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Abstract: We consider an effect generated by the nonexponential behavior of the survival amplitude of an unstable state in the long time 
region: In 1957 Khalfin proved that this amplitude tends to zero as  goes to the infinity more slowly than any exponential function of t . 
This effect can be described in terms of time-dependent decay rate 

t
)(tγ  and then the Khalfin result means that this )(tγ  is not a 

constant for long times but that it tends to zero as t  goes to the infinity. It appears that a similar conclusion can be drawn for the energy 
of the unstable state for a large class of models of unstable particles: This energy should be much smaller for suitably long times t  than 
the energy of this state for  of the order of the lifetime of the considered state. Within the given model we show that the energy 
corrections in the long ( ) and relatively short (lifetime of the state) time regions, are different. It is shown that these corrections 

decrease to 

t
∞→t

umin εεε <=  as , where ∞→t uε  is the energy of the system in the state  measured at times 〉u| γτ /= h~ ut . 
This is a purely quantum mechanical effect. It is hypothesized that there is a possibility to detect this effect by analyzing the spectra of 
distant astrophysical objects. The above property of unstable states may influence the measured values of astrophysical and cosmological 
parameters. 

 
 

1.   Introduction 
 
 Within the quantum theory the state vector at time , t 〉)(| tψ , for the physical system under 

consideration which initially (at ) was in the state 0== 0tt 〉ψ|  can be found by solving the Schödinger 
equation 
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where χψψ ∈〉〉 |,)(| t , χ  is the Hilbert space of states of the considered system, 1=|||||=||)(||| 〉〉 ψψ t  

and H  denotes the total selfadjoint Hamiltonian for the system. If one considers an unstable state 〉≡〉 u||ψ  of 
the system then using the solution  of Eq. (1) for the initial condition  one can determine the 
decay law,  of this state decaying in vacuum  
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where  is the probability amplitude of finding the system at the time t  in the initial state  prepared at 
time ,  
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We have  

1.=(0)a   (4) 
 
From basic principles of quantum theory it is known that the amplitude , and thus the decay law  of )(ta )(tPu



the unstable state , are completely determined by the density of the energy distribution 〉u| )(εω  for the system 
in this state [1],  
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where 0>)(εω . 

Note that (5) and (4) mean that there must be  
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From the last property and from the Riemann-Lebesgue Lemma it follows that the amplitude , being the 
Fourier transform of 

)(ta
)(εω  (see (5)), must tend to zero as ∞→t  [1]. 

In [2] assuming that the spectrum of H  must be bounded from below, , and using 
the Paley-Wiener Theorem [3] it was proved that in the case of unstable states there must be  
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for . Here  and . This means that the decay law  of unstable states decaying 

in vacuum, (2), can not be described by an exponential function of time t  if time  is suitably long, 

∞→|| t 0>0,> bA 1<<0 q )(tPu

t ∞→t , and 
that for these lengths of time  tends to zero as )(tPu ∞→t  more slowly than any exponential function of t . The 

analysis of the models of the decay processes shows that , (where  is the decay rate of the 
state ), to a very high accuracy for a wide time range : From t  suitably later than some 

]/[exp)( 0tuγ htPu −≈ 0
uγ

〉u| t 0=00 tT ≈  but 
 up to  and smaller than , where  denotes the time t  for which the 

nonexponential deviations of  begin to dominate (see eg., [2], [4-7]). From this analysis it follows that in the 
general case the decay law  takes the inverse power-like form , (where 

00 > tT h/= 0
uut γτ>> astt = ast

)(ta
)(tPu

λ−t 0>λ ), for suitably large 

uastt τ>>≥    [2], [4-6]. This effect is in agreement with the general result (7). Effects of this type are sometimes 
called the "Khalfin effect" (see eg. [8]).  

The problem how to detect possible deviations from the exponential form of  in the long time 
region has been attracting the attention of physicists since the first theoretical predictions of such an effect [9, 10, 
7]. Many tests of the decay law performed some time ago did not indicate any deviations from the exponential 
form of  at the long time region. Nevertheless, conditions leading to the nonexponential behavior of the 
amplitude  at long times were studied theoretically [11-13]. Conclusions following from these studies were 
applied successfully in the experiment described in [14], where the experimental evidence of the exponential 
decay law at long times was reported. This result gives rise to another problem which now becomes important: if 
(and how) deviations from the exponential decay law at long times affect the energy of the unstable state and its 
decay rate at this time region. 
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Note that in fact the amplitude  contains information about the decay law  of the state , 

that is about the decay rate  of this state, as well as the energy  of the system in this state. This information 
can be extracted from . Indeed, if  is an unstable (a quasi--stationary) state then  
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So, there is  
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in the case of quasi-stationary states. 

The standard interpretation and understanding of the quantum theory and the related construction of our 
measuring devices are such that detecting the energy  and decay rate  one is sure that the amplitude  
has the form (8) and thus that the relation (9) occurs. Taking the above into account one can define the "effective 
Hamiltonian", , for the one-dimensional subspace of states 

0
uε

0
uγ )(ta

uh ||χ  spanned by the normalized vector  as 
follows (see, eg. [15])  

〉u|
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In general,  can depend on time t , . One meets this effective Hamiltonian when one starts with the 
Schrödinger Equation (1) for the total state space 

uh )(thh uu ≡
χ  and looks for the rigorous evolution equation for the 

distinguished subspace of states χχ ⊂|| . In the case of one-dimensional ||χ  this rigorous Schrödinger--like 
evolution equation has the following form for the initial condition  (see [15] and references one finds 
therein),  
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Relations (10) and (11) establish a direct connection between the amplitude  for the state  and the exact 
effective Hamiltonian  governing the time evolution in the one--dimensional subspace 

)(ta 〉u|
)(thu 〉∋ u|||χ . 

So let us assume that we know the amplitude . Then starting with this  and using the 
expression (10) one can calculate the effective Hamiltonian  in a general case for every . Thus, one finds 
the following expressions for the energy and the decay rate of the system in the state  under considerations,  
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where  and  denote the real and imaginary parts of  respectively. )(zℜ )(zℑ z

As it was mentioned above the deviations of the decay law  from the exponential form can be 
described equivalently using time-dependent decay rate. In terms of such 

)(tPu

)(tuγ  the Khalfin observation that 

 must tend to zero as  more slowly than any exponential function means that  for 

 and 

)(tPu ∞→t 0)( uu t γγ <<

astt >> 0=)(lim tut γ∞→ . 
The aim of this note is to examine the long time behaviour of )(tuε  using  calculated for the given 

density 
)(ta

)(εω . We show that 0)( →tuε  as ∞→t  for the model considered and that a wide class of models has 

similar long time properties: . It seems that in contrast to the standard Khalfin effect [2] in the 
case of the quasistationary states belonging to the same class as excited atomic levels, this long time properties 
of the energy 

0|)( utu t εε ≠∞→

)(tuε  have a chance to be detected by analyzing spectra of very distant stars. 
 



 
2.  The model 
 

Let us assume that ),[=).( ∞minHSpec ε , (where, −∞>minε ), and let us choose )(εω  as follows  
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where  is a normalization constant and  N 0}.<for0,and0,for{1=)( εεε ≥Θ  For such an )(εω  using (5) 
one has  
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Formula (14) leads to the result  
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where  denotes the integral-exponential function [16, 17]. )(1 xE

Using (14) or (15) one easily finds that  
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Making use of the asymptotic expansion of  [17],  )(1 xE
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where π
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3|<arg| z , one finds  
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for the considered case (13) of )(εω . 

From (21) it follows that  
 

,)(
||

2=)|)(( 2
20

0d

min

t
minu

minu
minu

ef

tu th
th ε

ε
εε

εε
∞→

∞
∞→ →

−
−

−≈ℜ
h   (22) 

 
where , and  ∞→

∞
tuu t |)(= εε

.0)|)((
∞→

∞→ →−≈ℑ
t

tu t
th h      (23) 

The property (22) means that  
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For different states , ( ) one has  〉〉 ju |=| K1,2,3,=j
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Note that  
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whereas in general . 0
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The most interesting relation seems to be the following one  
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The relation (27) is valid also when one takes  instead of  or  instead of . It seems to be 
interesting that the relation (27) does not depend on time t . 
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Note that the following conclusion can be drawn from (25): For suitably long times  there must be  astt >
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3.  Some generalizations 

 
To complete the analysis performed in the previous Section let us consider a more general case of . )(ta



Namely, let the asymptotic approximation to  have the form  )(ta
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where 0>λ  and  are complex numbers. The simplest case occurs for kc 0=minε . Note that the asymptotic 
expansion for  of this or a similar form is obtained for a wide class of densities of energy distribution )(ta )(εω  
[2, 4, 5, 6, 8], [11-13]. 

From relation (29) one concludes that  
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Now let us take into account the relation (11). From this relation and relations (29), (30) it follows that  

,~)( 3
3

2
21 K++++

∞→
t
d

t
d

t
d

th min

t

u ε     (31) 

where  are complex numbers with negative or positive real and imaginary parts. This means that in 
the case of the asymptotic approximation to  of the form (29) the following property holds, 
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It seems to be important that results (31) and (32) coincide with the results (21) - (25) obtained for the 

density )(εω  given by the formula (13). This means that the general conclusion obtained for the other )(εω  
defining unstable states should be similar to those following from (21) - (25). 

 
 
4.  Final remarks. 

 
Let us consider a class of unstable states formed by excited atomic energy levels and let these excited 

atoms emit the electromagnetic waves of the energies  (where 000 =
jknjknu hνεε ≡ 0

jknν  denotes the frequency of 

the emitted wave, and  is energy emitted by an electron jumping from the energy level  to the energy 

level ). Then for times , according to the results of the previous sections, there should be 
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So in the case of electromagnetic radiation in the optical range registered by a suitably this effect should 
manifest itself as a red shift. In a general case this effect should cause a loss of energy in the emitted 
electromagnetic radiation if the distance between an emitter and receiver is suitably long, that is if the emitted 
radiation reaches such a distance from the emitter that the time necessary for photons to reach this distance is 
longer than the maximal range of time of the validity of the exponential decay law for the excited atomic level 
emitting this radiation. 

It can be easily verified that relation (27) does not depend on the redshift connected with the Doppler 
effect [18]. Therefore it seems that there is a chance to detect the possible effect described in this paper using 
relation (27) and analyzing spectra of distant astrophysical objects. It can be done using this relation if one is 



able to register and analyze at least three different emission lines from the same distant source. Another 
possibility to observe this effect is to modify the experiment described in [14] in such a way that the emitted 
energy (frequency) of the luminescence decays could be measured which could make possible to test relations 
(33) or (28). 

The last conclusion. Cosmic distances and other parameters computed from the observed redshift of very 
distant objects emitting electromagnetic radiation [19] are calculated without taking into account the possible 
quantum long time energy redshift described in Sec. 2 and Sec. 3, so these distances as well as the values of 
these parameters need not reflect correctly the real picture. 
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