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Abstract: The new method of constructing of exact solutions of cosmological equations is developed. The method is based on 
representation of Friedmann equations in form of linear differential second order equation. It is shown that in some cases the 
appearing classes of solutions describe spacetime without events horizons, i.e. any geodesic circumnavigate the universe an infinite 
number of times as the future c-boundary is approached. Probably in this case the self-consistensy cosmological model can be 
construct.    
 
1. Introduction: the self-consistency condition 

 
Generally the discovery of contradictions between well-known physical rules and data of cosmological 

observations is explained as evidence of existence of undiscovered fundamental principles. However there is 
another approach, namely one regard the basic physical principles as already established and use of 
mentioned contradictions for selection of cosmological models without of this oppositions (the self-
consistency condition). In this case the study of global universe evolution is very important.      

As follows from the recent observations (see [1], [2]) our universe suffers the accelerated expansion 
[3], [4]. As for now, the one of the probable cause of such expansion lies in nonzero cosmological constant. 
If this is really the case, then the future dynamics of observable universe is confined within the particles 
horizon  and, as such, leads to problems with formulation of a fundamental physical theory (like 
the string theory or hypothetical M-theory) in a finite volume [5]. Seemingly, the consistent mathematical 
description is possible only for .    

HcRh /=

∞=hR
This argument was used in [6] as a point in support of cosmological models with phantom energy in 

“holographic” form [7]. Author [6] showed that in this case it is possible that ∞=hR and therefore, the 
fundamental theory may be formulated without contradictions. 

On the other hand, the phantom energy is experimentally indistinguishable from vacuum energy, but 
definitely distinct from any other known form of matter and looks very exotic. It is reasonable, then, to 
consider dark energy to be vacuum energy [8]. 

Furthermore the unlimited expansion of universe leads to paradoxical conclusion: if the lifetime of the 
universe (with an observable expansion rate) will exceed the limit of 1060 years, the dominating observers 
will, as follows from [9], be the ones of a quantum fluctuations origin, which, of course, could hardly be 
called compatible with our observations. Moreover, the estimate for maximal lifetime in [9] sharply 
distinguish from estimates for lifetime τ  of metastable dS-phase. According to  [10], [11] yr.   123105.0e ×<τ
In models contained KPV-instantons [12] this value can be decreased to yr. However this result is 
enormously greater than 10

910e<τ
60 years. 

Therefore there are many arguments against the models of universe suffering the eternal expansion. 
The most probable scenarios would be those describing the contemporary expansion, being traced by the 
consequent contraction phase and the ``horizonless'' collapse.  

In this paper we present a new simple method of construction of infinite number of solutions of 
Freidmann equations from the already known ones. The method is based on representation of Friedmann 
equations in form of linear differential second order equation. In some cases the appearing classes of 
solutions describe the above-mentioned scenarios. 

 
2. The method of linearization for Friedmann equations 

 
Let us write the Friedmann equations as 
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where . We use units with 10,= ±k 1==/38 cGπ . If the universe is filled with a self-acting and minimally 
coupled scalar field with Lagrangian  
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then the energy density and pressure are  
,=,= VKpVK −+ρ  

therefore  
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Our starting point is that the volume function  satisfies a simple second-order differential equation 
([Ошибка! Источник ссылки не найден.])  

3= aψ

.9= ψψ V&&      (4) 
 In (Ошибка! Источник ссылки не найден.) the potential V  is represented as a function of time t . For 
simple forms of the potential one can find the general solution of (Ошибка! Источник ссылки не 
найден.), containing both the solution used for the construction of this potential and a lineary independent 
one as well. Substituting this general solution into the (Ошибка! Источник ссылки не найден.) one can 
calculate ρ  and . Then using (Ошибка! Источник ссылки не найден.) one gets the new potential Vp ~  
such that )(=)(~ tVtV  but whose form is different from V  if V~  and V  are represented as functions of φ : 

)()~(~ φφ VV ≠ . 
Therefore the Friedmann equations admits the linearizing substitution and can be studied via different 

powerful mathematical methods which were developed for the linear differential equations. This is the 
reason why we call our approach the method of linearization. The crucial point of this paper is connected to 
the simple generalization of results above. More precisely, the following proposition is hold:  

 Proposition. Let  (with , )(= taa )(= tpp )(= tρρ ) be the solution of (1) with . Then the 
function  is the solution of the Schrödinger equation  
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with potential  
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Remark 1. If the universe is filled with scalar field φ  whose Lagrangian is (2) then the expression (6) 
will be  

.3)(= 2VnKnnUn +−  
In particular case  3=n )(9=3 φVU  (see (4)). This particular case has been extensively studied in [13], [14]. 

Remark 2. If besides matter fields in the universe there is nonzero vacuum energy  the Eq. (5) takes 
the form 
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with .    Λ−= 2nnλ
In the case of general position, the solution of the equation (5) or (6) has the form  

,ˆ= 21 nnn cc ψψ +Ψ      (8) 
where nψ̂  is linearly independent counterpart of nψ :  
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Equation (8) is enough to establish the following theorem:  
Linearization Theorem. Let  be the solution of (1) with  and with )(= taa 0=k ρ  and , given by 

(Ошибка! Источник ссылки не найден.). Then the two-parameter function :  
p
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will be solution of (1) with new energy density nρ  and pressure  satisfying:  np
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Another way to formulate this theorem is to say that the expression  
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is invariant with respect to transformation  with  defined by (10). We'll use the term ''dressing'' for 
the process of transformation of a triple 

naa → na
},,{ pa ρ , with the resulting triple },,{ nnn pa ρ  being referred to as the 

dressed one.  
  Remark 3. This theorem is valid for the case . If 0=k 1= ±k  then this theorem will hold if and only if 
.  0,1=n

  Remark 4.  Let , i.e. suppose that at  there exist an initial singularity. Lets assume that 
 for . One might easily verify that if 

0=(0)a 0=t
λtta ~)( 0→t 12 ≤λn  then . Now let us choose 0=(0)na |||/| m21 axcc ξ>>  

where )(= tξξ  is the quantity from (10); ξ  is a bounded function at the interval  and Tt <<0 axmξ  is the 
maximal value of )(tξ  at this interval. It can been seen that at a given time interval  behaves similar to 

 with any given precision rate. 
)(tan

)(ta
Moreover, since both matter's density and pressure are expressed in terms of scale factor (and it's 

derivatives) explicitly (we remind here, that under the assumption the sign of curvature is already known): 
then we conclude that the observations have given the values of all basic characteristics of the universe. Can 
we say now that the further evolution of universe will be completely defined? No, we can't be sure that the 
''real'' scale factor is . It can be  as well (note here, that possibility of such scenario, i.e. of 
indeterminacy of universe future has been previously noted by A.A. Starobinsky in [15]). 

)(ta )(tan

 
3. A toy self-consistent model 
 

Let’s consider a simple example of constructing self-consistent model via method considering in 
previous section. For  (22tUn μ= )const=μ  the simplest solution of  Eq. (6) is 

/2)(exp 2tCn μψ −=   (12) 
It is easy to see that the evolution of scale factor is similar for various . Without loss of generality one 
consider the case . It is convenient to write the solution for scale factor as 
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where  is the moment of observation in current time,  cm is the current value of scale factor. The 
parameter 

0t
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μ  can be expressed via  and Hubble parameter s0t
19

0 1024.3= −×H -1: 00/= tH−μ . The absence of 
events horizons in this model is obvious. The   is free parameter so solution (13) can be matched to the 
data of astronomical observations which demand that 
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 Using (13) we get  
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Lets assume that the age of universe  is T plttT −0=  at that  cm. The number of e-foldings 

is 
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The age T obeys the equation: 
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that yields 
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This is too large in comparison with 15 – 20 Gyr. However, formally speaking the age of such universe is 
infinite.  We assumed that the origin of the universe is the moment when cm. This is natural choice 
but may be that choice is wrong. For example, one can assume that solution (13) describes the universe 
suffered hypothetical big trip (see [16], [17]). In this case the estimates of universe age depend from the 

3310= −a



value of ρ/)( ptww ii ==  where  is the moment of big trip. For instance if it 9.0−=iw  we have 18= 0 ≈− ittT  
Gyr. It is clear that this is only interpretation.    

In this model one can calculate the value of cosmological constant. If the universe is filled with a self-
acting and minimally coupled scalar field φ  with potential )(= φVV  and vacuum energy with density 

Λ
ρ . 

Then  
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From this relation one yield that . The cosmological constant is negative although 
model describes the current stage of acceleration. The form of potential is 
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In other words we have scalar field describing the non-interacting scalar particles with extremely small mass 
g. 60100.3~ −×m

 At first glance the significant cosmological acceleration in past should be put obstacles in the way of 
generation of the observable large-scale structure. However it is not so. If  

M
ρ  is a density of baryon matter 

then 
                (16) ( ) .1= 3
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 Here 
0M

ρ  is the current density of baryon matter (~10-31 g/cm3), z  is the value of red shift. The following 
constraint on the value of acceleration must be hold 
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where  corresponds to the moment  of the earliest galaxies forming. The up observable limit for  is 
~10. Using (13), (15) it is easy to establish that condition (17) is not violated.     

mz mt mz

 
4. Spacetime without events horizons as a generalization of well-known solutions 

 
The equation (10) allows one to construct the space-time without events horizon from well-known 

solutions. In order to show this let  be an instant, such that  but . In other 
words, suppose that 
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where . Integrating this equation for future directed radial null geodesics,  one 
will get  
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It is easy to see that for  we will have 1<0 ≤n +∞Δ =χ  which shows that radial null geodesics 
circumnavigate the universe infinite number of times as the future c-boundary at  is approached. By 
homogeneity and isotropy, we can conclude that all future endless timelike curves define the same c-
boundary point. 

ftt =

In the case  one gets 1=n ( ) +∞→−−Δ tt flog~χ  as the final singularity is approached. This case is 
extremely interesting because (see Remark 3) when  one can use the dressing procedure to construct the 
exact solutions for the universes with . 
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A. Simple generalization of  dust model 1= +k

 
In the simplest dust case with  one can solve the system (1) to get  0=p



 
.

sin
1=

,2=2sin2,sin=

62

2

η
ρ

ηηη

m

m
m

a

a
taa −

     (19) 

Using (10) for the case  one will obtain the general solution  1=n
),(ˆ)(=)( 21 tactacta gen +      (20) 

where  are the arbitrary constants. It is possible to rewrite (20) in the form  1,2c

( ),sinsin=)()( ηδη −≡ Atata gen      (21) 
with two arbitrary constants A  and δ . This solution describes the universe being born from the initial 
singularity ( 0=iη , ) and collapsing thereafter into the final singularity at 0=it δη =f  or  
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where we have introduced a new parameter α  such that  
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and the maximum value of  will occur at maa = /2= δη . 
It is easy to see that upon the choice πδ =  one gets the well known ''dust solution'' (19). In case of 

general position one shall choose πδ <<0 . It can be seen that for ftt << , επδ −=  and 1<<ε , (22) will 
behave similar to (19). But if  then one gets something really different: a universe without events 
horizon. To show this lets consider  
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Upon integration of the equation  (describing the future directed radial null geodesics) one gets:  0=2ds

.=
)(sin

sin2= +∞
−

Δ ∫ η
ηδ

ηχ
δ

η
d      (23) 

We note that if πδ =  then  
.<)2(= ∞−Δ ηπχ  

The result (23) shows that radial null geodesics circumnavigate the universe an infinite number of times as 
. This fact and the homogeneity+isotropy results in conclusion that (i) this universe has no event 

horizons and (ii) all future endless timelike curves define the same c-boundary point. At last,  
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One can show that all energy conditions are valid. For this let us point out that sum p3+ρ   in general model 
is equal to the sum p3+ρ   in starting model (see (11) for the case ). This fact results in validity of 
strong energy condition for our model. Finally, from Friedmann equations one can see that density of energy 
is always positive at . By this property and the validity of the strong energy condition, the weak energy 
one will be satisfied automatically. 
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B. Generalization of a Lambda-radiation model in flat space 
 

Let's consider the flat universe which has a positive vacuum energy Λ . Let's also assume that the 
universe is filled with the radiation. Solving system (1) we will obtain the initial solution for the scale factor 
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where  is a positive constant. If , the strong energy condition will necessarily be 
violated. Using (10) for the case  one can see that general solution can be written in the following form  
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where δ  is a positive constant. The parameter ε , introduced here, plays an important role in our reasonings. 
If 0=ε , then (25) will be equivalent to the initial solution. In the remaining cases one can without any loss 
of generality assume 1=ε . There will be three types of solutions. If 1<δ  the universe will be open. This 
type of solutions has the following asymptotic behavior 

.),(expln0.5 0 ∞→Λ−→ ttaa δ   
It is easy to see that this universe is plagued by the events horizon. 
The case 1≥δ  is a more interesting one. If 1<<δ , then solution will describe the universe, starting from an 
initial singularity ( 0=θ , ) and ending up in the final singularity at . One shall note 

that, if 

0=t δarccoth-1/2Λ=ft

21+≥δ  the strong energy condition will always be satisfied (in fact, universe will end up in 
singularity long before the time ). vt
When 1=δ  the resulting solution might be denoted as "quasisingular" because   
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 From this relation one can see that scale factor tends to singularity but 

never achieves it. 
Both singular and quasisingular models contains no events horizons. To show this for the quasisingular 

case let us integrate the equation for future directed radial null geodesics ( ) just like it has been done 

in the previous subsection: 
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has an exponential asymptot at large θ . Therefore radial null geodesics circumnavigate the universe an 
infinite number of times as . This fact and the homogeneity+isotropy result in the conclusion similar 
to the one from the previous subsection, namely that such universe possess no events horizon. Absence of 
events horizon for singularity model can be proved by analogy. 
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In conclusion let us analyze the equation of state for the generalization of a lambda-radiation model. 
One can show that the value ρ/= pw  is equal to  
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 From this relation it follows immediately that for both open and quasisingular models  at large 
 (large 

1−→w
t θ ). For the closed model  whenever we approach the final singularity. In the initial 
singularity  for all models. Close examination of equation (26) shows that  is always greater than -1 
for all cases, i.e. weak energy condition will always be satisfied. 

1/3= −w
1/3=w w

 
5. Conclusion 

 
We have discussed a simple (and easily automatizable) method of construction of exact solutions of 

Friedmann equations. Despite simplicity, the method allows for acquirement of solutions characterized by 
extremely interesting properties. What is more, it appears that the very abundance of the set of solutions that 
are to be obtained this way leads us to a stunning conclusion: no matter how accurate our astronomical 
observations are, there exist not just one, but a whole set of solutions that will satisfy the observational data 
while leading to essentially different dynamics in future. This sudden twist leads us to seemingly 
unavoidable conclusion about the principle indefiniteness of the future, hidden in the Fridmann equations. 
For a first glance such conclusion looks really disappointing, rendering useless all our efforts to build a 
suitable cosmological model describing our universe. 

However, everything above-said doesn't mean the impossibility to determine the actual dynamics of 
the universe in principle. Even though the usual observational methods might not give us the final answer, 
we can use for example the self-consistensy condition for selection of cosmological models. 
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