
position and proper motion differences do not exceed
in absolute value 20 mas and 4 mas yr−1, respectively
(Tables 5 and 6). At the same time, the analogous
extreme differences before applying the procedure of
approximating the results of our VSH pixelization of
the differences are 60 mas and 8 mas yr−1 (if the
unrealistic outliers, greater than 100 mas in positions
and 25 mas yr−1 in proper motions in some cases, are
disregarded). All of this suggests that the systematic

Table 7. Ranges of systematic stellar position and proper
motion differences PPMXL–UCAC4 as a function of the
J magnitude of stars

J ΔRA ΔDEC ΔPMRA ΔPMDEC

11m 17.2 15.1 3.99 4.75

13m 20.1 18.1 5.86 4.99

15m 29.1 23.6 6.77 4.88

ΔRA = (Δα cos δ)max − (Δα cos δ)min, ΔDEC = (Δδ)max −
(Δδ)min (mas), ΔPMRA = (Δμα cos δ)max − (Δμα cos δ)min,
ΔPMDEC = (Δμδ)max − (Δμδ)min (mas yr−1).

difference between the PPMXL and UCAC4 is less
than their random difference.
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