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Abstract: It is shown that in the Vacuum Fluctuations Dominated model (VFD), where the vacuum fluctuations of scalar fields 
dominate over matter and radiation during the all history of the Universe expansion (gr-qc/0604020, gr-qc/0610148), the acceleration 
parameter evolves monotonically from zero to the present day negative value. That is according to this model, the Universe has no 
decelerating past, and the conventional radiation domination and matter domination epochs are absent. Theoretical predictions for 

 are compared with those following from the SN type Ia and gamma ray bursts data.   0 7z −�
 
 

 
Fast progress in accumulating and handling of the astrophysical data about the Universe expansion 
[1,2,3,4,5,6] clears the way to testing of different models of the Universe evolution. Although, the CMDΛ  
model is able to explain the observational data [7], it is necessary to provide a deeper insight into the cosmo-
logical constant problem [8,9,10,11,12,13,14,15]. Among numerous approaches to the cosmological constant 
problem, the quantum field theory (QFT) approach may suggest some solutions.  
It is well known that the covariant removing of all divergent terms from the energy-momentum tensor by 
some regularization procedure leads to the vacuum energy density 41vac Lρ /� , where L  is the radius of the 
Universe curvature [16]. This quantity is too small1 to explain the observed Universe acceleration if one may 
identify L  with the size of a present day Universe.  
On the other hand, the direct ultraviolet (UV) momentum cut-off for evaluation of the vacuum energy pro-
vides the enormous quantity 4

vac pMρ � , where pM  is the Planck mass.  
In our previous works [18,19], the accelerated expansion of Universe was attributed to the back-reaction of 
the vacuum fluctuations of massless scalar fields. It was found, that the use of UV cut-off at the Planck level 
in the equation of motion for the Universe scale factor instead of that in the Friedman equation allows ex-
plaining the observable value of Universe acceleration. In our approach, the effective density of dark energy 
is proportional to the Hubble constant squared , as it occurs in the holographic dark 

energy models [20,21,22,23,24,25] (here  denotes the UV cut-off of the present day physical momen-
tums).  
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Below our previous model is summarized and compared with the SN type Ia and gamma ray bursts data.  
 
Let us write down the system of Friedman– Lemaоtre equations for the Universe scale factor , the density 
of matter 

a
ρ  and the pressure :  p
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where the conformal time η  implying the metric 2 2 2 2( )( )ds a d dη η σ= +  is used (the reason will be ex-
plained below),  is the cosmological constant, Λ K  is the signature of space-time, and the Planck mass pM  

should be read as 3
4p GM π= .  

The  model can be obtained by setting CDMΛ 0p = , 0K =  and finally is reduced to the single equation  
4

vac Hρ λ�4( )V φ λφ�1For the flat expanding Universe and the self-interacting scalar field , it is  [17], where  is the 

Hubble constant. This quantity is too tiny even for 
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where  is the present day scale factor (this moment corresponds to 0 (0)a a= 0η =  hereafter), 0
a
a η
′

== |H  is 

the conformal Hubble constant2 and the constant mΩ  is connected with the matter density 
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0M a a aρ ρΩ = =H .  

Coming to the VFD model [18, 19] we set 0Λ = , 0p = , 0K =  and add a massless scalar field, which is 
characterized by the averaged pressure and the density:  
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where V  is some volume, which will be set to unity hereafter. The second step is to turn to the quasiclassical 
picture, where the scalar field ˆ(φ η,r  is quantum. The resulting master equations for the VFD model are  
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where  denotes a mean value over the vacuum state of scalar field. The first equation is the inte-
gral of motion for two last equations. However, it should be noted that it is not the Friedman equation be-
cause the constant on the right hand side is not zero. The point is that some renormalization is needed to 
avoid the cosmological constant problem, i.e. the huge QFT vacuum energy in the Friedman equation. In-
stead of determining the renormalization constant, one can consider two last equation and fix the constant 
assigning the initial condition for the equations. It is very important, that in conformal time a renormalization 
is not required for the second equation. The reason is that the equation contains exact difference of the ki-
netic and potential energies of the field oscillations. In the Minkowski space-time this difference is exactly 
zero by virtue of the virial theorem for an oscillator, which states that the kinetic energy is equal to the poten-
tial one in the virial equilibrium. In the expanding Universe this difference is proportional to the Hubble con-
stant squared.  
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Scalar field can be decomposed in a complete set of the modes ( ) ieφ φ=∑ kr
kk

r  and quantization of the 
modes consists in postulating [16]  
 ˆ ( ) ( )ˆ ˆa ak kχ η χ ηφ ∗+

−= +k kk
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where complex functions ( )kχ η  satisfy the relations:  
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The adiabatic approximation  
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0 0H a=H , where  is the present day Hubble constant. 0H2



allows calculating the difference of the kinetic and potential energies of field oscillators up to second-order 
terms:  
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where it was implied that a′  is the first-order quantity, a ′′  is the second-order one,  is the third-order one 
and so on.  

a′′′

Using (8) in (4) leads to the master equation of VFD model in the form:  
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Eq. (9) can be integrated up to the equation3  
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where the parameter , from the one hand, is determined by the UV cut-off 0S maxκ  of the physical momen-
tums   0k aκ = /
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and, from the other hand, is connected with the present day deceleration parameter  as 0q 0

0

2 2
0 2

mq
qS − +Ω= . It 

was shown [18,19] that the UV cut-off of the present day physical momentums  in the sum 0k a/ 1
kk∑  at the 

Planck level  can explain the observed value of Universe acceleration. In principle, the 
exact value of the UV cut-off has to result from the Planck scale physics.  

0max max pk a Mκ = / �

Validity range of Eqs. (9), (10) is defined by the next terms in the expansion (8). According to Refs. [18,19], 
the next terms contain additional multiplier  as compared with the main term, where  is the 

UV cut-off  [18,19]. Thus Eqs. (9), (10) are valid if 
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Eq. (10) can also be rewritten in the cosmic time dt a dη=   
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which gives 0

0

1
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Sa t a H t+Ω −≈  in the vicinity of 0t =  (i.e. in the conformal time 

( )0 0

0

1( ) expmS S
Sa

0

1m
Sη η+Ω − +Ω −=H H ).  One can compare the theoretical dependence (11) with the obser-

vations of the apparent magnitude  of the  SN type Ia. If Universe is flat, the luminosity distance is given by    
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parent and absolute magnitudes 
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3This equation can be also deduced from the first of Eq. (4), when the corresponding normalization constant is chosen.  



sider the quantity ( ) ( ) ( ),emptyz z zμ μ μΔ = −  where  ( )empty zμ  corresponds to the empty closed Universe for 

which  
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Fig. 1  The VFD curves (bold, ) of the 0 27mΩ = . ( )zμΔ evolution and those of the CDMΛ  (dashed, ). Aster-
isks and pluses denote the GRB  and 115 SN Ia experimental data, respectively.. Original data and binned data correspond to the left 

panel and right panels, respectively.   

0 27mΩ = .

 
Experimental data are given in Refs [26-28]. Figure 1 shows the original data (one can add some constant  
quantity to ( )zμΔ because the value of the absolute magnitude M is not known exactly).  The left panel 
shows the original data whereas the right panel shows the “binned” data, where averaging of μΔ  over some 
interval of z is made and is attributed to the average z for this bin.  To extend the range of z, one can try using 
the gamma ray bursts (GRB) as the standard candle. We combine the GRB data [29] with the SNIa ones. 
One can see that without using some statistical methods, it is difficult to prefer the standard CDM model 
to the VFD model.    

Λ

It should be noted that the deceleration parameter  
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comes from zero to the present day negative value as it is shown in Fig. 2. The parameter  amounts 0.27 
for both models and  for the VFD model. These values are chosen to fit the curves within a thin 
waist of the experimental data channel near z=0.2.  

mΩ

0 0 8q = − .

It is interesting that the VFD model is highly insensitive to the dark matter content. We see that two curves in 
Fig.2 corresponding to  and  (pure baryonic matter) almost coincide.  0 27mΩ = . 0 04mΩ = .
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Fig. 2. The  VFD curves (bold grey,  and 0 27mΩ = . mΩ =0.04) of the acceleration parameter evolution and those of the 

 (dashed, ) put on the 1CDMΛ 0 27mΩ = . σ , 2σ , 3σ  error channels (thin lines) of the deceleration parameter recon-
structed from the 115 SN Ia data [30]. 

 
 
It should be noted that in the case of  our model turns formally into the conventional model of flat 
Universe filled with dust and relativistic matter. However, the “matter domination epoch” and the “radiation 
domination epoch” are absent, because they lie in the non physical region after Big Rip, where the Hubble 
constant becomes infinite at some finite  and , when denominator in Eq. (11) tends to zero.  

0 0S =

a t
To summarize, we have considered the VFD model offered in our previous works [18,19]. In this model, the 
Universe acceleration results from the vacuum fluctuations of fundamental scalar fields4.  
Main feature of the VFD model is that it does not predict the change from a deceleration to an acceleration in 
the past. If the father observations will insist on such a change, some modification of VFD should be re-
quired, because it has no tuning parameters. Some possibility of such a modification is a theory based on the 
truncation of physical momentums ( ) pk a Mη/ �  rather than that of static (comoving) momentums 

.. This would require a consideration in a system of reference, in which Universe looks like the 
Hoyle-Narlikar one [31,32]. Another feature of the VFD model is that in principle the dark matter is not 
needed.  

0 pk a M�

The authors are grateful to Y. Gong and A. Wang for the kindly presented deceleration parameter reconstruc-
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