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Abstract—We apply vector spherical functions to problems of stellar kinematics. Using these functions
allows all of the systematic components in the stellar velocity field to be revealed without being attached
to a specific physical model. Comparison of the theoretical decomposition coefficients of the equations for
a particular kinematic model with observational data can provide precise information about whether the
model is compatible with the observations and can reveal systematic components that are not described by
this model. The apparatus of vector spherical functions is particularly well suited for analyzing the present
and future (e.g., GAIA) catalogs containing all three velocity vector components: the propermotions in both
coordinates and the radial velocity. We show that there are systematic components in the proper motions
of Hipparcos stars that cannot be interpreted in terms of the linear Ogorodnikov–Milne model. The same
result is also confirmed by an analysis of the radial velocities for these stars.
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INTRODUCTION

The appearance of the large-scale Hipparcos,
Tycho-2, USAC-2, and USNO stellar catalogs of
proper motions provides qualitatively new material
for investigating the kinematics of Galactic stars. The
prospects of highly accurate parallax, proper motion,
and radial velocity measurements for hundreds of
millions of stars planned in the GAIA project are an
incentive for developing new methods of kinematic
analysis of stars.
The study of stellar kinematics is usually based

on estimating the parameters of the models that de-
scribe the stellar velocity field components by the
least-squares method. This approach is methodolog-
ically impeccable, provided that the models used are
complete. In reality, we can never include all of the
phenomena related to stellar kinematics in the model,
i.e., make the model complete from a physical view-
point. There exist quite a few alternative, more or
less complex models of the stellar velocity field, but
choosing between them is a complex problem. A dif-
ferent approach to constructing models based on the
representation of the data under study by complete
orthogonal sets of functions (Brosche 1966; Schwan
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2001; Vityazev and Tsvetkov 1989; Vityazev 1989,
1993; Tsvetkov 1997; Tsvetkov and Popov 2006) can
be suggested for its solution. Such models are com-
plete (from a mathematical viewpoint), i.e., all of the
information available in the observational data can be
described using the coefficients of their decomposi-
tion into the functions of a chosen basis.
Thus, the formal models of the stellar velocity field

allow us, first, to determine whether systematic com-
ponents are present in the proper motions and radial
velocities and only then to choose a specific physi-
cal model. In addition, comparison of the theoretical
decomposition of the equations for a physical model
into a chosen set of orthogonal functions with the
coefficients derived from a particular sample of stars
can provide precise information about whether the
adopted model is compatible with the observations.
In the cases where the correspondence between the
physical and mathematical model parameters can be
obtained, the method of orthogonal representations
is able to give an estimate of the physical model pa-
rameters protected from any distortions (biases) from
the phenomena that were not included in the model.
This approach was probably first implemented in our
papers (Vityazev and Tsvetkov 1989; Vityazhev 1993)
using scalar spherical functions.
Therefore, it seems appropriate to use the method

of decomposing the stellar velocity field into a set of
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ANALYSIS OF THE THREE-DIMENSIONAL FIELD 101

three-dimensional vector spherical functions (VSFs)
to study the stellar kinematics. Note that two-
dimensional VSFs were first used by Mignard and
Morando (1990) in astrometric problems related to
the comparison of catalogs to represent the sys-
tematic differences between Hipparcos and FK5.
Vityazev and Shuksto (2004, 2005) extended this
approach to a kinematic analysis of only the stellar
proper motions without including the stellar radial
velocities. The goal of this paper is to use three-
dimensional VSFs to study the total stellar velocity
field whose components are determined by the mea-
surements of both stellar proper motions and radial
velocities.

SCALAR SPHERICAL FUNCTIONS

Spherical functions are widely used in various
areas of mathematics and physics. Their definition
can be found in many sources, for example in Ar-
fken (1970). In this paper, we will use the following
representation for them:

Knkp(l, b) = Rnk

×



Pn,0(b), k = 0, p = 1,
Pnk(b) sin kl, k �= 0, p = 0,
Pnk(b) cos kl, k �= 0, p = 1,

Rnk =

√
2n+ 1

4π

{√
2(n−k)!
(n+k)! , k > 0,

1, k = 0,

where l and b are the longitude and latitude of
the point on the sphere, respectively (0 ≤ l ≤ 2π;
−π/2 ≤ b ≤ π/2); Pnk(b) are the Legendre (at k = 0)
and associated Legendre (for k > 0) polynomials that
can be calculated using the recurrence relations

Pnk(b) = sin b
2n− 1
n− k Pn−1,k(b)

− n+ k − 1
n− k Pn−2,k(b),

k = 0, 1, . . . , n = k + 1, k + 2, . . .

Pkk(b) =
(2k)!
2kk!

cosk b,

Pk+1,k(b) =
(2k + 2)!

2k+1(k + 1)!
cosk b sin b.

VECTOR SPHERICAL FUNCTIONS

Consider a set of mutually orthogonal unit vectors
el, eb, and er in the directions of the change in longi-
tude and latitude and along the line of sight, respec-
tively, in a plane tangential to the sphere. Using the
definitions of VSFs in Arfken (1970) or Varshalovich

et al. (1975), let us introduce radial, Vnkp, toroidal,
Tnkp, and spheroidal, Snkp, VSFs via the relations

Vnkp(l, b) = Knkp(l, b)er,

Tnkp =
1√

n(n+ 1)

×
(
∂Knkp(l, b)

∂b
el −

1
cos b

∂Knkp′(l, b)
∂l

eb

)
,

Snkp =
1√

n(n+ 1)

×
(

1
cos b

∂Knkp(l, b)
∂l

el +
∂Knkp(l, b)

∂b
eb

)
.

Denote the components of the unit vector el by T l
nkp

and Sl
nkp and the components of the unit vector eb by

T b
nkp and S

b
nkp, respectively:

Tnkp = T l
nkpel + T b

nkpeb,

Snkp = Sl
nkpel + Sb

nkpeb.

These components are defined as

T l
nkp =

Rnk√
n(n+ 1)

×




Pn,1(b), k = 0, p = 1,
(−k tg bPnk(b) + Pn,k+1(b)) sin kl,
k �= 0, p = 0,
(−k tg bPnk(b) + Pn,k+1(b)) cos kl,
k �= 0, p = 1;

T b
nkp =

Rnk√
n(n+ 1)

×




0, k = 0, p = 1,
− k

cos bPnk(b) cos kl, k �= 0, p = 0,
+ k

cos bPnk(b) sin kl, k �= 0, p = 1;

Sl
nkp =

Rnk√
n(n+ 1)

×




0, k = 0, p = 1,
− k

cos bPnk(b) cos kl, k �= 0, p = 0,
− k

cos bPnk(b) sin kl, k �= 0, p = 1;

Sb
nkp =

Rnk√
n(n+ 1)
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×




Pn,1(b), k = 0, p = 1;
(−k tg bPnk(b) + Pn,k+1(b)) sin kl,
k �= 0, p = 0,
(−k tg bPnk(b) + Pn,k+1(b)) cos kl,
k �= 0, p = 1,

For convenience, a linear numeration of the func-
tions Vnkp, Tnkp, and Snkp by one index j is often
introduced, where

j = n2 + 2k + p− 1.

The introduced functions satisfy the relations∫∫
Ω

(Vi · Vj) dω =
∫∫
Ω

(Ti · Tj) dω

=
∫∫
Ω

(Si · Sj) dω =

{
0, i �= j,
1, i = j;

∫∫
Ω

(Vi ·Tj) dω =
∫∫
Ω

(Vi · Sj) dω

=
∫∫
Ω

(Si ·Tj) dω = 0, ∀i, j.

In other words, the set of functions Vnkp, Tnkp, and
Snkp forms an orthonormal set of functions on the
sphere.

REPRESENTATION OF THE STELLAR
VELOCITY FIELD BY A SET OF VSFs
Consider the real stellar velocity field on the celes-

tial sphere:

U(l, b) = Vr/rer + Kµl cos bel + Kµbeb,

where Vr is the radial velocity, µl and µb are the stellar
proper motion components in Galactic longitude and
latitude, r is the distance to the star, and K = 4.738
is the conversion factor of the dimensions of stellar
proper motions mas yr−1 into km s−1 kpc−1.
Using the set of VSFs defined above, we can de-

compose the velocity field as

U(l, b) =
∑
nkp

vnkpVnkp (1)

+
∑
nkp

tnkpTnkp +
∑
nkp

snkpSnkp,

where, since the basis is orthonormal, the decompo-
sition coefficients vnkp, tnkp, and snkp are calculated
from the formulas

vnkp =
∫∫
Ω

(U · Vnkp) dω

=

2π∫
0

dl

+π/2∫
−π/2

Vr(l, b)/rVnkp cos b db,

tnkp =
∫∫
Ω

(U ·Tnkp) dω

=

2π∫
0

dl

+π/2∫
−π/2

(
Kµl cos bT l

nkp + KµbT
b
nkp

)
cos b db,

snkp =
∫∫
Ω

(U · Snkp) dω

=

2π∫
0

dl

+π/2∫
−π/2

(
Kµl cos bSl

nkp + KµbS
b
nkp

)
cos b db.

DECOMPOSITION
OF THE OGORODNIKOV–MILNE
EQUATIONS INTO A SET OF VSFs

The equations of the Ogorodnikov–Milne model
(du Mont 1977; Rybka 2004) are commonly used in
analyzing the stellar proper motions. In this model,
the stellar velocity field is represented by a linear
expression,

V = V0 + Ω× r + M+ × r, (2)

where V is the stellar velocity, V0 is the effect of the
translational solar motion, Ω is the angular velocity
of rigid-body rotation of the stellar system, and M+

is the symmetric velocity field deformation tensor.
The Ogorodnikov–Milne model contains 12 pa-

rameters:
U , V ,W the components of the velocity vector of

translational solar motion V0 relative to the stars;
ω1, ω2, ω3 are the components of the vector of

rigid-body rotationΩ;
M+

11, M
+
22, M

+
33 are the parameters of the ten-

sor M+ that describe the velocity field contraction–
expansion along the principal Galactic axes;
M+

12, M
+
13, M

+
23 are the parameters of the tensor

M+ that describe the velocity field deformation in the
principal plane and in the two planes perpendicular to
it.
Projecting Eq. (2) onto the unit vectors of the

Galactic coordinate system yields

Vr/r = −(U/r) cos l cos b− (V/r) sin l cos b (3)

− (W/r) sin b+M+
13 sin 2b cos l

+M+
23 sin 2b sin l +M+

12 cos2 b sin 2l
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+M+
11 cos2 b cos2 l +M+

22 cos2 b sin2 l

+M+
33 sin2 b,

Kµl cos b = (U/r) sin l − (V/r) cos l (4)

− ω1 sin b cos l − ω2 sin b sin l

+ ω3 cos b−M+
13 sin b sin l +M+

23 sin b cos l

+M+
12 cos b cos 2l

− 1
2
M+

11 cos b sin 2l +
1
2
M+

22 cos b sin 2l,

Kµb = (U/r) cos l sin b+ (V/r) sin l sin b (5)

− (W/r) cos b+ ω1 sin l − ω2 cos l

− 1
2
M+

12 sin 2b sin 2l +M+
13 cos 2b cos l

+M+
23 cos 2b sin l − 1

2
M+

11 sin 2b cos2 l

− 1
2
M+

22 sin 2b sin2 l +
1
2
M+

33 sin 2b.

Since there is a linear relation between the coef-
ficients M+

11, M
+
22, and M

+
33 in Eqs. (4) and (5), the

substitutions M∗
11 =M+

11 −M+
22 and M

∗
33 =M+

33 −
M+

22 are often introduced when the stellar proper mo-
tions are analyzed (du Mont 1977).
Let us decompose Eqs. (3)–(5) into VSFs to as-

certain which parameters of this model are respon-
sible for specific harmonics in the decomposition of
the stellar proper motions. It should be kept in mind
that the components of the solar motion enter into
Eqs. (3) and (5) with the factor 1/r. This means
that the effects of the solar motion should be elimi-
nated when VSFs are used. Otherwise, the solution
is meaningful only for stars at approximately equal
heliocentric distances; in this case, we will be able to
determine the parameters of the solar motion only to
within the factor 1/〈r〉. The results of our theoretical
decomposition of the right-hand sides of Eqs. (3)–(5)
are presented in Table 1.
In the simplified form of the Ogorodnikov–Milne

model that is usually called the Oort–Lindblad model
(Ogorodnikov 1965), the stellar system is assumed to
to rotate exactly in the Galactic plane, i.e., ω1 and ω2

are zero; the contraction–expansion along the axes
is not considered, while the deformation exists only
in the Galactic plane and is described by the Oort
parameter A =M12. The number of decomposition
coefficients will decrease accordingly.
The formulas from Table 2 can be used to solve the

inverse problem, i.e., to determine the Ogorodnikov–
Milne model parameters via the VSF decomposition
coefficients of the stellar radial velocities and proper
motions.

Table 1. VSF decomposition coefficients of the
Ogorodnikov–Milne equations

Coefficient Value

v001 1.18M+
11 + 1.18M+

22 + 1.18M+
33

v101 −2.05W/〈r〉
v110 −2.05V/〈r〉
v111 −2.05U/〈r〉
v201 −0.53M+

11 − 0.53M+
22 + 1.06M+

33

v210 1.83M+
23

v211 1.83M+
13

v220 1.83M+
12

v221 0.92M+
11 − 0.92M+

22

t101 2.89ω3

t110 2.89ω2

t111 2.89ω1

s101 −2.89W/〈r〉
s110 −2.89V/〈r〉
s111 −2.89U/〈r〉
s201 −0.65M+

11 − 0.65M+
22 + 1.29M+

33

s210 2.24M+
23

s211 2.24M+
13

s220 2.24M+
12

s221 1.12M+
11 − 1.12M+

22

Based on the results presented in Table 1, we can
formulate the following properties of the decomposi-
tion of Eqs. (3)–(5):

– the Ogorodnikov–Milne model is completely
described by the set of harmonics whose order in
index n does not exceed two;

– the solar components are determined (to within
the factor of the mean distance to the stars) via the
radial and spheroidal coefficients with indices 101,
110, and 111 independently from the stellar radial
velocities and proper motions;

– the velocity field deformation parametersM+
23,M

+
13,

and M+
12 are also determined independently from the

stellar radial velocities and proper motions via the
radial and spheroidal coefficients with indices 210,
211, and 220;

– the contraction–expansion parametersM+
11,M

+
22,

and M+
33 are completely determined from the stellar
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104 VITYAZEV, TSVETKOV

Table 2. Relationships of the Ogorodnikov–Milne model
parameters to the VSF decomposition coefficients of the
stellar radial velocities and proper motions

Parameter Formula

W/〈r〉 −0.488v101

V/〈r〉 −0.488v110

U/〈r〉 −0.488v111

M+
11 0.282v001 − 0.314v201 + 0.543v221

M+
22 0.282v001 − 0.314v201 − 0.543v221

M+
33 0.282v001 + 0.629v201

M+
23 0.546v210

M+
13 0.546v211

M+
12 0.546v220

ω3 0.346t101

ω2 0.346t110

ω1 0.346t111

W/〈r〉 −0.346s101

V/〈r〉 −0.346s110

U/〈r〉 −0.346s111

M+
11 −M+

22 0.893s221

M+
33 −M+

22 0.769s201 + 0.446s221

M+
23 0.446s210

M+
13 0.446s211

M+
12 0.446s220

radial velocities via the radial coefficients with in-
dices 001, 201, 221;

– the spheroidal coefficients with indices 201
and 221 allow the contraction–expansion parameters
to be determined to within the constantM+

22, which is
usually set equal to zero (Clube 1972);

– the rigid-body rotation velocity components for
the sample of stars being analyzed ω1, ω2, and ω3

are determined only from the toroidal coefficients with
indices 111, 110, and 101;

– In the VSF method, with the exception of the
rigid-body rotation parameters, the solution from the
radial functions completely solves the problem of de-
termining the velocity field parameters only from the
radial velocities independently from the stellar proper
motions. This property allows the compatibility of the
stellar radial velocities and proper motions relative to
the chosen kinematic model to be tested. Such a test
is highly desirable, since the stellar radial velocities
and proper motions are determined by fundamentally

different methods and can have their own systematic
errors.

THE VSF METHOD IN PRACTICE

We will assume that we have a catalog of stars
at our disposal with known parallaxes, coordinates,
radial velocities, and proper motion components in
Galactic longitude and latitude. Before describing the
main steps of the VSF method, let us consider one
fundamental point.
In principle, the sought-for decomposition coef-

ficients can be determined by the standard least-
squares method. In accordance with the specificity
of the VSF method, we should obtain a separate
solution from the first component of Eq. (1) (radial
velocities) and a joint solution from the two remaining
components of this equation (stellar proper motions).
However, for a nonuniform distribution of stars

over the sphere, we run into two difficulties. First,
cross correlations appear between the unknowns,
which, in the long run, reduce the reliability of their
numerical estimates. Second, “ghosts”, i.e., harmon-
ics that have no particular physical nature but are
caused exclusively by the distribution of stars over
the sphere, appear.
A detailed analysis of this situation and numerical

experiments showed that a preaveraging of the data
over certain fields on the celestial sphere is apparently
the simplest and fairly efficient method of combatting
these shortcomings. This technique, known as the
problem of data pixelization on a sphere, is nowwidely
used to analyze the CMB anisotropy (Bennett 1996,
2003). As applied to our problem, the pixelization
scheme should meet the requirement that the pixel
centers follow uniformly in both latitude and longi-
tude. Two schemes meet this requirement. One of
these is known as HEALPix (Gorski 2005). In this
method, the areas of all spherical fields are equal and
their centers are located on equidistant (in latitude)
parallels. The centers on each parallel are equally
spaced in longitude, with the longitude step being
the same in the equatorial zone and changing from
parallel to parallel in the polar zones.
The second pixelization method is the so-called

equidistant cylindrical projection (ECP), in which the
celestial sphere is broken down into spherical trapez-
iums by dividing the equator and the meridian semi-
circle into M and N parts, respectively. The indices
m and n, which describe the field number in longitude
and the zone number in latitude, can be easily calcu-
lated from the stellar coordinates using the formulas

m =
[
l

360◦
M

]
+ 1; n =

[
90◦ − b
180◦

N

]
+ 1,
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where [x] is the smallest integer that does not ex-
ceed x.
The coordinates of the field center are defined as

lm =
180◦

M
+

360◦

M
(m− 1), m = 1, 2, . . . ,M,

bn = 90◦ − 90◦

N
− 180◦

N
(n− 1), n = 1, 2, . . . , N.

In both cases, for each field with number P =
0, 1, . . . , Npix, the average values of the proper mo-
tions µ∗l (P ) = 〈Kµl cos b〉 and µ∗b(P ) = 〈Kµb〉 and
radial velocities V ∗(P ) = 〈Vr/r〉 of the stars falling
into this field are calculated. After these averagings,
the sought-for coefficients can be calculated from the
formulas

vnkp =
Npix−1∑

P=0

V ∗(P )Vnkp(P )WP , (6)

tnkp =
Npix−1∑
P=0

(7)

×
[
µ∗l (P )T l

nkp(P ) + µ∗b(P )T b
nkp

]
WP ,

snkp =
Npix−1∑
P=0

(8)

×
[
µ∗l (P )Sl

nkp(P ) + µ∗b(P )Sb
nkp

]
WP ,

in which the weights in the HEALPix and ECP
schemes are, respectively,

WP =
4π
Npix

,

WP =
2π2

Npix
cos bP .

In the HEALPix scheme, the rms errors of these
coefficients can be calculated from the formulas

σvnkp
=

√∑Npix−1
P=0 ε2V ∗(P )
Npix −Nv

, (9)

σtnkp
= σsnkp

(10)

=

√√√√∑Npix−1
P=0

[
ε2µ∗

l
(P ) + ε2µ∗

b
(P )

]
Npix −Nt −Ns

,

whereNv,Nt, andNs are, respectively, the total num-
bers of calculated coefficients vnkp, tnkp, and snkp,
while εV ∗(P ), εµ∗

l
(P ), and εµ∗

b
(P ) are the residuals of

the corresponding components of Eq. (1) calculated
for the zone centers. In the ECP scheme, the squares

of the residuals should be additionally multiplied by
cos bP .
The number of decomposition terms can be cho-

sen from the condition that the residues in the ve-
locity field components after the subtraction of the
statistically significant harmonics from them behave
as random numbers (Brosche 1966).
As applied to the VSF method, both pixelization

schemes have their advantages and disadvantages.
An indubitable advantage of HEALPix over ECP is
that the HEALpix fields are equal in area, while the
areas of the spherical trapeziums in ECP decrease as
the poles are approached. At the same time, the num-
ber of pixels lying on each parallel decreases in the
polar zones are the poles are approached in HEALPix
and is always constant in ECP. For this reason, the
upper limit for the index k in the series of indices of
the spherical functions n, k, p is always fixed in ECP,
in contradistinction to HEALPix where it decreases
rapidly as the poles are approached. In turn, because
of aliasing, the high-frequency oscillations available
in the data and reliably detected in the equatorial
zone can manifest themselves in the polar zones at
a different frequency.
It should also be noted that certain fields may turn

out to be empty after data pixelization on the sphere.
A significant number of empty fields can again gen-
erate false harmonics. This situation is well known in
the theory and practice of unequally spaced time se-
ries analysis, where a nonuniform distribution of ob-
servation times generates the so-called “dirty” spec-
tra. The special algorithms developed for cleaning
such spectra (Roberts 1987; Vityazev 2001) can also
be used in the VSF method.
Taking into account these circumstances, below

we preferred to use a breakdown of the celestial sphere
according to the ECP scheme withM = 24 andN =
18. This choice is justified by the great simplicity of
the pixelization and a constant step of zone break-
down in longitude. Reducing the areas of the spheri-
cal trapeziums in the polar zones introduces no tan-
gible errors into the results, since the bulk of the stars
in the catalogs we used are contained in the Galactic
equatorial zone.
Thus, the practical implementation of the VSF

method consists of the following steps:
(1) Elimination of the effects of solar motion

among the stars from the radial velocities and
proper motions. Since the VSF decomposition co-
efficients responsible for the solar motion include the
stellar parallaxes, it would be reasonable to determine
and eliminate the solar motion from the stellar proper
motions and radial velocities before the determina-
tion of other coefficients. If the stellar parallaxes are
known, then this problem can be solved by solv-
ing the Airy–Kovalsy equations by the least-squares
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Table 3. Parameters of the Ogorodnikov–Milne model
adopted for the generation of test catalogs

U V W ω3 M+
12 M+

11

km s−1 km s−1 kpc−1

10.0 20.0 8.0 –15.0 12.0 5.0

Table 4. Experiment 2. The VSF decomposition coeffi-
cients obtained for the model proper motions of Hipparcos
stars in the range of distances 200–300 pc with a noise
component of 10 km s−1 kpc−1 and the kinematic param-
eters calculated from them

t101 −41.5± 1.2 s101 0.0 ± 1.2 ω1 0.2 ± 0.4

t110 −0.4 ± 1.2 s110 0.0 ± 1.2 ω2 0.2 ± 0.4

t111 0.5 ± 1.2 s111 −0.1 ± 1.2 ω3 −14.4 ± 0.4

t201 0.3 ± 1.2 s201 −1.5 ± 1.2 M+
12 11.7 ± 0.6

t210 2.4 ± 1.2 s210 −0.3 ± 1.2 M+
13 0.0 ± 0.5

t211 0.6 ± 1.2 s211 −0.1 ± 1.2 M+
23 −0.1 ± 0.5

t220 −0.8 ± 1.2 s220 26.1 ± 1.2 M∗
11 4.6 ± 1.1

t221 1.5 ± 1.2 s221 5.2 ± 1.2 M∗
33 1.1 ± 1.1

t301 1.1 ± 1.2 s301 2.2 ± 1.2 – –

method. If the effects of solar motion were determined
and eliminated, then the problem is subsequently re-
duced only to analyzing the rigid-body rotation ve-
locity components and the velocity field deformation
tensor elements. Otherwise, the VSFmethod will de-
termine the components of the vector of solar motion
to within a constant factor equal to the mean value of
the parallaxes from the drawn sample of stars;
(2) Data pixelization on the sphere. At this

step, the stellar radial velocities and proper motions
are averaged over the spherical trapeziums obtained
by uniformly dividing the Galactic equator and the
meridian semicircle intoM andN parts, respectively.
(3) Calculation of the VSF decomposition co-

efficients vj, tj , sj of the residual velocity field.
Eqs. (6)–(8) are used for this purpose. The rms
errors of these decompositions can be calculated from
Eqs. (36) and (37).
(4) Determination of the parameters of a spe-

cific kinematic model. Once the decomposition co-
efficients vj ± σvj , tj ± σtj , and sj ± σsj have been
determined, they can be related to the parameters of a
specific physical model. For the Ogorodnikov–Milne
models, these relationships are given in Table 2.

Table 5. Experiment 2. The VSF decomposition coeffi-
cients obtained from the test OSACA catalog for stars in
the range of distances 200–300 pc with a noise component
of 10 km s−1 kpc−1

v001 7.3 ± 0.8 − − − −
v101 0.0 ± 0.8 t101 −45.7± 3.1 s101 −0.1 ± 3.1
v110 −0.2 ± 0.8 t110 0.3 ± 3.1 s110 0.4 ± 3.1
v111 0.0 ± 0.8 t111 5.0 ± 3.1 s111 −0.3 ± 3.1
v201 −2.8 ± 0.8 t201 7.3 ± 3.1 s201 −0.7 ± 3.1
v210 0.2 ± 0.8 t210 3.0 ± 3.1 s210 −5.1 ± 3.1
v211 −0.5 ± 0.8 t211 −8.3 ± 3.1 s211 1.2 ± 3.1
v220 20.3 ± 0.8 t220 5.6 ± 3.1 s220 24.9 ± 3.1
v221 4.5 ± 0.8 t221 5.7 ± 3.1 s221 8.1 ± 3.1
v301 −0.3 ± 0.8 t301 5.8 ± 3.1 s301 −2.7 ± 3.1

Table 6. Experiment 2. The kinematic parameters calcu-
lated using the coefficients from Table 5

From tj and sj From vj
ω1 1.7 ± 1.1 − −
ω2 0.1 ± 1.1 − −
ω3 −15.6± 1.1 − −
M+

12 11.1 ± 1.4 M+
12 11.1 ± 0.4

M+
13 0.5 ± 1.4 M+

13 −0.3 ± 0.4
M+

23 −2.3 ± 1.4 M+
23 0.1 ± 0.4

M+
11 −M+

22 7.3 ± 2.7 M+
11 5.4 ± 0.5

M+
22 0.5 ± 0.5

M∗
33 −M+

22 3.1 ± 2.7 M+
33 0.3 ± 0.5

Analysis of the results of experiment 2 shows that
the VSF method is stable against random errors.
Their action manifests itself in the rms errors of the
coefficients. The estimates of the coefficients for the
Ogorognikov–Milne model show no significant bi-
ases. The results based on the OSACA catalog are
less accurate in random terms because of not only the
smaller number of stars but also their highly nonuni-
form distribution over the celestial sphere (Fig. 1). As
a result, the fields into which the stars fall contain
significantly differing numbers of stars compared to
the Hipparcos catalog (Fig. 2).

(5) Analysis of the out-of-model decompo-
sition coefficients. As follows from Table 1, the
Ogorodnikov–Milne (or Oort–Lindblad) model is
completely described by the decomposition coeffi-
cients vj and sj up to n ≤ 2 and by the coefficients
tj up to n ≤ 1. All of the remaining decomposition
terms with significant coefficients define the sys-
tematic components of the stellar velocity field that
do not enter the standard models. Establishing the
physical meaning of these harmonics is a separate
problem that is basically reduced to constructing a
new kinematic model.
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Fig. 1. Distribution of OSACA stars over the celestial sphere for the range of distances 200–300 pc.
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Fig. 2. Distribution of Hipparcos stars over the celestial sphere for the range of distances 200–300 pc.

NUMERICAL EXPERIMENTS

To test the capabilities of the VSF method, we
carried out numerical experiments using two samples
of stars in the range of distances 200–300 pc. The
first and second samples consisted of Hipparcos and
OSACA (Bobylev et al. 2006) stars, respectively. We
assigned model proper motions to these stars in the
former case and proper motions and radial velocities
in the latter case. As a model stellar velocity field, we
used Eqs. (3), (4), and (5) with the parameters from
Table 3. The remaining parameters were taken to be
zero.
Subsequently, three experiments were carried out

for each sample:
(1) The VSF decomposition coefficients were de-

termined directly from the model data.

(2) A large random component with a dispersion
of 10 km s−1 kpc−1 was introduced into the model
proper motions and radial velocities.
(3) A systematic component of the form

15∑
j=9

(Tj(l, b) + Sj(l, b))

with an amplitude of 50 km s−1 kpc−1 was introduced
into the model proper motions.
The results of the first experiment turned out to

be in complete agreement with the theoretical predic-
tions of Table 1. The rms errors of all coefficients were
zero.
The VSF decomposition coefficients in the second

experiment are given in Table 4 for the Hipparcos

ASTRONOMY LETTERS Vol. 35 No. 2 2009



108 VITYAZEV, TSVETKOV

Table 7. Experiment 3. The VSF decomposition coeffi-
cients obtained for stars at distances 200–300 pc from the
Hipparcos catalog distorted by a systematic component

t101 −43.6± 0.2 s101 −0.3 ± 0.2

t110 −0.1 ± 0.2 s110 −0.7 ± 0.2

t111 −0.3 ± 0.2 s111 −0.4 ± 0.2

t201 −0.1 ± 0.2 s201 −3.2 ± 0.2

t210 0.0 ± 0.2 s210 −0.1 ± 0.2

t211 −0.3 ± 0.2 s211 −0.7 ± 0.2

t220 −0.2 ± 0.2 s220 27.0 ± 0.2

t221 0.3 ± 0.2 s221 5.1 ± 0.2

t301 49.2 ± 0.2 s301 49.3 ± 0.2

t310 49.4 ± 0.2 s310 48.7 ± 0.2

t311 49.1 ± 0.2 s311 48.8 ± 0.2

t320 49.2 ± 0.2 s320 49.2 ± 0.2

t321 48.8 ± 0.2 s321 48.9 ± 0.2

t330 48.6 ± 0.2 s330 48.6 ± 0.2

t331 48.9 ± 0.2 s331 48.5 ± 0.2

Table 8. Experiment 3. The kinematic parameters ob-
tained by the standard method and the VSF method from
a model velocity field distorted by a systematic component.
The sample of stars in the range of distances 200−300 pc
from Hipparcos

Parameter LSa VSFb

ω1 0.5 ± 0.1 −0.1 ± 0.1

ω2 0.3 ± 0.1 0.0 ± 0.1

ω3 −17.6 ± 0.1 −15.1 ± 0.1

M+
12 14.4 ± 0.3 12.0 ± 0.1

M+
13 −0.4 ± 0.4 −0.3 ± 0.1

M+
23 −3.7 ± 0.4 −0.1 ± 0.1

M∗
11 4.5 ± 0.8 4.9 ± 0.2

M∗
33 −2.6 ± 0.8 −0.2 ± 0.2

a The least-squares method.
b The VSF method.

catalog and Table 5 for the OSACA catalog. Tables 4
and 6 also present the kinematic parameters of the
Ogorodnikov–Milne model calculated using the VSF
decomposition.
The results of the third experiment for Hippar-

cos stars are presented in Table 7. We see that the
introduced systematic component is completely iso-

lated and distorts the low-frequency harmonics only
slightly. The result obtained in the third experiment
and presented in Table 8 is revealing. Here, we gave
the parameters of the Ogorodnikov–Milne model ob-
tained by the standard least-squares (LS) method
directly from stars without using any data pixelization
and by the VSF method using pixelization. We see
that the VSF method yields a more accurate and
reliable result, but the most important thing is that
the standard LS method cannot detect any out-of-
model systematics in the stellar proper motions (and
radial velocities) in principle, although the “power of
the signal” that is not described by theOgorodnikov–
Milne model exceeds significantly the contribution of
this model for the parameters specified in Table 3. For
a larger number of stars, we will obtain even formally
small rms errors of the parameters, although the LS
method does not reveal the main effect in these
artificial proper motions in any way. It can be said
that the LS method does not distinguish stochas-
tic noise from systematic one. In contrast, the VSF
method allows a more sophisticated analysis of the
observational material to be performed by obtaining
a “kinematic spectrum” of the systematic effects in
the stellar proper motions and radial velocities whose
subsequent investigation can point to the validity of a
particular kinetic model for stellar motions.
The main conclusions drawn from the results of

our numerical experiments are the following:
– in the cases where we are confident that, with

the exception of white noise, there is no other system-
atic information than that described by the adopted
model in the data under study, the VSF method has
no particular advantages over the standard method
based on the joint solution of the main kinematic
equations by least squares;

– in the situations where, apart from random
noise, systematic components that are not described
by the model are present in our data, the VSF
method shows clear advantages over the standard
LS method, since it not only detects “out-of-model”
components but also protects the model parameters
from their influence.

– The VSF decomposition method makes it pos-
sible to test the stellar radial velocities and propermo-
tions for compatibility. This is important, since these
data are obtained by astrophysical and astrometric
methods and can have different systematic errors,
which will not be detected when the main kinematic
equations are jointly solved by the LS method.

USING THE VSF METHOD TO STUDY REAL
STELLAR VELOCITY FIELDS

In this section, we apply the VSF method to the
proper motions of all Hipparcos stars and to the
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Table 9. VSF decomposition coefficients of the proper motions for Hipparcos stars and parameters of the Ogorodnikov–
Milne model calculated from them

Range, pc 50–100 100–200 200–300 300–400 400–600

Mean distance, pc 76 148 246 346 484

Number of stars 15 935 31 803 21 388 12 646 11 720

t101 −43.5± 12.4 −29.4± 4.1 −38.8 ± 3.4 −40.5 ± 3.5 −43.0± 3.7
t110 −30.9± 12.4 −18.6± 4.1 −5.5 ± 3.4 −2.4 ± 3.5 −3.2 ± 3.7

t111 −12.6± 12.4 0.3 ± 4.1 −0.4 ± 3.4 1.9 ± 3.5 −3.4 ± 3.7

t201 −7.9 ± 12.4 7.4 ± 4.1 6.7 ± 3.4 3.5 ± 3.5 7.5 ± 3.7
t210 17.0 ± 12.4 11.8 ± 4.1 0.5 ± 3.4 −9.0 ± 3.5 −8.7 ± 3.7

t211 −28.0± 12.4 6.6 ± 4.1 14.4 ± 3.4 20.0 ± 3.5 21.6 ± 3.7
t220 −1.8 ± 12.4 6.6 ± 4.1 0.5 ± 3.4 3.1 ± 3.5 −3.7 ± 3.7

t221 17.2 ± 12.4 5.7 ± 4.1 1.4 ± 3.4 −1.5 ± 3.5 1.1 ± 3.7

t301 7.8 ± 12.4 −7.5 ± 4.1 −4.7 ± 3.4 9.0 ± 3.5 1.2 ± 3.7
t310 20.3 ± 12.4 5.2 ± 4.1 5.4 ± 3.4 −0.1 ± 3.5 0.9 ± 3.7

t311 −11.3± 12.4 0.9 ± 4.1 3.9 ± 3.4 −2.9 ± 3.5 −6.1 ± 3.7
t320 −2.7 ± 12.4 −5.2 ± 4.1 2.7 ± 3.4 −2.6 ± 3.5 −2.9 ± 3.7

t321 21.5 ± 12.4 −4.8 ± 4.1 2.5 ± 3.4 3.8 ± 3.5 0.0 ± 3.7

t330 12.6 ± 12.4 1.5 ± 4.1 2.7 ± 3.4 −1.0 ± 3.5 −1.1 ± 3.7
t331 4.4 ± 12.4 −2.9 ± 4.1 −3.5 ± 3.4 3.9 ± 3.5 −1.1 ± 3.7

s101 −0.2 ± 12.4 0.1 ± 4.1 0.0 ± 3.4 0.0 ± 3.5 −0.1 ± 3.7

s110 0.8 ± 12.4 0.3 ± 4.1 0.1 ± 3.4 0.0 ± 3.5 0.0 ± 3.7
s111 0.3 ± 12.4 −0.1 ± 4.1 −0.1 ± 3.4 −0.1 ± 3.5 0.0 ± 3.7

s201 −1.1 ± 12.4 −3.4 ± 4.1 2.9 ± 3.4 2.4 ± 3.5 5.3 ± 3.7

s210 −19.6± 12.4 −5.0 ± 4.1 2.3 ± 3.4 0.9 ± 3.5 −2.7 ± 3.7
s211 −22.2± 12.4 −6.0 ± 4.1 2.5 ± 3.4 −2.6 ± 3.5 −1.1 ± 3.7

s220 36.5 ± 12.4 20.0 ± 4.1 31.8 ± 3.4 28.4 ± 3.5 25.8 ± 3.7
s221 21.4 ± 12.4 −4.5 ± 4.1 −6.9 ± 3.4 −10.1 ± 3.5 −6.2 ± 3.7

s301 −7.0 ± 12.4 2.8 ± 4.1 −0.5 ± 3.4 −8.1 ± 3.5 −9.2 ± 3.7

s310 7.9 ± 12.4 −4.6 ± 4.1 −18.0 ± 3.4 −12.7 ± 3.5 −15.7± 3.7
s311 15.1 ± 12.4 −2.8 ± 4.1 −0.6 ± 3.4 −4.8 ± 3.5 4.7 ± 3.7

s320 −26.6± 12.4 2.6 ± 4.1 −2.5 ± 3.4 3.9 ± 3.5 −5.2 ± 3.7

s321 11.1 ± 12.4 0.3 ± 4.1 −0.7 ± 3.4 1.2 ± 3.5 −5.1 ± 3.7
s330 39.7 ± 12.4 15.9 ± 4.1 −0.8 ± 3.4 1.2 ± 3.5 −2.3 ± 3.7

s331 44.0 ± 12.4 −2.3 ± 4.1 −4.1 ± 3.4 −0.5 ± 3.5 −2.5 ± 3.7

ω1 −4.4 ± 4.3 0.1 ± 1.4 −0.1 ± 1.2 0.6 ± 1.2 −1.2 ± 1.3
ω2 −10.7 ± 4.3 −6.4 ± 1.4 −1.9 ± 1.2 −0.8 ± 1.2 −1.1 ± 1.3

ω3 −15.1 ± 4.3 −10.2± 1.4 −13.4 ± 1.2 −14.0 ± 1.2 −14.9± 1.3
M∗

11 19.1 ± 11.1 −4.1 ± 3.7 −6.2 ± 3.1 −9.0 ± 3.1 −5.5 ± 3.3

M∗
33 8.7 ± 11.1 −4.6 ± 3.6 −0.8 ± 3.0 −2.7 ± 3.1 1.3 ± 3.3

M+
12 16.3 ± 5.6 8.9 ± 1.8 14.2 ± 1.5 12.6 ± 1.5 11.5 ± 1.6

M+
13 −9.9 ± 5.5 −2.7 ± 1.8 1.1 ± 1.5 −1.2 ± 1.5 −0.5 ± 1.6

M+
23 −8.7 ± 5.5 −2.2 ± 1.8 1.0 ± 1.5 0.4 ± 1.5 −1.2 ± 1.6

Note. The units of measurement are km s−1 kpc−1.
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Table 10. VSF decomposition coefficients of the radial velocities for OSACA stars and parameters of the Ogorodnikov–
Milne model calculated from them

Range, pc 100–200 200–300 300–400 400–600

Mean distance, pc 143 243 348 479

Number of stars 10 696 4830 2611 2297

v001 8.6 ± 7.3 −14.8 ± 9.2 6.3 ± 13.1 −5.1 ± 13.8

v101 −0.4 ± 7.3 0.0 ± 9.3 2.3 ± 13.6 1.8 ± 14.5

v110 0.0 ± 7.3 0.1 ± 9.2 −3.0 ± 12.8 −1.8 ± 13.4

v111 0.1 ± 7.3 0.1 ± 9.2 2.0 ± 12.8 −5.6 ± 13.4

v201 −1.4 ± 7.3 −13.8 ± 9.3 −10.1 ± 13.5 11.6 ± 14.2

v210 4.0 ± 7.3 −2.4 ± 9.3 5.7 ± 13.3 −6.4 ± 14.0

v211 2.8 ± 7.3 6.5 ± 9.2 20.8 ± 13.3 35.0 ± 14.1

v220 20.0 ± 7.3 21.3 ± 9.2 6.5 ± 12.7 13.7 ± 13.3

v221 −0.1 ± 7.3 −11.5 ± 9.2 −5.8 ± 12.7 −30.2 ± 13.2

v301 −0.6 ± 7.3 −3.1 ± 9.3 11.9 ± 13.2 3.1 ± 13.9

v310 −8.8 ± 7.4 −23.0 ± 9.2 −41.4 ± 13.5 −51.1 ± 14.1

v311 5.5 ± 7.4 −9.7 ± 9.3 −1.4 ± 13.5 −25.8 ± 14.2

v320 −17.4 ± 7.3 2.0 ± 9.2 2.5 ± 13.0 −6.0 ± 13.9

v321 3.3 ± 7.3 −13.6 ± 9.2 −1.3 ± 13.0 −9.0 ± 13.6

v330 −7.5 ± 7.3 5.8 ± 9.2 −11.7 ± 12.7 1.5 ± 13.2

v331 9.4 ± 7.3 0.2 ± 9.2 −7.5 ± 12.6 −21.5 ± 13.1

M+
11 2.8 ± 5.1 −6.1 ± 6.3 1.8 ± 8.9 −21.5 ± 9.3

M+
22 2.9 ± 5.1 6.4 ± 6.3 8.1 ± 8.9 11.3 ± 9.3

M+
33 3.3 ± 5.1 4.5 ± 6.4 8.1 ± 9.2 −8.7 ± 9.7

M+
12 10.9 ± 4.0 11.6 ± 5.0 3.6 ± 6.9 7.5 ± 7.2

M+
13 1.6 ± 4.0 3.5 ± 5.0 11.3 ± 7.2 19.1 ± 7.7

M+
23 2.2 ± 4.0 −1.3 ± 5.1 3.1 ± 7.2 −3.5 ± 7.6

Note. The units of measurement are km s−1 kpc−1.

Hipparcos stars with known radial velocities. Our
analysis was based on samples of stars in narrow
ranges of distances. Before calculating the sought-
for coefficients, we eliminated the effects of solar mo-
tion, whose parameters were determined from the
Airy–Kovalsky equations by taking into account the
individual stellar parallaxes, from the stellar proper
motions and radial velocities.

The results obtained from the stellar proper mo-

tions are presented in Table 9. Comparison of the
values in this table with those in Table 1 leads us to
several conclusions.

For nearby stars with distances 50–100 pc, the
coefficients are determined with significant errors (the
errors are even larger for stars closer than 50 pc).
This suggests that at small distances the peculiar
components dominate in the stellar proper motions,
while the systematic component is barely traceable.
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Nevertheless, we can note the high values and sig-
nificance of the coefficients t101 and t110, suggesting
that the rotation axis of the system of nearby stars is
inclined to the Galactic plane (Tsvetkov 2006). The
coefficients s211, s220, and s221, which show deforma-
tions in other planes and expansion of the system of
nearby stars, are also large.
As the distance increases, the accuracy of de-

termining the coefficients improves significantly (the
effect of the peculiar stellar velocities is reduced). Out
of the above coefficients, only t101 and s220, which
describe the “classical” plane Galactic rotation, re-
main statistically significant. At the same time, the
coefficients t211 and s310, whose physical meaning
cannot be interpreted in terms of linear models, be-
come statistically significant.
In addition to the analysis of stellar proper mo-

tions, we decomposed 35 847 radial velocities of OS-
ACA stars into VSFs (Table 10). Analysis of this table
leads us to similar conclusions: in all samples, not
only the coefficient v220, which is generated by the
parameter M12, but also the coefficient v310, which
is not predicted by the Ogorodnikov–Milne model, is
statistically significant.
It should be noted that the relative accuracy of

determining the radial velocities is lower than the
accuracy of determining the proper motions. In addi-
tion, the nonuniformity of the distribution of OSACA
stars over the celestial sphere increases greatly with
distance. This gives rise to a large number of empty
fields and, as a result, leads to the loss of pixelization
grid uniformity. Furthermore, the presence of random
errors in the stellar parallaxes also causes the result
to become less reliable, since, apart from an incorrect
determination of whether a star belongs to a particular
range of distances (which is also the case when the
proper motions are analyzed), we decompose not the
radial velocity itself but Vrπ; as a result, the parallax
errors penetrate into the coefficients Vj to be deter-
mined. For these reasons, both VSF decomposition
coefficients of the velocity field and parameters of
the Ogorodnikov–Milne model are determined from
the radial velocities much more poorly than from the
proper motions.

INTERPRETATION OF THE RESULTS
IN TERMS OF THE GENERALIZED OORT

MODEL

To interpret the revealed “out-of-model” terms
of the velocity field, we should consider models
different from the linear Ogorodnikov–Milne model
used. As the first step, it is reasonable to consider a
second-order Ogorodnikov–Milne model (Edmond-
son 1937). However, this model predicts the existence
of a large number of harmonics that are not observed

Table 11. Contribution from the parameters of the gener-
alized Oort model to the VSF decomposition coefficients
of the velocity field

Coefficient Value

v001 2.36K

v101 −2.05W/〈r〉

v110 −2.05V/〈r〉 − 0.41F 〈r〉 − 1.23G〈r〉

v111 −2.05U/〈r〉

v201 −1.06K

v220 1.83A

v310 0.11F 〈r〉 + 0.33G〈r〉

v330 −0.42F 〈r〉 + 0.42G〈r〉

t101 2.89B

t211 −0.75F 〈r〉 − 2.24G〈r〉

s101 −2.89W/〈r〉

s110 −2.89V/〈r〉 − 1.15F 〈r〉 − 3.47G〈r〉

s111 −2.89U/〈r〉

s201 −1.29K

s220 2.24A

s310 0.12F 〈r〉 + 0.38G〈r〉

s330 −0.49F 〈r〉 + 0.49G〈r〉

in the real data. Therefore, for our analysis, we chose
a simpler model constructed on “generalized Oort
formulas” (Ogorodnikov 1965; Bobylev et al. 2007).
This is also a second-order model, but it considers
the variations in the angular velocity of rotation of the
stellar system only toward the Galactic center. The
equations of this model are

Kµl cos b = (U/r) sin l − (V/r) cos l (11)

+A cos b cos 2l +B cos b− rF cos2 b cos3 l

− rG(3 cos2 b cos l − cos2 b cos3 l),

Kµb = (U/r) cos l sin b (12)

+ (V/r) sin l sin b−W/r cos b

−A cos b sin b sin 2l + rF cos2 b sin b sin l cos2 l

+ rG cos2 b sin b sin3 l −K cos b sin b,
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Fig. 3. View of the revealed systematic component in the proper motions.

Vr/r = −(U/r) cos b cos l (13)

− (V/r) cos b sin l − (W/r) sin b

+A cos2 b sin 2l − rF cos3 b sin l cos2 l

− rG cos3 b sin3 l +K cos2 b.

where A = 0.5R0ω
′
0 and B = 0.5R0ω

′
0 + ω0 are the

Oort parameters (R0 is the distance to the Galactic
center, ω0 is the angular velocity of Galactic rotation),
F and G are the second-order Oort parameters, F =
0.5R0ω

′′
0 and G = A/R0.

We decomposed Eqs. (11)–(13) into a set of
VSFs. The results are presented in Table 11. Analysis
of this table shows that in the presence of strong
second-order effects and identical signs of the pa-
rameters F and G, one might expect the appearance
of statistically significant coefficients t211, s310, and
v310. The values of s310 and v310 should coincide,
while their signs should be opposite to the sign
of t211. The coefficient t211 should exceed s310 and
v310 in absolute value. When the second-order Oort
parameters are equal in order of magnitude, the
coefficients s330 and v330 will probably be statistically
insignificant.
Comparing these results with the coefficients t211,

s310, v310 as well as s330, v330 taken from Tables 9
and 10, we can assert that the generalized Oort model
describes satisfactorily the kinematics of stars at he-
liocentric distance of more than 300–400 pc on a
qualitative level. However, there are also quantita-
tive discrepancies: it follows from Table 11 that the
coefficient t211 should exceed s310 by a factor of 5.8
in absolute value, but it actually exceeds the latter
only by a factor of 1.5. In addition, although s310
and v310 coincide in sign, they differ approximately
by a factor of 3. Thus, a search for more accurate

stellar kinematic models of the solar neighborhood is
needed.

CONCLUSIONS

We detected “out-of-model” components in the
proper motions of Hipparcos stars (in particular, S310)
previously (Vityazev and Shuksto 2004, 2005). An
important result of this study is the detection of out-
of-model components in the stellar radial velocities
as well. Indeed, we were able to show that the real
velocity field of the stars at heliocentric velocities of
200–600 pc contains the component

U(l, b) = v310V310 + s310S310 + t211T211 (14)

that does not enter into the standard linear model. As
was shown above, the appearance of such a compo-
nent could be expected only in more complex models.
It should be noted that when using the traditional
methods of analysis based on the least-squares so-
lution of Eqs. (3)–(5), we would obtain quite reliable
parameters of the standard model, but the entire com-
plexity of the true kinematics of the solar neighbor-
hood would remain unrevealed. The manifestation of
the systematic component (14) in the stellar proper
motions is shown in Fig. 3.

This shows the advantages of the VSF method in
analyzing the stellar velocity fields and interpreting
the results in terms of various models.
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