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ABSTRACT
We present a method of comparing the Galactic systems realized by two astrometric cata-
logues. The systematic differences between positions and proper motions are represented by
vector spherical harmonics. To extract the signal from the noise, we use a statistical criterion
adapted to using HEALPIX data pixelization to determine the significance of all the accessible
harmonics. We also use a new analytical method that includes the magnitude equation in the
vector spherical harmonics technique. The influence of the magnitude equation on the deter-
mination of the mutual orientation and rotation of the PPMXL and UCAC4 Galactic reference
frames has been found in the range of J magnitudes from 10.25 to 15.75 mag. The angles of
mutual orientation and the rates of mutual rotation of the Galactic frames under consideration
depend on magnitude and can reach the level of 10 mas in orientation and 0.7 mas yr−1 for
spin. We make a kinematic study of the low degree harmonics in the representation of the
systematic differences between the Galactic proper motions. We have found that, averaged
over the magnitude range, the biases of the Oort constants due to systematic differences of
proper motions between the two catalogues, which are as large as 〈�A〉 = 1.60 ± 0.41 and
〈�B〉 = −1.91 ± 0.32 km s−1 kpc−1, are greater than the standard errors of their evaluation
in the systems of these catalogues. The theoretical equations used in this paper are based on
real vector harmonics. We present a set of formulae to convert them into the complex function
formalism.
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1 IN T RO D U C T I O N

The pre-Gaia all-sky astrometric catalogues, PPMXL (Roeser,
Demleitner & Schilbach 2010) and the Fourth United States
Naval Observatory (USNO) CCD Astrograph Catalogue (UCAC4;
Zacharias et al. 2013), provide a basis for performing various astro-
nomical studies. The PPMXL catalogue contains information about
the International Celestial Reference System (ICRS) positions and
proper motions of 900 million stars down to magnitude V = 20
with complete sky coverage. The mean errors of the proper motions
lie within the range 4–10 mas yr−1, while the positional accuracy
at epoch 2000.0 is estimated to be 80–120 mas for 410 million
objects for which the positions in the Two-Micron All-Sky Survey
(2MASS) catalogue (Skrutskie et al. 2006) are known. For the re-
maining stars, the positional accuracy varies between 150 and 300
mas.

The UCAC4 catalogue contains 113 million stars from magnitude
8 to 16 in a non-standard photometric band between V and R. It also
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covers the entire sky. The positional accuracy at the mean epoch is
estimated to be within the range 15–100 mas, while the formal er-
rors of the proper motions are within the range 1–10 mas yr−1. The
systematic errors of the proper motions lie within the range 1–4 mas
yr−1. The catalogue was constructed in the ICRS and it is claimed
that it is complete down to R = 16. The UCAC4 is the last catalogue
in the UCAC project. No photographic observations were used in
this project, because all measurements were made between 1998
and 2004 using CCD detectors only. At present, these catalogues
are widely used in the visible as the optical ICRS reference frames
for hundreds of millions of stars. According to the inner logics of as-
trometry, it is necessary to have the opportunity to pass from the sys-
tem of one catalogue to the system of another catalogue. The authors
of the UCAC4 catalogue (Zacharias et al. 2013) compared the proper
motions of stars from the PPMXL and UCAC4 catalogues in a nar-
row right ascension (RA) zone from 6.0 to 6.1 h in the declination
range from −60 to −30 deg. The HEALPIX (Gorski et al. 2005) parti-
tion of the sphere was used to table the differences PPMXL–UCAC4
(Farnocchia et al. 2015). Such an approach suggests using numeri-
cal interpolation to calculate the differences for a specific point on
the sphere. In addition, the dependence of these differences on the
magnitude of stars was disregarded in the presented data, and no
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smoothing over the RA and Dec. was performed to reduce the ran-
dom errors.

A proper solution of the problem of comparing catalogues sug-
gests representing the systematic differences by the systems of or-
thogonal harmonics describing their dependence on the coordinates
and magnitudes of stars (Bien et al. 1978; Mignard et al. 1990;
Mignard 2000). With respect to the catalogues PPMXL and UCAC4,
the first step in this direction was made by Vityazev & Tsvetkov
(2015). In this paper, the comparison of the equatorial systems of
these catalogues was done by representing the systematic differ-
ences by vector spherical harmonics (VSH). In contrast to previous
similar works, we propose a new statistical criterion that allows us to
estimate the significance of all the harmonics that can be calculated
on the chosen HEALPIX pixelization scheme. Normalized Legendre
polynomials were used to approximate the decomposition coeffi-
cients derived from groups of stars with different magnitudes. The
constructed models of systematic differences were used to analyse
the systematic differences as functions of three variables (α, δ, m).

The present paper complements these results with a comparison
of the Galactic coordinate systems realized by the same catalogues.
First, we describe the procedure to expand the individual differences
on a set of real VSH and the Legendre polynomials. Then, we
analyse the systematic differences of positions and proper motions
in the Galactic systems in order to calculate the mutual orientation
and spin of the frames under consideration. The last section of the
paper is devoted to the kinematic interpretation of the systematic
differences between the proper motions in the Galactic system. The
theoretical equations used in this paper are based on real vector
harmonics. In Appendices A and B, we give a list of equations for
converting these results into expressions that would have occurred
if the complex spherical harmonics were used.

2 D E C O M P O S I T I O N O F T H E ST E L L A R
V E L O C I T Y F I E L D O N V S H

Consider two orthogonal unit vectors el and eb, respectively, in the
directions of change in Galactic longitude and latitude in a plane
tangential to the sphere. We introduce the following expression for
the field of systematic stellar position differences:

�F(l, b) = �l cos b el + �b eb. (1)

A similar expression is used to represent the systematic differences
between the stellar proper motions.

Because the systematic differences between the positions and
proper motions form a vector field, it is appropriate to use the
technique of decomposing this field into a system of VSH. These
functions were first used by Mignard et al. (1990) and Mignard
(2000) for comparison of FK5 with Hipparcos. Here, the VSH
were represented as the complex functions. A further development
of this technique aimed at its application in the Gaia project was
made by Mignard & Klioner (2012). In this paper, we use the
VSH apparatus based on a representation of the spherical harmonics
as the real functions. This formalism was used in our previous
papers for a kinematic analysis of stellar proper motions (Vityazev
& Tsvetkov 2013, 2014). Mathematical relations connecting both
real and complex function approaches are shown in Appendices A
and B.

In what follows, we use the decomposition of the field (1) in a
system of VSH

�F(l, b) =
∑
nkp

tnkp T nkp(l, b) +
∑
nkp

snkp Snkp(l, b), (2)

where the toroidal T nkp and spheroidal Snkp functions are defined
by equations (A10) and (A11). The decomposition coefficients tnkp

and snkp can be calculated from

tnkp =
∫
�

(�F · T nkp) dω (3)

and

snkp =
∫
�

(�F · Snkp) dω. (4)

The calculation of the toroidal and spheroidal coefficients is the
main goal in representing the systematic differences between the
positions and proper motions of stars from two catalogues by VSH.

3 PR AC T I C A L I M P L E M E N TAT I O N F O R T H E
HEALPIX PA RT I T I O N O F T H E SP H E R E

When hundreds of millions of stars are compared, it is appropriate to
use data pre-pixelization. We use the equal-area pixels constructed
on the sphere according to the HEALPIX scheme (Gorski et al. 2005).
In this scheme, the number Nside is the key parameter (resolution
parameter) defining the partition of the sphere into equal pixels. The
total number of pixels is N = 12N2

side. The entire sphere is divided
by two parallels with declinations ± arcsin(2/3) into three parts, the
equatorial and two polar ones. In each of the polar zones, Nside − 1
parallels is chosen; the number of parallels in the equatorial zone
is (2Nside + 1). The centres of 4Nside pixels lie on each parallel of
the equatorial region. The two parallels closest to the poles always
contain four pixels, while the number of pixels on each parallel
increases by one when moving from the poles to the equator in the
polar zones. The pixels are numbered q = 0, . . . , N − 1 along the
parallels from north to south

To calculate the coefficients of the VSH decomposition of the
systematic differences, we now have the following formulae instead
of equations (3) and (4):

tnkp = 4π

N

N−1∑
q=0

�F(lq , bq )T nkp(lq , bq ); (5)

snkp = 4π

N

N−1∑
q=0

�F(lq , bq )Snkp(lq , bq ). (6)

Here, �F(lq , bq ) is the mean value of the field in the qth pixel
referred to its centre.

3.1 Significant terms in the VSH decomposition of systematic
differences

To detect the significant terms of the decomposition, we propose
a method that allows the signal components of the decomposition
to be detected with a specified probability among all the admissi-
ble indices k and n for the pixelization scheme used. This done,
the numerical values of the significant decomposition coefficients
are immediately determined from a single application of the least-
squares method (LSM). This approach is analogous to the spectral
analysis of evenly spaced time series, where the significance of the
periodogram peaks is determined for all its peaks in the frequency
range admissible by the sampling rate. In our case, the squares of
the coefficients tnkp and snkp can be considered as the periodogram
values, and the determination of their significance is based on the
fact that the coefficients snkp and tnkp for normally distributed centred
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noise with variance σ 2
0 = 1 are normally distributed random vari-

ables with zero mean and unit variance. Consequently, the squares
of the amplitudes s2

nkp and t2
nkp are random variables distributed

according to the chi-square law with one degree of freedom. The
limiting value of index k must be taken as kmax = 4Nside − 1 to avoid
the aliasing effects. Therefore, the harmonics should be checked in
index k for k = 0, . . . , kmax . The limiting value of our series n = k,
. . . , nmax , for each admissible index k is determined from the con-
dition that an adopted accuracy of calculating the squares of the
norms of the basis functions breaks down. For further details, the
reader is referred to Vityazev & Tsvetkov (2015).

3.2 Magnitude equation

In astrometric catalogues, the dependence of systematic differences
on the magnitude of stars in a particular photometric band is tra-
ditionally called the magnitude equation. To take this into account,
we can represent the vector field in the form

�F(l, b, m) =
∑
nkp

tnkp(m)T nkp(l, b) +
∑
nkp

snkp(m)Snkp(l, b),

(7)

where the coefficients tnkp(m) and snkp(m) are functions of the mag-
nitude. These coefficients are approximated using appropriate poly-
nomials Qr(m) by expressions of the form

tnkp(m) =
∑

r

tnkpr Qr (m) (8)

and

snkp(m) =
∑

r

snkpr Qr (m). (9)

Substituting equation (8) into equation (7) gives the final form of
the model of systematic differences:

�F(l, b, m) =
∑
nkpr

tnkpr T nkp(l, b) Qr (m)

+
∑
nkpr

snkpr Snkp(l, b) Qr (m). (10)

Obviously, the following procedure can be proposed to consider
the magnitude equation when the systematic differences are ap-
proximated by orthogonal functions. In this method, the coefficients
tnkp(m) and snkp(m) are obtained from the stars belonging to small
magnitude bins, and then the derived decomposition coefficients
referred to the mean values of the magnitude bins are approximated
by expressions (8) and (9). This approach is possible if all-sky cat-
alogues are available, when samples containing a sufficiently large
number of stars with approximately the same magnitude can be
produced. This approach was used for the first time in Vityazev &
Tsvetkov (2015).

4 A P P L I C AT I O N TO T H E C ATA L O G U E S
P P M X L A N D U C AC 4

In our work, we obtained systematic differences between the
PPMXL and UCAC4 catalogues as functions of coordinates and
magnitude in three steps.

In the first step, we partitioned the sphere by the HEALPIX method
into 1200 pixels with an area of 34.4 deg2. Using the star iden-
tification procedure in the J band (2MASS photometric system),
we compiled a list of 41 316 676 stars belonging to the PPMXL,

Figure 1. Magnitude distribution of stars from the sample of 41 316 676
stars. The J magnitudes and the number of stars (in thousands) are along the
horizontal and vertical axes, respectively.

UCAC4 and XPM catalogues (Fedorov, Myznikov & Akhmetov
2009). The distribution of stars in magnitudes is shown in Fig. 1
taken from (Vityazev & Tsvetkov 2015). Because of the identifi-
cation procedure, all the unrealistic outliers, greater than 500 mas,
either in �αcos δ or �δ, were not allowed for straight averaging
in each pixel. After averaging the differences between the stellar
positions and proper motions over the pixels, we formed the dif-
ferences PPMXL–UCAC4 between the stellar positions and proper
motions in the Galactic coordinate system referred to the centres
of our pixels. These data were generated for 12 0.5-mag bins from
10.25 to 15.75 mag. On average, there were up to 1000 stars for
each pixel and each magnitude bin; therefore, the noise level in
the averaged differences decreased approximately by a factor of 30
compared to that in the initial differences. From this point of view,
the catalogues of mean differences can be considered as the tables
of m-dependent systematic differences at fixed points. The system-
atic differences for any point on the sphere and any magnitude can
be obtained by interpolation. Note that such a representation of sys-
tematic differences was used by Mignard (2000) and Farnocchia
et al. (2015).

In the second step, the tabular differences were approximated by
VSH in accordance with equation (7). The coefficients tnkp(m) and
snkp(m) in this equation were obtained for each mean magnitude of
the samples of stars used. The algorithm for the VSH decomposition
of the systematic differences consists of the following points.

Point 1. We determine the indices of the statistically significant
harmonics. This procedure consisted of checking conditions that
correspond to the detection of harmonics with a probability of 0.99
according to the chi-square test. For our pixelization scheme, the
limiting value of the index k is k = 39, while the highest values of
the indices n were determined from the condition that the error of
calculating the squares of the norms of the basis functions exceeds
1 percent.

Point 2. We determine the numerical values of the coefficients
tnkp(mi) and snkp(mi) and their rms errors t̄nkp(mi) and s̄nkp(mi) by
the LSM from the set of statistically significant harmonics selected
in Step 1.

In the third step, the coefficients tnkp(mi) and snkp(mi) are approx-
imated by normalized Legendre polynomials,

tnkp(m) =
∑

r

tnkpr Qr (m̄) (11)

and

snkp(m) =
∑

r

snkpr Qr (m̄), (12)
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where

Qr (m̄) =
√

2r + 1

2
Pr (m̄), (13)

and Pr (m̄) are Legendre polynomials. The following recurrence
relation can be used to calculate the latter:

Pr+1(m̄) = 2r + 1

r + 1
m̄Pr (m̄) − r

r + 1
Pr−1(m̄),

r = 1, 2, . . . , P0 = 1, P1 = m̄. (14)

If mmin ≤ m ≤ mmax , then the argument of the Legendre polynomials
belonging to the closed interval [ − 1; +1] is calculated from

m̄ = 2
m − mmin

mmax − mmin

− 1. (15)

In theory, the degree of fitted polynomial r should not be larger than
the number of equations of condition minus one. We have estab-
lished the statistically significant harmonics in index r by taking into
account the fact that the same toroidal or spheroidal coefficient with
a set of indices nkp could be significant according to the chi-square
test for one J sample, and insignificant for another. For this reason,
the magnitude equation was determined only for those coefficients
that turned out to be significant at least in three magnitude samples.
In this case, the values for such a coefficient were determined for
all 12 J samples. Otherwise, the harmonic was rejected. Further,
the coefficients tnkpr and snkpr were derived by the LSM solutions of
equations (31) and (12) written for all 12 magnitudes. The degree
of the approximating polynomial is taken to be three as all upper
ones turned out to be insignificant. In addition, in order that the
rms errors of the sought for coefficients reflect the accuracy of the
initial coefficients tnkp(m) and snkp(m) rather than the accuracy of
the formal approximation of the curves t = tnkp(m) and s = snkp(m),
the rms errors of the approximation coefficients tnkpr and snkpr were
calculated from

σ (tnkpr ) =
√√√√ 3∑

q=0

w2
rq

11∑
i=0

Q2
r (m̄i)t̄2

nkp(mi) (16)

and

σ (snkpr ) =
√√√√ 3∑

q=0

w2
rq

11∑
i=0

Q2
r (m̄i)s̄2

nkp(mi). (17)

Here, wrq denote the elements of the inverse matrices of the nor-
mal systems of equations corresponding to the LSM solution of
equations (31) and (12), while t̄j (mi) and s̄j (mi) denote the rms
errors of the coefficients tnkp(mi) and snkp(mi) found in the point 2
of the second step. The final toroidal and spheroidal decomposition
coefficients tnkpr and snkpr of the systematic differences between the
PPMXL and UCAC4 stellar positions and proper motions in the
Galactic coordinate systems are given in Tables 1–4.

5 MAG NITUDE EQUATION IN THE V ISIBLE
R A N G E

Here, some remarks should be made concerning the choice of the
photometric band for magnitude equation. Because PPMXL and
UCAC4 are optical catalogues, the B, V and R magnitudes are
appropriate, of which only B and R are common for both catalogues.
However, the B and R magnitudes are taken from different sources
so one and the same star in both catalogues is attributed to different B
magnitudes as well as to different R magnitudes. This creates at least
two problems. The first problem arises in the process of the cross-
identification of stars, and the second problem arises in deriving

Table 1. Toroidal decomposition coefficients tnkpr of the field of stellar
position differences PPMXL–UCAC4 �l cos b el + �b eb with the index r
due to the magnitude equation. The units of measurement are mas.

tnkpr tnkpr

t1, 0, 1, 0 −12.77 ± 0.33 t4, 1, 1, 0 4.01 ± 0.33
t1, 0, 1, 1 −4.26 ± 0.41 t4, 3, 1, 0 3.34 ± 0.33
t1, 1, 0, 0 −5.47 ± 0.35 t4, 4, 0, 0 2.72 ± 0.33
t1, 1, 0, 1 −7.22 ± 0.41 t5, 0, 1, 0 −1.78 ± 0.35
t1, 1, 0, 2 −2.07 ± 0.44 t5, 0, 1, 1 0.96 ± 0.41
t1, 1, 1, 0 8.47 ± 0.35 t5, 0, 1, 2 1.18 ± 0.44
t1, 1, 1, 1 5.48 ± 0.41 t5, 1, 0, 0 1.85 ± 0.34
t1, 1, 1, 2 2.08 ± 0.44 t5, 1, 0, 1 1.22 ± 0.42
t2, 0, 1, 0 −1.43 ± 0.33 t5, 1, 1, 0 −1.93 ± 0.34
t2, 0, 1, 1 1.23 ± 0.41 t5, 2, 0, 0 −1.46 ± 0.37
t2, 1, 0, 0 1.01 ± 0.35 t5, 4, 0, 0 −5.06 ± 0.33
t2, 1, 0, 1 −7.35 ± 0.49 t5, 4, 0, 1 −2.13 ± 0.41
t2, 1, 0, 2 −6.50 ± 0.44 t5, 5, 0, 0 2.51 ± 0.33
t2, 1, 0, 3 −3.37 ± 0.47 t6, 0, 1, 0 −1.88 ± 0.33
t2, 1, 1, 0 −2.55 ± 0.33 t6, 2, 0, 0 −1.95 ± 0.34
t2, 1, 1, 1 4.10 ± 0.41 t6, 4, 0, 0 −2.11 ± 0.33
t2, 2, 0, 1 5.61 ± 0.49 t6, 5, 0, 0 3.71 ± 0.33
t2, 2, 0, 2 4.20 ± 0.43 t6, 5, 0, 1 1.35 ± 0.41
t2, 2, 0, 3 2.23 ± 0.47 t6, 5, 1, 0 2.68 ± 0.35
t2, 2, 1, 0 −1.02 ± 0.35 t6, 5, 1, 1 1.57 ± 0.41
t2, 2, 1, 1 2.84 ± 0.49 t6, 5, 1, 2 1.04 ± 0.44
t2, 2, 1, 2 1.55 ± 0.44 t6, 6, 1, 0 −3.69 ± 0.33
t2, 2, 1, 3 1.84 ± 0.47 t7, 0, 1, 0 1.00 ± 0.33
t3, 2, 1, 0 −2.34 ± 0.33 t7, 0, 1, 1 −0.75 ± 0.41
t3, 2, 1, 1 −1.70 ± 0.41 t10, 9, 1, 0 2.40 ± 0.33
t3, 3, 0, 1 −0.89 ± 0.41 t45, 39, 0, 0 −1.86 ± 0.33
t4, 1, 0, 0 −3.46 ± 0.35 t53, 39, 1, 0 1.72 ± 0.33
t4, 1, 0, 1 2.54 ± 0.49 t53, 39, 1, 1 1.49 ± 0.41
t4, 1, 0, 2 1.65 ± 0.44 t55, 39, 0, 0 −2.49 ± 0.38
t4, 1, 0, 3 1.16 ± 0.47 t55, 39, 1, 0 −1.89 ± 0.39

the magnitude equation. Fortunately, many stars in PPMXL and
UCAC4 are supplemented with the near-infrared photometry in the
J, H and Ks bands borrowed from the 2MASS. This makes it possible
to use each of them, in particular the J band, for cross-identification
and for derivation of the magnitude equation. As mentioned in
the previous section, the J magnitude equation was constructed
with the coefficients given in Tables 1–4. To adjust this magnitude
equation to any other photometric band, it is necessary to know the
conversion formulae to pass from a chosen band to the J band. With
this aim, we found the mean values of B and R magnitudes and
their standard deviations for all the stars for which the B, R and J
colours are available. This was done in each 0.1-mag width J band
with mean magnitudes from J = 10 to J = 16. After smoothing
these values with the five-point moving average filter, the resulting
magnitudes with 0.5-mag intervals were fitted with linear functions,
which can be used to connect B and R with the J magnitude, and
vice versa. For the PPMXL catalogue, these relations turned out
to be:

B = (0.767 ± 0.008)J + (6.466 ± 0.111), 10.25 ≤ J ≤ 15.75;

(18)

J = (1.304 ± 0.014)B − (8.433 ± 0.171), 14.33 ≤ B ≤ 18.55;

(19)

R = (0.823 ± 0.009)J + (4.372 ± 0.116), 10.25 ≤ J ≤ 15.75;

(20)
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Table 2. Spheroidal decomposition coefficients snkpr of the field of stellar
position differences PPMXL–UCAC4 �l cos b el + �b eb with the index r
due to the magnitude equation. The units of measurement are mas.

snkpr snkpr

s1, 0, 1, 1 2.70 ± 0.49 s3, 2, 0, 0 −5.32 ± 0.33
s1, 0, 1, 2 1.68 ± 0.42 s3, 2, 0, 1 1.89 ± 0.49
s1, 0, 1, 3 3.06 ± 0.47 s3, 2, 0, 3 −1.12 ± 0.47
s1, 1, 0, 0 1.04 ± 0.35 s3, 2, 1, 0 −2.96 ± 0.33
s1, 1, 0, 1 3.51 ± 0.49 s3, 3, 1, 0 5.87 ± 0.33
s1, 1, 0, 2 1.68 ± 0.44 s3, 3, 1, 3 1.24 ± 0.41
s1, 1, 0, 3 2.39 ± 0.47 s4, 1, 1, 0 4.28 ± 0.35
s1, 1, 1, 0 −7.68 ± 0.35 s4, 1, 1, 2 1.40 ± 0.44
s1, 1, 1, 1 −5.17 ± 0.49 s4, 2, 0, 0 1.45 ± 0.33
s1, 1, 1, 2 −4.59 ± 0.44 s4, 2, 0, 3 1.00 ± 0.41
s1, 1, 1, 3 −2.67 ± 0.47 s4, 4, 1, 0 2.29 ± 0.33
s2, 1, 0, 0 1.80 ± 0.33 s5, 0, 1, 0 −1.57 ± 0.33
s2, 1, 0, 1 2.96 ± 0.41 s5, 0, 1, 1 1.52 ± 0.41
s2, 1, 1, 0 −4.86 ± 0.33 s5, 2, 1, 0 1.45 ± 0.36
s2, 1, 1, 1 −2.75 ± 0.41 s6, 1, 1, 0 −3.05 ± 0.34
s2, 2, 0, 0 −2.56 ± 0.35 s6, 5, 1, 0 −2.18 ± 0.33
s2, 2, 0, 1 −3.35 ± 0.41 s6, 5, 1, 1 −2.38 ± 0.41
s2, 2, 0, 2 1.32 ± 0.44 s6, 6, 1, 0 1.83 ± 0.33
s2, 2, 1, 0 −5.02 ± 0.35 s6, 6, 1, 1 2.35 ± 0.41
s2, 2, 1, 1 −1.55 ± 0.41 s7, 0, 1, 0 2.01 ± 0.33
s2, 2, 1, 2 2.05 ± 0.44 s9, 0, 1, 0 −2.45 ± 0.33
s3, 0, 1, 1 1.14 ± 0.41 s9, 7, 0, 0 1.42 ± 0.33
s3, 0, 1, 2 3.06 ± 0.42 s10, 8, 0, 0 −1.11 ± 0.33
s3, 1, 0, 0 −1.20 ± 0.35 s10, 8, 0, 1 −2.72 ± 0.41
s3, 1, 0, 1 −0.97 ± 0.41 s11, 0, 1, 0 1.93 ± 0.33
s3, 1, 0, 2 1.96 ± 0.44

Table 3. Toroidal decomposition coefficients tnkpr of the field of stellar
proper motions differences PPMXL–UCAC4 �μl cos b el + �μb eb with
the index r due to the magnitude equation. The units of measurement are
mas yr−1.

tnkpr tnkpr

t1, 0, 1, 0 −1.68 ± 0.05 t3, 1, 0, 2 0.13 ± 0.05
t1, 0, 1, 2 0.18 ± 0.05 t3, 2, 0, 1 0.57 ± 0.05
t1, 0, 1, 3 0.13 ± 0.04 t3, 2, 0, 2 0.08 ± 0.04
t1, 1, 0, 0 −1.07 ± 0.05 t3, 2, 1, 0 0.84 ± 0.05
t1, 1, 0, 1 −0.36 ± 0.05 t3, 2, 1, 1 0.30 ± 0.05
t1, 1, 0, 2 0.59 ± 0.05 t3, 3, 0, 0 0.51 ± 0.05
t1, 1, 1, 2 −0.41 ± 0.04 t3, 3, 0, 2 −0.11 ± 0.05
t2, 1, 0, 0 −1.61 ± 0.05 t3, 3, 1, 0 −1.07 ± 0.05
t2, 1, 0, 1 −0.63 ± 0.05 t3, 3, 1, 1 −0.43 ± 0.05
t2, 1, 0, 2 0.30 ± 0.05 t4, 1, 1, 0 0.35 ± 0.05
t2, 1, 0, 3 −0.20 ± 0.05 t4, 1, 1, 1 0.38 ± 0.05
t2, 1, 1, 0 0.43 ± 0.05 t4, 3, 1, 0 0.20 ± 0.05
t2, 1, 1, 1 −0.15 ± 0.05 t4, 3, 1, 1 0.47 ± 0.05
t2, 1, 1, 2 −0.34 ± 0.05 t4, 3, 1, 3 −0.10 ± 0.05
t2, 1, 1, 3 0.17 ± 0.05 t4, 4, 0, 0 0.66 ± 0.05
t2, 2, 0, 0 2.97 ± 0.05 t4, 4, 0, 1 0.11 ± 0.05
t2, 2, 0, 1 0.53 ± 0.05 t5, 0, 1, 0 −0.68 ± 0.05
t2, 2, 0, 2 −0.34 ± 0.05 t5, 1, 0, 0 0.71 ± 0.06
t2, 2, 0, 3 0.16 ± 0.05 t5, 1, 0, 1 0.24 ± 0.05
t2, 2, 1, 0 0.80 ± 0.05 t6, 5, 1, 0 0.61 ± 0.05
t2, 2, 1, 1 0.28 ± 0.05 t6, 5, 1, 1 0.10 ± 0.05
t2, 2, 1, 2 −0.22 ± 0.05 t7, 6, 1, 0 0.37 ± 0.05
t3, 0, 1, 0 0.84 ± 0.05 t9, 3, 1, 0 0.49 ± 0.05
t3, 0, 1, 1 0.43 ± 0.05 t13, 5, 0, 0 0.53 ± 0.05
t3, 0, 1, 2 0.10 ± 0.05 t13, 5, 0, 2 −0.09 ± 0.05
t3, 1, 0, 0 −0.49 ± 0.05 t49, 31, 0, 0 0.43 ± 0.05
t3, 1, 0, 1 −0.20 ± 0.05

Table 4. Spheroidal decomposition coefficients snkpr of the field of stellar
proper motions differences PPMXL–UCAC4 �μl cos b el + �μb eb with
the index r due to the magnitude equation. The units of measurement are
mas yr−1.

snkpr snkpr

s1, 0, 1, 0 −2.31 ± 0.05 s3, 2, 0, 3 −0.11 ± 0.05
s1, 0, 1, 1 −0.56 ± 0.05 s3, 2, 1, 0 −0.46 ± 0.05
s1, 0, 1, 2 −0.25 ± 0.05 s3, 2, 1, 1 0.40 ± 0.05
s1, 1, 0, 0 −4.46 ± 0.05 s3, 2, 1, 3 −0.14 ± 0.05
s1, 1, 0, 1 −0.91 ± 0.05 s3, 3, 1, 0 0.64 ± 0.05
s1, 1, 0, 2 −0.37 ± 0.05 s3, 3, 1, 3 0.11 ± 0.04
s1, 1, 0, 3 0.10 ± 0.05 s4, 0, 1, 0 −0.48 ± 0.05
s1, 1, 1, 0 −1.06 ± 0.05 s4, 0, 1, 1 −0.26 ± 0.05
s1, 1, 1, 1 0.45 ± 0.05 s4, 1, 1, 0 0.98 ± 0.05
s1, 1, 1, 2 0.31 ± 0.05 s4, 1, 1, 1 0.19 ± 0.05
s1, 1, 1, 3 −0.26 ± 0.05 s4, 1, 1, 2 −0.23 ± 0.05
s2, 0, 1, 0 0.55 ± 0.05 s5, 2, 1, 0 0.47 ± 0.05
s2, 0, 1, 1 0.12 ± 0.05 s5, 3, 0, 0 0.46 ± 0.05
s2, 0, 1, 2 −0.09 ± 0.05 s5, 3, 0, 1 0.14 ± 0.05
s2, 1, 0, 0 −1.60 ± 0.05 s6, 0, 1, 0 −0.59 ± 0.05
s2, 1, 0, 1 −0.32 ± 0.05 s6, 2, 0, 0 −0.42 ± 0.05
s2, 1, 0, 2 0.24 ± 0.05 s6, 2, 0, 1 0.12 ± 0.05
s2, 1, 0, 3 −0.14 ± 0.05 s6, 2, 1, 0 −0.74 ± 0.06
s2, 1, 1, 0 −0.92 ± 0.05 s6, 2, 1, 2 0.12 ± 0.06
s2, 1, 1, 2 0.13 ± 0.05 s6, 3, 0, 0 0.85 ± 0.05
s2, 2, 0, 0 1.07 ± 0.05 s6, 3, 0, 1 0.15 ± 0.05
s2, 2, 0, 1 0.25 ± 0.05 s6, 3, 0, 2 −0.10 ± 0.05
s2, 2, 1, 0 1.11 ± 0.05 s6, 4, 0, 0 −0.51 ± 0.05
s2, 2, 1, 1 0.59 ± 0.05 s6, 4, 0, 1 0.16 ± 0.05
s2, 2, 1, 2 −0.15 ± 0.05 s6, 5, 0, 0 0.34 ± 0.05
s3, 0, 1, 1 0.33 ± 0.05 s6, 5, 0, 1 −0.15 ± 0.05
s3, 0, 1, 2 0.24 ± 0.04 s7, 0, 1, 0 −0.31 ± 0.05
s3, 0, 1, 3 −0.14 ± 0.05 s7, 0, 1, 1 −0.23 ± 0.05
s3, 1, 0, 0 −0.43 ± 0.05 s7, 0, 1, 2 0.10 ± 0.05
s3, 1, 0, 2 0.13 ± 0.05 s7, 2, 1, 0 −0.61 ± 0.05
s3, 2, 0, 0 −0.52 ± 0.05 s7, 2, 1, 1 −0.14 ± 0.05
s3, 2, 0, 1 −0.23 ± 0.05 s8, 7, 0, 0 −0.54 ± 0.05
s3, 2, 0, 2 0.09 ± 0.05 s10, 10, 0, 0 0.59 ± 0.05

J = (1.215 ± 0.013)R − (5.310 ± 0.152), 12.81 ≤ R ≤ 17.33.

(21)

For the UCAC4 catalogue, they are:

B = (0.726 ± 0.015)J + (6.300 ± 0.190), 10.25 ≤ J ≤ 15.75;

(22)

J = (1.378 ± 0.028)B − (8.680 ± 0.316), 13.74 ≤ B ≤ 17.74;

(23)

R = (0.833 ± 0.011)J + (3.725 ± 0.144), 10.25 ≤ J ≤ 15.75;

(24)

J = (1.200 ± 0.016)R − (4.471 ± 0.183), 12.26 ≤ R ≤ 16.85.

(25)

Thus, to obtain the magnitude equation in PPMXL for stars with B
or R magnitude, we should calculate the corresponding J magnitudes
from equations (19) and (21) and substitute them into equation
(15). For the UCAC4 catalogue, the J magnitudes are derived from
equations (23) and (25).
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Comparison of PPMXL and UCAC4 2415

Figure 2. Vector fields �l cos b el + �b eb for J = 12 (upper panel) and J = 15 (lower panel). The longitudes (deg) and latitudes (deg) are along the horizontal
and vertical axes, respectively.

Figure 3. Vector fields �μl cos b el + �μb eb for J = 12 (upper panel) and J = 15 (lower panel). The longitudes (deg) and latitudes (deg) are along the
horizontal and vertical axes, respectively.

6 A NA LY S I S O F T H E G A L AC T I C
SYSTEMATIC D IFFERENCES

Using toroidal and spheroidal coefficients from Tables 1–4, we
can calculate the vector plots on the celestial sphere showing
the fields of systematic differences of positions and proper mo-
tions. The results for bright (J = 12) and faint (J = 15) stars
are shown in Figs 2 and 3. These plots correspond to all signif-
icant harmonics found. Now, we are going to use the first-order
harmonics to see how close the principal Galactic axes of each
catalogues are, and to see how different the kinematic parameters
derived from proper motions of the catalogues under consideration
can be.

Denote by εx, εy, εz the angles to rotate the system UCAC4 to en-
sure it coincidences with the system PPMXL. With these notations,
the systematic differences are modelled as

�l cos b = εx sin b cos l + εy sin b sin l − εz cos b, (26)

and

�b = −εx sin l + εy cos l. (27)

The systematic differences between the positions and proper mo-
tions of the same stars reveal the differences between the refer-
ence frames that are realized by the catalogues under consideration.
Froeschle et al. (1982) have shown that the rotation angles of the
coordinate systems and the rates of their change can be determined
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2416 V. V. Vityazev and A. S. Tsvetkov

Figure 4. The left panel shows rotation angles (mas) to bring the UCAC4 Galactic frame into coincidence with the PPMXL frame: εx (dashes), εy (dots) and
εz (solid line). The right panel shows the rates of the corresponding rotation angles (in mas yr−1): ωx (dashes), ωy (dots) and ωz (solid line). The J magnitudes
of the samples are along the horizontal axes.

by analysing the systematic differences between the positions and
proper motions. The same effects also manifest themselves in the
coefficients of the decomposition of the systematic stellar position
and proper motion differences into orthogonal functions. Within the
model of solid-body rotation, the relationship between the rotation
angles of one coordinate system relative to another and the coeffi-
cients of the decomposition of the systematic differences between
the RA and Dec. of stars into scalar harmonics was established
by Vityazev (1989, 1993). When using VSH, such a relationship
was found by Mignard et al. (1990), who showed that the first-
order toroidal coefficients in the decomposition of the systematic
position differences define the mutual orientation of the reference
frames associated with the catalogues under study, while the same
coefficients in the decomposition of the systematic stellar proper
motion differences allow the rate of mutual rotation of these frames
to be calculated. In our case, the working formulae establishing the
relationships between the rotation components and the first-order
toroidal coefficients can be obtained for each magnitude by simple
expansions of equations (26) and (27) into the VSH:

εx(m) = −t1,1,1(m)/2.89; (28)

εy(m) = −t1,1,0(m)/2.89; (29)

εz(m) = −t1,0,1(m)/2.89. (30)

Here, with tnkpr taken from Table 1, we have

tnkp(m) =
∑

r

tnkpr Qr (m̄). (31)

Obviously, the angles εx, εy, εz allow the coordinates of the pole
of the mutual rotation axis on the celestial sphere to be determined
as

Arot = arctg

(
εy

εx

)
, Drot = arctg

⎛
⎝ εz√

ε2
x + ε2

y

⎞
⎠ . (32)

Beside this, an angle of mutual rotation around the rotation pole
is derived from

��rot(m) =
√

εx
2(m) + εy

2(m) + εz
2(m). (33)

In the same way, with notations ωx, ωy, ωz for the rates of the
PPMXL rotation in the UCAC4, the systematic differences in the
proper motions are

�μl cos b = ωx sin b cos l + ωy sin b sin l − ωz cos b (34)

and

�μb = −ωx sin l + ωy cos l. (35)

Again, the working formulae establishing the relationships be-
tween the rates of rotation and the corresponding first-order toroidal
coefficients can be obtained for each magnitude by simple expan-
sions of equations (34) and (35) into the VSH:

ωx(m) = −t1,1,1(m)/2.89; (36)

ωy(m) = −t1,1,0(m)/2.89; (37)

ωz(m) = −t1,0,1(m)/2.89. (38)

Here, the values tnkp(m) are calculated from equation (31) with ap-
propriate coefficients tnkpr, taken this time from Table 3. In turn,
the rates ωx, ωy, ωz define the coordinates of the pole of the
spin

Aspin = arctg

(
ωy

ωx

)
, Dspin = arctg

⎛
⎝ ωz√

ω2
x + ω2

y

⎞
⎠ , (39)

and the full angular velocity around this pole

��spin(m) =
√

ωx
2(m) + ωy

2(m) + ωz
2(m). (40)

Fig. 4 shows the dependence of rotation parameters to bring the
UCAC4 Galactic frame into coincidence with the PPMXL frame
on magnitude. Fig. 5 shows the m-dependent rotation angles of the
UCAC4 on PPMXL Galactic reference frames around the poles
with longitudes and latitudes for various magnitudes. In the same
figure, we can see a map of the vector field, which corresponds
to J = 13 systematic differences of Galactic coordinates. In the
same way, Fig. 6 shows the m-dependent angular velocities of the
UCAC4 on PPMXL Galactic reference frames around the poles with
longitudes and latitudes for various magnitudes. We can see that the
angular velocity reaches the biggest value at J = 13–14. In the same
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Comparison of PPMXL and UCAC4 2417

Figure 5. (a) Rotation angles (mas) of UCAC4 on the PPMXL Galactic reference frames around the pole whose longitudes and latitudes in degrees are shown
in panels (b) and (d). The J magnitudes of the samples are along the horizontal axes. (c) The vector field of systematic differences �lcos b and �b corresponds
to the position of the pole at J = 13 mag. The longitudes (deg) and latitudes (deg) are along the horizontal and vertical axes, respectively.

Figure 6. (a) Velocity of rotation (mas yr−1) of UCAC4 on the PPMXL Galactic reference frames around the pole whose longitudes and latitudes are shown in
panels (b) and (d). The J magnitudes of the samples are along the horizontal axes. (c) The vector field of systematic differences �μlcos b and �μb corresponds
to the position of the pole at J = 13 mag. The longitudes (deg) and latitudes (deg) are along the horizontal and vertical axes, respectively.

figure, we can see a map of the vector field, which corresponds to
J = 13 systematic differences of Galactic proper motions as well
as the coordinates of the pole. It is worth mentioning that the axis
of mutual rotation practically does not change its orientation in the
range 12 < J < 14 mag.

It should be said that the systematic stellar position and proper
motion differences PPMXL–UCAC4 show a pronounced depen-
dence on the magnitude of stars. This manifests itself in the fact
that almost all coefficients tnkp and snkp are functions of the magni-
tude (Tables 3 and 4). From Figs 5 and 6 we can see that the mutual

rotation angles of the PPMXL and UCAC4 reference frames change
for different magnitude groups and can reach 10 mas, while the rate
of mutual rotation can reach 0.7 mas yr−1. The disagreement of
both Galactic frames is explained by the differences of the equa-
torial frames of PPMXL and UCAC4 as no attempts were made
to construct each Galactic frame in the systems of each catalogue
under consideration.

The standard Galactic coordinate system currently in use was
introduced by the International Astronomical Union (IAU) in
1958 (Blaauw et al. 1960). The attempts to construct a Galactic
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2418 V. V. Vityazev and A. S. Tsvetkov

coordinate system based on modern near-infrared and radio cat-
alogues (Liu, Zhu & Hu 2011) give the corrections to the posi-
tion of the Galactic plane at the level of several arcmin. From
this point of view, the milliarcsec discrepancies between the PP-
MXL and UCAC4 Galactic coordinate systems found in this paper
are quite negligible with respect to the accuracy of the standard
system itself. Obviously, these small PPMXL and UCAC4 differ-
ences will be preserved in any new standard system of Galactic
coordinates.

6.1 Kinematic analysis of the systematic differences between
proper motions

In this section, we study the influence of systematic differences of
proper motions on the determination of the kinematic parameters
of the stellar velocity field.

The equations of the Ogorodnikov–Milne model (Ogorodnikov
1965) are commonly used to investigate the kinematics of stars.
In this model, the stellar velocity field is represented by the linear
expression

V = V 0 + � × r + M+ r, (41)

where V is the stellar velocity, V 0 is the effect of the translational
Solar motion, � is the angular velocity of rigid-body rotation of the
stellar system and M+ is the symmetric velocity field deformation
tensor.

The Ogorodnikov–Milne model contains 12 parameters, as fol-
lows.

U, V and W are the components of the velocity vector of transla-
tional Solar motion V0 relative to the stars.

�x, �y and �z are the components of the vector of rigid-body
rotation �.

M+
11, M+

22 and M+
33 are the parameters of the tensor M+ that

describe the velocity field contraction-expansion along the principal
Galactic axes.

M+
12, M+

13 and M+
23 are the parameters of the tensor M+ that

describe the velocity field deformation in the principal plane and in
the two planes perpendicular to it.

Projecting equation (41) onto the unit vectors of the Galactic
coordinate system (where r denotes the distance to the star and
K = 4.738 is used to convert dimensions mas yr−1 into km s−1

kpc−1), we obtain

Kμl cos b = U/r sin l − V /r cos l − �x sin b cos l

− �y sin b sin l + �z cos b − M+
13 sin b sin l

+ M+
23 sin b cos l + M+

12 cos b cos 2l

− 1

2
M11 cos b sin 2l + 1

2
M+

22 cos b sin 2l (42)

and

Kμb = U/r cos l sin b + V /r sin l sin b − W/r cos b

+ �x sin l − �y cos l − 1

2
M+

12 sin 2b sin 2l

+ M+
13 cos 2b cos l + M+

23 cos 2b sin l

− 1

2
M+

11 sin 2b cos2 l − 1

2
M+

22 sin 2b sin2 l

+ 1

2
M+

33 sin 2b. (43)

Table 5. The VSH expansion coefficients of the proper motion differences
K�μα cos δ el + K�μδ eb and their connections with the differences of
the Ogorodnikov–Milne kinematic parameters.

Coefficient Kinematical meaning

t101 2.89 ��z

t110 2.89 ��y

t111 2.89 ��x

s101 −2.89 �W/〈r〉
s110 −2.89 �V/〈r〉
s111 −2.89 �U/〈r〉
s201 −0.65 (�M+

11 + �M+
22 − 2�M+

33)
s210 2.24 �M+

23
s211 2.24 �M+

13
s220 2.24 �M+

12
s221 1.12 �M∗

11

It is worth noting that the right-hand sides of these equations can
be expressed in terms of VSH as

Kμl cos b el + Kμb eb =

− U/r
S111(l, b)

ρ11
− V /r

S110(l, b)

ρ11
− W/r

S101(l, b)

ρ10

+ �x

T 111(l, b)

ρ11
+ �y

T 110(l, b)

ρ11
+ �z

T 101(l, b)

ρ10

+ M+
13

3

S211(l, b)

ρ21
+ M+

23

3

S210(l, b)

ρ21
+ M+

12

6

S220(l, b)

ρ22

+ M∗
11

12

S221(l, b)

ρ22
+ X

3

S201(l, b)

ρ20
, (44)

where

ρnk =
√

2n + 1

4πn(n + 1)

⎧⎪⎨
⎪⎩
√

2(n − k)!

(n + k)!
, k > 0

1, k = 0
(45)

and

M∗
11 = M+

11 − M+
22, (46)

X = M+
33 − 1

2

(
M+

11 + M+
22

)
. (47)

Now we see that the VSH coefficients of the expansion of
equation (44) are simply proportional to the parameters of the
Ogorodnikov–Milne model. In our previous paper (Vityazev &
Tsvetkov 2009), we found the relations connecting the expansion
VSH coefficients with the parameters of the Ogorodnikov–Milne
model. It is obvious that because the Ogorodnikov–Milne equations
are linear, the systematic differences of the proper motions can be
represented by the same equations with parameters �U/r, �V/r,
. . . , �M+

33 instead of U/r, V/r, . . . , M+
33. In this way, the connec-

tions of the systematic differences of expansion coefficients with
the differences of the kinematic parameters are shown in Table 5. It
should be kept in mind that the components of the solar motion enter
into equations (42) and (43) with the factor 1/r. For this reason, we
can determine the parameters of the solar motion only to within the
factor 1/〈r〉, where 〈r〉 is the average distance to the stars.

From Table 5 we can conclude the following.

(i) The first-order spheroidal coefficients s101, s110 and s111 are
generated by the differences of the solar motion components re-
ferring to the average distance to the stars �W/〈r〉, �U/〈r〉 and
�V/〈r〉.
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Comparison of PPMXL and UCAC4 2419

Figure 7. The Oort constant differences �A (dotted line) and �B (dashed
line) and differences of the Galactic angular velocity rotation (solid line)
against J magnitude on the horizontal axis. Units are km s−1 kpc−1.

(ii) The first-order toroidal coefficients t101, t110 and t111 are pro-
duced by the differences of the rigid body rotation vector compo-
nents ��z, ��y and ��x.

(iii) The second-order spheroidal coefficient s201 is a linear com-
bination of the terms describing the differences of velocity field
contraction–expansion along the principal Galactic axes.

(iv) The first-order spheroidal coefficients s210, s211 and s220 are
the contributions to the systematic differences between the proper
motions of the differences �M+

23, �M+
13 and �M+

12, which describe
the differential velocity field deformations in the principal plane
and in the two planes perpendicular to it.

(v) The second-order spheroidal coefficient s221 is generated by
the difference of the parameters �M+

11 − �M+
22, each of which

describes the deformations of the velocity field along the x- and
y-axes.

It is clear that the differences of the Oort constants A and B de-
rived from our catalogues can be calculated via the toroidal and
spheroidal coefficients in the representation of the proper motion
systematic differences of these catalogues according to simple re-
lations (Vityazev & Tsvetkov 2009, 2014):

�A = K
2.24

s220 and �B = K
2.89

t101. (48)

Now, for the difference of the Galactic angular velocity rotation,
derived from the catalogues, we have

��G = �A − �B. (49)

The dependence of these values on magnitude is shown in Fig. 7. It
is easy to see that the effect of the magnitude equation is small, that
is why the variation of the Oort constants and the angular velocity
of the Galaxy’s rotation in the vicinity of the Sun can be evaluated
by the mean values 〈�A〉 = 1.60 ± 0.41, 〈�B〉 = −1.91 ± 0.32
and 〈��G〉 = 3.51 ± 0.52 km s−1 kpc−1. These offsets significantly
exceed the accuracy of the determination of the Oort constants A
and B themselves, which are at the level of 0.1–0.2 km s−1 kpc−1

(Vityazev & Tsvetkov 2014). Thus, the systematic differences of
the proper motions in the PPMXL and UCAC4 catalogues can be
a source of various values of the Oort constants derived from these
catalogues.

7 C O N C L U S I O N S

In this paper, we obtain the systematic differences between the
Galactic positions and proper motions of stars of the extensive
modern astrometric catalogues, PPMXL and UCAC4. The system-
atic differences are expressed in terms of the VSH. To extract the
signal from the noise, the chi-square criterion was proposed with
orientation on the HEALPIX method of the data pre-pixalization. The
criterion is able to test the significance of all harmonics, which
can be calculated with pixelization chosen. We used an analytical
method to take into consideration the magnitude equation proposed
in our previous paper (Vityazev & Tsvetkov 2015). This gave a new
model of systematic differences with basis functions constructed by
the combination of VSH and Legendre polynomials. To our knowl-
edge, this is the first ever attempt to study the systematic differences
of positions and proper motions of two catalogues in the Galactic
coordinate system, aiming at the study of stellar kinematics. The
physical meaning of the VSH decomposition coefficients of the sys-
tematic differences is clarified. This is a general result valid for any
pair of catalogues.

The calculated coefficients of the representation of the differences
between positions and proper motions in terms of the introduced
functions in the Galactic coordinate system can be used to reduce
the positions and proper motions of one catalogue to the system of
another catalogue. The systematic differences were used for analysis
of the PPMXL and UCAC4 Galactic reference frames. The mutual
orientation of the frames under consideration and the rate of their
mutual rotation depend on magnitude and can reach the level of 10
mas for orientation and 0.7 mas yr−1 for their mutual spin. Beside
this, the kinematic analysis of the low-order harmonics (up to n = 2)
of the representations of the proper motions on VSH was made. This
shows the influence of the systematic differences on determination
of the parameters of the linear Ogorodnikov–Milne model.

The theory and numerical results were obtained using real vector
harmonics. A set of equations is derived that allows us to convert
these results into an expression that would have occurred if the
complex spherical harmonics were used.
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A P P E N D I X A : R E A L A N D C O M P L E X
S P H E R I C A L H A R M O N I C S

A1 Scalar spherical harmonics

The VSH formalism in this paper is based on the real spherical
harmonics Knkp defined as

Knkp(α, δ) = Rnk

⎧⎪⎨
⎪⎩

Pn,0(δ), k = 0, p = 1

Pnk(δ) sin kα, k �= 0, p = 0

Pnk(δ) cos kα, k �= 0, p = 1

(A1)

and

Rnk =
√

2n + 1

4π

⎧⎨
⎩
√

2(n − k)!

(n + k)!
, k > 0

1, k = 0
. (A2)

Here, α and δ are the RA (longitude) and Dec. (latitude) of a point
on the sphere, respectively (0 ≤ α ≤ 2π; −π/2 ≤ δ ≤ π/2), and
Pnk(δ) are Legendre polynomials (at k = 0) and associated Legendre
functions (at k > 0), which can be calculated using the following
recurrence relations:

Pnk(δ) = sin δ
2n − 1

n − k
Pn−1,k(δ) − n + k − 1

n − k
Pn−2,k(δ),

k = 0, 1, . . . ; n = k + 2, k + 3, . . .

Pkk(δ) = (2k)!

2kk!
cosk δ,

Pk+1,k(δ) = (2k + 2)!

2k+1(k + 1)!
cosk δ sin δ. (A3)

Very often, one index j instead of three indices nkp is used for the
convenience of the numbering of the spherical harmonics, with

j = n2 + 2k + p − 1. (A4)

The introduced functions satisfy the relation

∫
�

(Ki · Kj ) dω =
{

0, i �= j

1, i = j
. (A5)

In other words, the set of functions Knkp forms an orthonormal sys-
tem of functions on the sphere. Explicit formulae for the spherical
harmonics Knkp(α, δ) up to n = 3 are shown in Table A1. The real
spherical harmonics were introduced into the problem of systematic
differences by Brosche (1966).

Meanwhile, in many applications, the complex form of the spher-
ical harmonics is used (Mignard & Klioner 2012):

Ynk(α, δ) = R̃nk

⎧⎪⎪⎨
⎪⎪⎩

Pn,0(δ), k = 0

(−1)k Pnk(δ) exp (ikα), k > 0

Pn|k|(δ) exp (−i|k|α), k < 0

; (A6)

R̃nk =
√

2n + 1

4π

⎧⎪⎨
⎪⎩
√

(n − |k|)!
(n + |k|)! , k �= 0

1, k = 0
. (A7)

Explicit formulae for these harmonics (n ≤ 3) are shown in Table A2.

Table A1. Explicit formulae for the real spherical harmonics Knkp(α, δ) up to n = 3. The harmonics are numbered with j = n2 + 2k + p − 1.

n = 0 n = 1 n = 2 n = 3

k = 3

√
35

32π
cos3 δ cos 3α

p = 1 j = 15

k = 3

√
35

32π
cos3 δ sin 3α

p = 0 j = 14

k = 2

√
15

16π
cos2 δ cos 2α

√
105

16π
sin δ cos2 δ cos 2α

p = 1 j = 8 j = 13

k = 2

√
15

16π
cos2 δ sin 2α

√
105

16π
sin δ cos2 δ sin 2α

p = 0 j = 7 j = 12

k = 1

√
3

4π
cos δ cos α

√
15

16π
sin 2δ cos α

√
21

32π
cos δ(5 sin2 δ − 1) cos α

p = 1 j = 3 j = 6 j = 11

k = 1

√
3

4π
cos δ sin α

√
15

16π
sin 2δ sin α

√
21

32π
cos δ(5 sin2 δ − 1) sin α

p = 0 j = 2 j = 5 j = 10

k = 0

√
1

4π

√
3

4π
sin δ

√
5

16π
(3 sin2 δ − 1)

√
7

16π
(5 sin3 δ − 3 sin δ)

p = 1 j = 0 j = 1 j = 4 j = 9
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Table A2. Explicit formulae for the complex spherical harmonics Ynk(α, δ) up to n = 3.

n = 0 n = 1 n = 2 n = 3

k = 3 −
√

35

64π
cos3 δ ei3α

k = 2

√
15

32π
cos2 δ ei2α

√
105

32π
sin δ cos2 δ ei2α

k = 1 −
√

3

8π
cos δ eiα −

√
15

32π
sin 2δ eiα −

√
21

64π
cos δ(5 sin2 δ − 1) eiα

k = 0

√
1

4π

√
3

4π
sin δ

√
5

16π
(3 sin2 δ − 1)

√
7

16π
(5 sin3 δ − 3 sin δ)

k = −1

√
3

8π
cos δ e−iα

√
15

32π
sin 2δ e−iα

√
21

64π
cos δ(5 sin2 δ − 1) e−iα

k = −2

√
15

32π
cos2 δ e−i2α

√
105

32π
sin δ cos2 δ e−i2α

k = −3

√
35

64π
cos3 δ e−i3α

Comparison of equation (A6) with equation (A1) yields ‘com-
plex from real’ transforms to express complex spherical harmonics
Ynk(α, δ) via real harmonics Knkp(α, δ):

Ynk =

⎧⎪⎪⎨
⎪⎪⎩

Kn01, k = 0

(−1)k√
2

(Knk1 + iKnk0), k > 0

1√
2
(Kn|k|1 − iKn|k|0), k < 0

. (A8)

The inverse relations ‘real from complex’, which allow us to
obtain real functions via complex ones, are

Knkp =

⎧⎪⎪⎨
⎪⎪⎩

Yn,k, k = 0, p = 1

(−1)k
√

2 ReYn,k k > 0, p = 1

(−1)k
√

2 ImYn,k k > 0, p = 0

. (A9)

A2 Vector spherical harmonics

Consider a system of mutually orthogonal unit vectors eα , eδ , re-
spectively, in the directions of change in RA (longitude) and Dec.
(latitude) in a plane tangential to the sphere. The real VSH are in-
troduced with the toroidal, T nkp , and spheroidal, Snkp functions via
the relations

T j = 1√
n(n + 1)

[
∂Kj (α, δ)

∂δ
eα − 1

cos δ

∂Kj (α, δ)

∂α
eδ

]
(A10)

and

Sj = 1√
n(n + 1)

[
1

cos δ

∂Kj (α, δ)

∂α
eα + ∂Kj (α, δ)

∂δ
eδ

]
. (A11)

We denote the components of the unit vector eα as T α
nkp and Sα

nkp ,
and the components of the unit vector eδ as T δ

nkp and Sb
nkp:

T nkp = T α
nkpeα + T δ

nkpeδ; (A12)

Snkp = Sα
nkpeα + Sδ

nkpeδ. (A13)

Given that Pn, k + 1(b) = 0 at n < k + 1, these components are defined
as

T α
j = Sδ

j = ρnk

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Pn,1(δ), k = 0, p = 1

(−k tan δPnk(δ) + Pn,k+1(δ))

× sin kα, k �= 0, p = 0

(−k tan δPnk(δ) + Pn,k+1(δ))

× cos kα, k �= 0, p = 1

(A14)

and

T δ
j = −Sα

j = ρnk

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, k �= 0, p = 1

− k

cos δ
Pnk(δ) cos kα, k �= 0, p = 0

+ k

cos δ
Pnk(δ) sin kα, k �= 0, p = 1

, (A15)

where

ρnk = Rnk√
n(n + 1)

. (A16)

The introduced functions satisfy the relations:

∫
�

(T i · T j ) dω =
∫
�

(Si · Sj ) dω =
{

0, i �= j

1, i = j
; (A17)

∫
�

(Si · T j ) dω = 0, ∀ i, j . (A18)

In other words, the set of functions T nkp and Snkp forms an orthonor-
mal system of functions on the sphere. The explicit expressions for
real VSH Tnkp(α, δ) and Snkp(α, δ) up to n = 3 are shown in Tables A3
and A4.

With the complex form of the VSH we introduce magnetic Mnk

and electric Enk VSH:

Mnk(α, δ) = rn

[
∂Ynk(α, δ)

∂δ
eα − 1

cos δ

∂Ynk(α, δ)

∂α
eδ

]
, (A19)

Enk(α, δ) = rn

[
1

cos δ

∂Ynk(α, δ)

∂α
eα + ∂Ynk(α, δ)

∂δ
eδ

]
, (A20)
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Table A3. Real VSH Tnkp(α, δ) up to n = 3.

Tnkp Coefficient T α
nkp T δ

nkp

T 1,0,1

√
3

8π
cos δ 0

T 2,0,1

√
15

32π
sin 2δ 0

T 3,0,1

√
21

64π
cos δ(5sin 2δ − 1) 0

T 1,1,0 −
√

3

8π
sin δsin α cos α

T 1,1,1 −
√

3

8π
sin δcos α −sin α

T 2,1,0

√
5

8π
cos 2δsin α −sin δcos α

T 2,1,1

√
5

8π
cos 2δcos α sin δsin α

T 2,2,0 −
√

5

32π
sin 2δsin 2α 2cos δcos 2α

T 2,2,1 −
√

5

32π
sin 2δcos 2α −2cos δsin 2α

T 3,1,0 −
√

7

128π
(15sin 2δ − 11)sin δsin α (5sin 2δ − 1)cos α

T 3,1,1 −
√

7

128π
(15sin 2δ − 11)sin δcos α −(5sin 2δ − 1)sin α

T 3,2,0

√
35

64π
(1 − 3sin 2δ)cos δsin 2α −sin 2δcos 2α

T 3,2,1

√
35

64π
(1 − 3sin 2δ)cos δcos 2α sin 2δsin 2α

T 3,3,0 −
√

105

128π
sin δcos 2δsin 3α cos 2δcos 3α

T 3,3,1 −
√

105

128π
sin δcos 2δcos 3α −cos 2δsin 3α

where Ynk(α, δ) is given by equation (A6) and

rn = 1√
n(n + 1)

. (A21)

It is obvious that the magnetic and electric functions are the ana-
logues of the toroidal and spheroidal functions introduced earlier.
Explicit formulae for these complex spherical harmonics up to n = 3
and k ≥ 0 are shown in Tables A5 and A6. For negative values of
index k, the following relations are valid:

Mn,−k(α, δ) = (−1)k M∗
n,k(α, δ), (A22)

En,−k(α, δ) = (−1)k E∗
n,k(α, δ), (A23)

where the superscript ‘∗’ denotes complex conjugation.
By comparing equations (A10) and (A11) with equations (A19)

and (A20), we obtain the relations of ‘magnetic and electric via
toroidal and spheroidal’ functions

Mnk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T α
n01, k = 0

(−1)k√
2

(
T α

nk1 + iT α
nk0

)
eα

+ (−1)k√
2

(
T δ

nk1 + iT δ
nk0

)
eδ, k > 0

1√
2

(
T α

n|k|1 − iT α
n|k|0
)

eα

+ 1√
2

(
T δ

n|k|1 − iT δ
n|k|0
)

eδ, k < 0

(A24)

and

Enk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα
n01, k = 0

(−1)k√
2

(
Sα

nk1 + iSα
nk0

)
eα

+ (−1)k√
2

(
Sδ

nk1 + iSδ
nk0

)
eδ, k > 0

1√
2

(
Sα

n|k|1 − iSα
n|k|0
)

eα

+ 1√
2

(
Sδ

n|k|1 − iSδ
n|k|0
)

eδ, k < 0

. (A25)

In what follows, we use the representations

Mnk = Mα
nkeα + Mδ

nkeδ (A26)

and

Snk = Sα
nkeα + Sδ

nkeδ. (A27)

With these notations, the inverse relations of ‘toroidal and
spheroidal from magnetic and electric’ harmonics are

T α
nkp =

⎧⎪⎪⎨
⎪⎪⎩

Mα
n,k, k = 0, p = 1

(−1)k
√

2 ReMα
n,k k > 0, p = 1

(−1)k
√

2 ImMα
n,k k > 0, p = 0

; (A28)

T δ
nkp =

⎧⎪⎪⎨
⎪⎪⎩

Mδ
n,k, k = 0, p = 1

(−1)k
√

2 ReMδ
n,k k > 0, p = 1

(−1)k
√

2 ImMδ
n,k k > 0, p = 0

; (A29)
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Table A4. Real VSH Snkp(α, δ) up to n = 3.

Tnkp Coeff. Sα
nkp Sδ

nkp

S1,0,1

√
3

8π
0 cos δ

S2,0,1

√
15

32π
0 sin 2δ

S3,0,1

√
21

64π
0 cos δ(5sin 2δ − 1)

S1,1,0 −
√

3

8π
−cos α sin δsin α

S1,1,1 −
√

3

8π
sin α sin δcos α

S2,1,0

√
5

8π
sin δcos α cos 2δsin α

S2,1,1

√
5

8π
−sin δsin α cos 2δcos α

S2,2,0 −
√

5

32π
−2cos δcos 2α sin 2δsin 2α

S2,2,1 −
√

5

32π
2cos δsin 2α sin 2δcos 2α

S3,1,0 −
√

7

128π
−(5sin 2δ − 1)cos α (15sin 2δ − 11)sin δsin α

S3,1,1 −
√

7

128π
(5sin 2δ − 1)sin α (15sin 2δ − 11)sin δcos α

S3,2,0

√
35

64π
sin 2δcos 2α (1 − 3sin 2δ)cos δsin 2α

S3,2,1

√
35

64π
−sin 2δsin 2α (1 − 3sin 2δ)cos δcos 2α

S3,3,0 −
√

105

128π
−cos 2δcos 3α sin δcos 2δsin 3α

S3,3,1 −
√

105

128π
cos 2δsin 3α sin δcos 2δcos 3α

Table A5. Explicit formulae for magnetic functions Mnk(α, δ) up to n = 3. For negative values of the second index, we use equation
(A22).

Mnk Coefficient Mα
nk Mδ

nk

M1,0

√
3

8π
cos δ 0

M2,0

√
15

32π
sin 2δ 0

M3,0

√
21

64π
cos δ(5sin 2δ − 1) 0

M1,1

√
3

16π
sin δ(cos α + isin α) −sin α + icos α

M2,1

√
5

16π
−cos 2δ(cos α + isin α) −sin δ(sin α − icos α)

M2,2

√
5

64π
−sin 2δ(cos 2α + isin 2α) 2cos δ(sin 2α − icos 2α)

M3,1

√
7

256π
sin δ(15sin 2δ − 11)(cos α + isin α) −(5sin 2δ − 1)(sin α − icos α)

M3,2

√
35

128π
cos δ(1 − 3sin 2δ)(cos 2α + isin 2α) sin 2δ(sin 2α − icos 2α)

M3,3

√
105

256π
sin δcos 2δ(cos 3α + isin 3α) −cos 2δ(sin 3α − icos 3α)

Sα
nkp =

⎧⎪⎪⎨
⎪⎪⎩

Eα
n,k, k = 0, p = 1

(−1)k
√

2 ReEα
n,k k > 0, p = 1

(−1)k
√

2 ImEα
n,k k > 0, p = 0

; (A30) Sδ
nkp =

⎧⎪⎪⎨
⎪⎪⎩

Eδ
n,k, k = 0, p = 1

(−1)k
√

2 ReEδ
n,k k > 0, p = 1

(−1)k
√

2 ImEδ
n,k k > 0, p = 0

. (A31)
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Table A6. Explicit formulae for electric functions Enk(α, δ) up to n = 3. For negative values of the second index, we use equation
(A23).

Enk Coefficient Eα
nk Eδ

nk

E1,0

√
3

8π
0 cos δ

E2,0

√
15

32π
0 sin 2δ

E3,0

√
21

64π
0 cos δ(5sin 2δ − 1)

E1,1

√
3

16π
sin α − icos α sin δ(cos α + isin α)

E2,1

√
5

16π
sin δ(sin α − icos α) −cos 2δ(cos α + isin α)

E2,2

√
5

64π
−2cos δ(sin 2α − icos 2α) −sin 2δ(cos 2α + isin 2α)

E3,1

√
7

256π
(5sin 2δ − 1)(sin α − icos α) sin δ(15sin 2δ − 11)(cos α + isin α)

E3,2

√
35

128π
−sin 2δ(sin 2α − icos 2α) cos δ(1 − 3sin 2δ)(cos 2α + isin 2α)

E3,3

√
105

256π
cos 2δ(sin 3α − icos 3α) sin δcos 2δ(cos 3α + isin 3α)

In vector form, these equations can be rewritten as

T nkp(α, δ) =

⎧⎪⎪⎨
⎪⎪⎩

Mn,k(α, δ), k = 0, p = 1

(−1)k
√

2 ReMn,k(α, δ) k > 0, p = 1

(−1)k
√

2 ImMn,k(α, δ) k > 0, p = 0

(A32)

and

Snkp(α, δ) =

⎧⎪⎪⎨
⎪⎪⎩

En,k(α, δ), k = 0, p = 1

(−1)k
√

2 ReEn,k(α, δ) k > 0, p = 1

(−1)k
√

2 ImEn,k(α, δ) k > 0, p = 0

. (A33)

A3 Expansion of a real scalar function

Let us have a real function f(α, δ). With the set of above-defined
real scalar harmonics, we can write

f (α, δ) =
∑
nkp

ankpKnkp(α, δ), (A34)

where due to orthonormal basis Knkp the expansion coefficients ankp

are

ankp =
∫
�

f (α, δ)Knkp(α, δ) dω

=
2π∫

0

dα

+π/2∫
−π/2

f (α, δ)Knkp(α, δ) cos δ dδ. (A35)

In the same way, with the system of complex scalar spherical
harmonics our function can be represented as

f (α, δ) =
∞∑

n=0

k=n∑
k=−n

fnkYnk(α, δ), (A36)

where

fnk =
∫
�

f (α, δ)Y ∗
nk(α, δ) dω

=
2π∫

0

dα

+π/2∫
−π/2

f (α, δ)Y ∗
nk(α, δ) cos δ dδ. (A37)

Taking into account equations (A8), (A35) and (A37), we obtain
the relations between the expansion coefficients of one and the same
function on spherical harmonics Ynk and Knkp:

fnk =

⎧⎪⎪⎨
⎪⎪⎩

an01, k = 0

(−1)k√
2

(ank1 − iank0), k > 0

1√
2
(an|k|1 + ian|k|0), k < 0

; (A38)

ankp =

⎧⎪⎪⎨
⎪⎪⎩

fn,k, k = 0, p = 1

(−1)k
√

2Refn,k k > 0, p = 1

(−1)k+1
√

2Imfn,k k > 0, p = 0

. (A39)

A4 Expansion of a real vector function (vector field)

Now, let us have a real vector field

f (α, δ) = fα(α, δ) eα + fδ(α, δ) eδ. (A40)

Earlier, we introduced this field as expansion on real VSH equa-
tions (2), (3) and (4). Now, this expansion can be rewritten with the
complex vector spherical functions

f (α, δ) =
∞∑

n=1

k=n∑
k=−n

[mnk Mnk(α, δ) + enk Enk(α, δ)] , (A41)

where
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mnk =
∫
�

(
f (α, δ)M∗

nk(α, δ)
)

dω

=
∫
�

(
fα(α, δ)Mα ∗

nk (α, δ) + fδ(α, δ)Mδ ∗
nk (α, δ)

)
dω, (A42)

enk =
∫
�

(
f (α, δ)E∗

nk(α, δ)
)

dω

=
∫
�

(
fα(α, δ)Eα ∗

nk (α, δ) + fδ(α, δ)Eδ ∗
nk (α, δ)

)
dω.

(A43)

With equations (3) and (4) and equations (A24) and (A25), we
obtain the relations between coefficients mnk , enk and tnkp, snkp:

mnk =

⎧⎪⎪⎨
⎪⎪⎩

tn01, k = 0

(−1)k√
2

(tnk1 − itnk0) k > 0

1√
2

(
tn|k|1 + itn|k|0

)
k < 0

; (A44)

enk =

⎧⎪⎪⎨
⎪⎪⎩

sn01, k = 0

(−1)k√
2

(snk1 − isnk0) k > 0

1√
2

(
sn|k|1 + isn|k|0

)
k < 0

. (A45)

For the inverse relations, we have

tnkp =

⎧⎪⎪⎨
⎪⎪⎩

mn,k, k = 0, p = 1

(−1)k
√

2 Re mn,k k > 0, p = 1

(−1)k+1
√

2Im mn,k k > 0, p = 0

(A46)

and

snkp =

⎧⎪⎪⎨
⎪⎪⎩

en,k, k = 0, p = 1

(−1)k
√

2 Re en,k k > 0, p = 1

(−1)k+1
√

2 Im en,k k > 0, p = 0

. (A47)

A P P E N D I X B : M AG N I T U D E E QUAT I O N I N
THE CASE O F C OMPLEX VSH

As shown in the main body of our paper, the model of system-
atic differences depending on position and magnitude is given by
equation (10). If the complex VSH are used, this equation takes the
form

�F(α, δ, m)=
∞∑

n=1

k=n∑
k=−n

∑
r

mnkr Mnk(α, δ) Qr (m)

+
∞∑

n=1

k=n∑
k=−n

∑
r

enkr Enkp(α, δ) Qr (m). (B1)

In this equation, the coefficients tnkpr and mnkr are calculated from

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tnkp0

tnkp1

...

tnkpr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= N−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i

tnkp(mi)Q0(mi)∑
i

tnkp(mi)Q1(mi)

...∑
i

tnkp(mi)Qr (mi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

mnk0

mnk1

...

mnkr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= N−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i

mnk(mi)Q0(mi)∑
i

mnk(mi)Q1(mi)

...∑
i

mnk(mi)Qr (mi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B3)

Here, the values mi, i = 0, 1, . . . , I are the average magnitudes at
which the functions tnkp(mi) and mnk(mi) are determined, and N is
the matrix of the normal equations formed in the LSM solution of
the corresponding conditional equations:

N =

⎡
⎢⎢⎢⎢⎣

∑
i

Q0(mi) Q0(mi) · · · ∑
i

Q0(mi) QI (mi)

...
...

...∑
i

QI (mi) Q0(mi) · · · ∑
i

QI (mi) QI (mi)

⎤
⎥⎥⎥⎥⎦ . (B4)

Obviously, the coefficients snkp(mi) and enk(mi) are determined
similarly. Now, taking into account equations (A44) and (A45) we
obtain relations between complex and real coefficients mnkr , enkr

and tnkpr, snkpr:

mnkr =

⎧⎪⎪⎨
⎪⎪⎩

tn01r , k = 0
(−1)k√

2
(tnk1r − itnk0r ) k > 0

1√
2

(
tn|k|1r + itn|k|0r

)
k < 0

; (B5)

enkr =

⎧⎪⎪⎨
⎪⎪⎩

sn01r , k = 0
(−1)k√

2
(snk1r − isnk0r ) k > 0

1√
2

(
sn|k|1r + isn|k|0r

)
k < 0

. (B6)

For the inverse relations, we have

tnkpr =

⎧⎪⎨
⎪⎩

mn,k,r , k = 0, p = 1

(−1)k
√

2 Re mn,k,r k > 0, p = 1

(−1)k+1
√

2Im mn,k,r k > 0, p = 0

(B7)

and

snkpr =

⎧⎪⎨
⎪⎩

en,k,r , k = 0, p = 1

(−1)k
√

2 Re en,k,r k > 0, p = 1

(−1)k+1
√

2 Im en,k,r k > 0, p = 0

. (B8)

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 461, 2410–2425 (2016)

 at U
niversity of N

ew
castle on July 17, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/

