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Abstract. Quantum cosmology describes universe as a relativistic object with an evolution defined by an equation for the energy 
density corresponding to the least action principle. In quantum cosmology this equation plays the same role as the Planck equation 
does in quantum physics. Universe evolution consists of not only the space expansion but also a deceleration of the course of 
physical time. Durations of all processes, measured by decelerating physical time, are always longer, than corresponding durations, 
measured by a scale of the invariable uniform Newtonian time. Quantum interpretation of the redshift phenomenon enables to 
estimate the Hubble parameter by means of fundamental physical constants. In the course of evolution, the universe retains the self-
similarity defined by the constancy of the characteristic scale relations for micro- and mega worlds with an average fractal dimension 
of the typical cosmic large-scale structures 2D = . Quantum cosmology advances new relations for the microwave background 
parameters, apparent stellar magnitudes and redshifts; formulae for the cosmological increase of the macroscopic space- and time- 
characteristics and evaluation of quasar redshifts and luminosities. 
 

Introduction 
 
 Quantum cosmology could be said to have begun with Max Plank’ proposal in the conclusion of his 
legendary presentation in Academy of Sciences in Berlin on May 18, 1899 to introduce the “natural units” of 
measurement, basing on his new quantum constant. Plank’ idea, however, got no support from his 
contemporaries, and it was buried in oblivion for more than half a century until in the 1950s John Wheeler 
rediscovered Planck’ fundamental length in his “geometro-dynamics”. In 1958 Nikolai Kozyrev achieved an 
important heuristic result introducing first global cosmological quantum parameter - the “course of time 
constant” 2e h  [15], but like Planck he had not many followers. Despite occasional criticism, cosmology 
continued to use Newton-Einstein gravitation theory, abandoning for a long time an idea of the search for 
specific relativistic and quantum laws of mega-world. This was by no means because the failure to realize 
limited prospects of a mega-world theory based on Newton-Einstein gravitational equations and 
thermodynamics. The quest for specific quantum mega-world laws was inhibited, until the last quarter of the 
20th century, by inferior, compared to quantum physics, amount of reliable quantitative data from 
observations of distant cosmic structures. An important stimulus for progress in quantum cosmology was the 
discovery of fractal geometry of the universe large-scale structures. It appeared that fractal dimension of the 
universe large-scale structures 2D =  is the same as the dimension of a fractal micro-particle trajectory 
described by quantum mechanics.  
  
 A conception of relativistic quantum cosmology can be formed from the following basic ideas [13, 
14]:  
1. Quantum cosmology, as a part of quantum physics, is specifically concerned with describing discrete 
rather than continuous space distributions of matter. Unlike classical cosmology, quantum cosmology should 
therefore use mass and energy densities in the form of extensive characteristics of finite volumes and masses 
as opposed to intensive densities represented by continuous physical fields. Intensive parameters of the mass 
or energy density type are basically inadequate for fractal galaxy distributions in the large-scale universe 
structure, being explicitly dependent on the averaging volume and tending to zero as the volume increases in 
the galaxy distributions with high lacunarity. 
2. Like the quantum micro-world theory, quantum cosmology can rely on the specific mega-world equation 
having a methodological unity with quantum postulates of Planck and de Broglie. Early attainments of 
quantum physics were associated with the use of quantum postulates long before the formalisms of wave 
function and matrix mechanics were developed. For quantum cosmology is especially important the 
following unique methodological advantages of the Planck equation:  
- a laconic form of the least action principle 
- coordination and interrelation of the motion characteristics that provides a union of discrete corpuscular and 
continuous wave descriptions of the micro-world processes.  
3. Quantum cosmology has to be relativistic theory firstly since the universal constancy of the speed of light 
is a major result of quantum photon physics. Secondly because the constancy of the speed of light is the 
basic principle of contemporary length and time standards. On the other hand, relativistic nature of quantum 
cosmology is not governed by Lorentz transformation group or consequences of the principle of the speed of 



light constancy in various inertial reference systems with related relativistic mechanics. Of particular 
importance for cosmology are the following features of relativistic ideology:     
- universal constancy of the speed of light everywhere in space and in all epochs of the universe evolution   
- quantum cosmology requires a relativistic interpretation of the mass and energy relations in cases of the 
energy comparable with energy equivalent of rest mass. 
 Any wave- or statistical analogies between quantum cosmology and quantum microcosm theory 
would be ill advised. Unlike multiple microcosm statistical ensembles, the universe is unique. Probability 
theory axiomatic and statistics are inapplicable for unique universe. Cosmology is also a unique sphere of 
natural science with the observers not outside of the object under investigation but inside it and participating 
in its evolution. Quantum cosmology shares with the quantum theory of microcosm the dualism of 
continuous space-time and physical fields and the presence of discrete matter concentrations of finite 
volume. In quantum physics this duality is represented by conjunction of discrete quantum parameters of 
micro-objects with continuous wave-functions in the phase space. In quantum cosmology the discrete-
continuous dualism would be reflected by duality of the motion description in the evolution of the universe 
as a unified physical object. 
 

Quantum equation of the universe evolution 
 
 Cosmology describes expanding universe with non-stationary metrics defining intervals of the type:  
 

2 2 2 2= − +ds c d a drτ 2                                                                                                   (1) 
 
The dimensionless scale-factor ( )a τ  defines variations of space intervals relative to the constant standard 

0R : 0( ) ( )r a Rτ τ= . In the space-time with interval (1), the speed of light defined as coordinate velocity at the 
geodesic line with zero interval  appears as variable: ( 0)ds =
 

( )
dr c constd aτ τ= ≠                                                                                                 (2)    

 
The speed of light is invariable and can be regarded as a universal constant only at the world-lines with 
Minkowski metric using Newtonian time t  and determining the interval: 
 

2 2 2ds c dt dr= − + 2                                                                                                       (3)  
 
Therefore, the use of non-stationary metrics with interval (1) in cosmological models contradicts a 
conception of the quantum photon physics asserting universal constancy of the speed of light in vacuum. The 
photon velocity equation (2) can be transformed using the scale-factor 0( ) ( )a r Rτ τ=  to: 0dr d cR rτ = . A 

condition of the constancy of the speed of light on the geodesic line then looks like: 0
rdr cR constdτ = = . 

Integrating this equation with initial condition 0 : 0rτ = = , we obtain the relation: 2
02r R cτ= . Thus, a 

condition of the constancy of the speed of light in a non-stationary universe with arbitrary time-dependence 
of the scale-factor results in the following relation for space- and time intervals: 
 

2r τ∝                                                                                                                         (4) 
 
 For density dependence of the chemical potential: nμ ρ∝  the pressure-density relation is defined by 
the equation of state (see e.g. [8, 9]): 
 

1np ρ +∝                                                                                                                      (5) 
 
For a relativistic matter 1 3n =  and the total energy of the matter with the equation of state (5) is defined by 

the relation: 
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energy of the relativistic matter, including the energy equivalent of rest mass, will look like: 



 
22 3 02u

GmE mc E r= + − =                                                                                      (6) 

 
Here uE  is the internal energy including kinetic energy of moving subsystems. As virial theorem affirms 
that: 22 3 4u GE U Gm= − = r  , the relation (6) can be transformed to:  
 

22 3 04
Gmmc r− =                                                                                                     (7)  

 
From this energy balance one can derive the mass density 33 4m m V m rρ π= =  defined as an extensive 
parameter for finite volume and mass: 2

m ñ Grρ π= 2 . Inserting Eq. 4 into this relation one can get: 
 

m constρ τ =                                                                                                                (8) 
 
 In relativistic methodology, the energy conservation law generalizes the mass conservation law, 
accounting for example possible mass and energy transformations with changing mass defect in the 
structures of interacting elements. Conversion of the mass density to energy density Eρ  with the use of the 
mass energy equivalent:  will bring Eq. 8 into the form: 2

E mcρ ρ=
 

E constρ τ =                                                                                                                (9) 
 
 It must be remembered that densities in Eqs. 8, 9 are defined, as opposed to intensive parameters 
representing continuous physical fields, as the average densities of a finite structure, i.e. as ratios of 
extensive characteristics: energy, mass and volume. The use in Eqs. 8, 9 mass- and energy densities defined 
as extensive average characteristics of finite structures allows their application in description of the evolution 
of heterogeneous matter- and energy distributions in the universe. However, the extensive nature of average 
mass- and energy densities prevents their use in the differential thermodynamic relations.  
 

Quantum cosmological model 
 
 In cosmology the term “cosmological model” is used to name equations describing the scale-factor 
variation in the process of universe evolution. A doctrine of “expanding” space of the universe 

0( ) ( )l a lτ τΔ = Δ  with monotone increasing scale-factor ( )a τ  together with a condition of the constancy of 
the speed of light: 0 0; ;l c l c c constτ τΔ = Δ Δ = Δ =  lead to the relation: ( ) 0( ) aτ τ τ τΔ = Δ . This relation 
suggests that time also “expands” along with the space in the course of universe evolution. While a term 
“space expansion” is a common cosmological term today, the somewhat clumsy term “time expansion” is 
better to replace with a more accurate term “deceleration of the course of time”. The course of time is 
defined as a value 1τ −Δ , converse to the chosen time standard τΔ . Increasing time standard corresponds to 
decreasing course of time and thus to deceleration of the course of time. The course of time concept was 
probably first formulated by Einstein and Minkowski in their pioneering works in the relativity theory. The 
term “course of time” was later favored by J. Synge [12] and N.A. Kozyrev [15]. 
 The decelerating, expanding time cannot be Newtonian time commonly used by natural science as 
invariable homogeneous continuum. The time displaying a deceleration in the process of universe evolution 
is referred to in this article as “physical”. The term “physical time” is justified by analogy with the term 
“physical vacuum” used by quantum physics instead of the old classical concept of “emptiness” as an 
abstract three-dimensional mathematical continuum. Quantum physics defines vacuum state by fluctuations 
of interacting quantum fields. These fluctuations correspond to zero-oscillations in quantum mechanics and 
govern multiple transformations of virtual micro-particles resulting, in particular, in physical vacuum 
polarization. The fluctuation spectrum change and vacuum polarization in volumes with electro-conducting 
boundaries are made evident by Casimir’ macroscopic forces, independent of masses, charges or any other 
coupling factors. 
 Since modern physics accepts a conception of non-stationary space-time, a principle of the constancy 
of the speed of light and quantum postulates, the decelerating time rightfully can be referred to as “physical”. 



Similar to the physical vacuum theory, our conception of the cosmological deceleration of the course of time 
is substantiated with relativistic and quantum ideology. Physical time is henceforth symbolized by τ , 
Newtonian time by , with t a da dτ′ =  and dtdaa /=& . 
 A condition of the constancy of the speed of light allows to obtain from equivalence of (1) and (3) 
the coupling equation for τ , and t : 
 
d adt
τ =                                                                                                                   (10) 

 
Notice that this equation can be derived with the condition 0dr = , i.e. for unmoving objects. From the Eq. 10 
it follows that all characteristic intervals of physical time τ , used in non-stationary metrics with interval (1) 
and  monotone increasing scale-factor, will grow with respect to the uniform and invariable Newtonian time 
scale. The equation describing the scale-factor growth can be derived after transformation of (4) using the 
scale-factor definition :0r aR= 2

0( )aR τ∝ . Differentiation of this relation with respect to τ  leads to: 
 and differentiation of this equation in its turn gives: a a const′ =

 
2 0a a a′′ ′+ =                                                                                                              (11) 

 
 This equation of quantum cosmological model can be also derived from the Eq. 9. Taking into 
account the change of dimension scales of basic units in a non-stationary universe: , 0[ ] [ ]l a l=

0[ ] [ ]aτ τ= , , Eq. 9 can be written as: 0[ ] [ ]m a m= 2 2 3
0 0E mc m a l consρ τ ρ τ τ= = = t , or 2a const τ= ⋅ . 

Differentiation of this relation with respect to τ  leads to: a a const′ =  and repeated differentiation gives the 
Eq. 11. 
 Equation (11) describing scale-factor evolution in quantum cosmological model can be represented 
in traditional for theoretical cosmology form, defining cosmological deceleration parameter qτ  for physical 
time: 
 

2 1aaq aτ
′′= − =′                                                                                                       (12) 

 
 In addition to Eqs. 11, 12 the quantum cosmological model should include the proper frame of 
reference and initial conditions. Instruments for observations whose functions are described by either 
quantum or classical physics play an important role in cosmology. In quantum physics a conception of 
“observational relativity” is used to underline the leading role of “classical instrument” in quantum theory 
[4]. In cosmology a function of “classical instrument” of quantum physics executes the frame of reference 
with special emphasis on zero-time reference point. As quantum physics methodology depends on the 
properties of “classical instrument”, quantum cosmology relies on a frame of reference. 
 Processing their observational data for most bright stars in the galaxies during the 1920s, Knut 
Lundmark and Edwin Hubble calculated the spectral shifts from the same formula as used by astronomers 
today: *( )pz *λ λ λ λ= Δ = − . Here *λ  is a standard laboratory wavelength corresponding to observed 

spectral line pλ . The use of the scale-factor allows writing this formula as:  
 

* * *

* *

( ) ( ) ( )
1

( ) ( )
p p r

r r

a t a t a t
z

a t a t
λ λ λ λ

λ
λ λ
− −

= Δ = = = −p

r

                                                      (13) 

 
Here  is the moment of radiation emission. The index "p" hereinafter identifies present-day values of 
cosmological parameters. For expanding universe with  the relation  holds and spectral 
shift is “red”, i.e. spectral lines shifting towards the long-wave side of the spectrum. Since the days of 
Lundmark and Hubble, cosmological redshifts have been computed using observed spectral wavelength 

rt

p rt t≥ ( ) ( )pa t a t≥

pλ  
at the reception time i.e. at our epoch. In comparing redshifts in spectra of various cosmic objects, the value 

 is a variable with  determined by the laboratory standard. As the scale-factor 
allows the arbitrary multiplier, it is possible to set 

* ( )p a tλ λ= p
* ( )ra t constλ =

( ) 1ra t = . In this case, the expression (13) becomes:  



 
1 1 ( pz a t )λΔ + = + =                                                                              (14) ( ) 1a t z= +

 
The emission reception time  in this expression is used as the current time and independent variable. The 
emission time:  is the zero-time reference point. 

pt
0rt =

 It would be convenient to have a single, "absolute" time scale with zero-time reference point at a 
hypothetical initial moment of the universe evolution. However, we have no reasons to find emission times 
for various space objects on this time scale. One can only assume that: ( ) 1pa t = , believing that zero-time 
reference point corresponds to: . For this frame of reference Eq. 13 defining the redshift looks 
like: 

( 0) 0pa t = =

 
* *

*

( ) 1( ) 1( )( )
p p r

rp r

a t
Z t a ta t

λ λ
λ
−

= = −               1
1a Z= +                                                (15) 

 
This formula uses emission time  as a current time and independent variable. Initial countdown for rt ( )Z t  
corresponds to the hypothetical universe evolution start-time 0t = . While often proving useful in 
transformations of cosmological model equations, the expression (15) is inconsistent with the Eqs. 13, 14 
applied to interpret the astrophysical observations of luminous cosmic objects. 
 These two different definitions of the cosmological redshift realize two possible scale-factor 
normalizations to unit: at reception time – (15) and at emission time – (14). The values Z and z may only be 
considered as about the same value when ;Z z 1<< . The formal properties of parameters Z and z are 
different, corresponding, in particular, to different zero-time reference points for the current time.  
 This analysis indicates that detailed mathematical models in quantum cosmology should use the 
frame of reference with zero-time reference point corresponding to the moment of emission. This frame of 
reference, corresponding to the redshift formula (14), also is used in the practice of astrophysical 
observations. The frame of reference with zero-time reference point at the hypothetical moment of the 
universe birth, corresponding to Eq. 15 for redshift, can be successfully used in the models, describing 
evolution of the universe as an integral object. 
 Solutions of Eqs. 11, 12 with initial conditions, corresponding to different renormalizations of scale-
factor are the following (see e.g. [6] i. 6.125): 
 

00 : 1,a a a Hτ ′ ′= = = =              ( )1 21 2a Hτ= +                                                       (16)   

00 : ,a a a a0τ ′= = = ′ )                   (
1

2 2
0 0 02a a a a τ′= +                                                 (17)   

 
Eq. 17 shows that a point { 0, 0}aτ = =  is the peculiar point for Eqs. 11, 12. Using a transformation rule for 
derivative: a da d d dtτ τ= ⋅&  and Eq. 10 one can derive from Eqs. 11, 12: a const=& . For initial condition 

 this integrates to:  and after substitution of (14): 0 : 1t a= = 1a = + Ht ( ) 1a t z= +  it gives a common form 
of Hubble law with Newtonian time: 
 
z Ht=                                                                                                                       (18) 
 
 Integration of Eq. 10 with initial condition 0 : 0t τ= =  after substitution of the Eqs. 14, 18 in the 
form:  gives the algebraic coupling relations for physical and Newtonian time: 1a H= + t
 

2 2t Htτ = +                                                                                                            (19) 
1 1 2[(1 2 ) 1]t H Hτ−= + −                                                                                           (20) 

 
When Eq. 20 is substituted in Eq. 18 we find the formula of Hubble law with physical time:  
 

1 2(1 2 ) 1z Hτ= + −                                                                                                    (21) 



 
 The Eq. 4 establishing quantum cosmological model (11, 12) is a laconic description of the universe 
evolution:  
 

2R τ∝                                                                                                                      (22) 
 
Square of the growing universe radius is proportional to the universe physical age. 
 

Cosmological scales and Hubble parameter  
 
 Estimates of the cosmological scales of time (“universe age”) and length (“universe radius” or 
“horizon”) can be deduced from the Eq. 19. Universe age is estimated in Newtonian time from the relation 
(14): , assuming that  and, accordingly, 1a = + z 0pz = 1pa = . On this assumption, Eq. 18 provides 
Newtonian age of the universe: 
 

1 5.081 10pt H −= = ⋅ 17  s  = 16.131 Gyr                                                                    (23) 
 
Here and further on for the calculations of cosmological scale values a theoretical formula for the Hubble 
constant (29) is used. Physical age of the universe, corresponding to Eq. 23 is derived from the Eq. 19: 
 

2 13 3 7.614 102 2 2H p p p
HT t t t H −= + = = = ⋅ 17

H

 s = 24.1 Gyr                                   (24) 

 
The relation HR cT=  together with Eq. 24 provides the estimate of the universe radius:  
 

283 2.283 102H H
cR cT H= = = ⋅  cm                                                                         (25) 

 
The Eq. 7 provides the estimate of the universe mass scale: 
 

2 3 564 2 4.1 103
H

H
c R cM G GH= = = ⋅  g                                                                   (26) 

 
Providing that the quantum evolution equation (8) is valid for cosmological scales (24 - 26) then: 

33 4 2 3mp H H H HT M T R H Gρ π= = π . This relation allows to estimate the constants in Eqs. 8, 9: 
 

6 32 2
3 6

32 3 5.630 103 8 8
e

E T
e

c mc Hk G r eρ τ π π π= = = = = ⋅hh  J s cm-3                     (27) 

 
12

2 2 6.264 10E T
m

k
c c

ρ τρ τ −= = = ⋅  g s cm-3                                                              (28) 

 
Index “T” for quantum constant  underlines a close connection of quantum cosmological model with a 
conception of physical time and cosmological deceleration of the course of time. 

Tk

  Physical meaning of Eq. 27 can be clarified by comparison with Planck equation, which can be 
interpreted as a definition of the Planck constant for a minimal action, corresponding to the electron angular 
momentum projection: 2E t constΔ = =h (J s), where 2t π ωΔ =   is the period of oscillation associated with 
the micro-particle. Planck equation therefore postulates discreteness and a constancy of the minimal action (J 
s) in microcosm. The same analysis demonstrates that Eq. 27 postulates a constancy of the action density (J s 
cm-3) in mega-world. Planck equation can be transformed to a relation of the type (27) on the assumption of 
the existence of a finite volume  where quantum action is defined: 0PlV > 2EPl Pl Plt E t V V constρ Δ = Δ = =h . 
It may be also suggested that quantum action is defined in the same volume as the elementary charge, i.e. in 
the sphere with electron radius: 34Pl eV rπ= 3  (here 2 2 2.818 10e er e m c 13−= = ⋅  cm is the classical electron 



radius). Equality of Planck action density and action density (27): 22 2 3PlV c H Gπ=h  allows one to define 
the Hubble constant only using fundamental constants: 
 

4 3
18

2 3 6

99 1.970 10
16 16

e

e

G c mGH
c r e

−= = = ⋅
hh  s-1 = 61.6 km/s/Mpc                                    (29) 

 
This theoretical value of the Hubble constant corresponds well to the Hubble parameter observational 
estimations. In 1927 Jorge Lemaitre using less than ten galaxy redshifts evaluated Hubble constant as 625 
km/s/Mpc. Edwin Hubble himself estimated this parameter in the 1930s as 559 km/s/Mpc. In the 1940s, 
astrophysicists preferred the value around 200 km/s/Mpc. In 1970 - 1990s summarizing of all published data 
on galaxy redshifts had led to the estimation: 50 – 80 km/s/Mpc. In 2000 the multiple data of the Hubble Key 
Program (HKP) of Cepheid survey for galaxies at distances below 20 Mpc ( 0,1z < ) estimated the Hubble 
constant as 72  km/s/Mpc. A recent international survey for the type Ia supernovae with redshifts 

 estimated the present value of Hubble parameter as 65
8±

0.1 1z = ÷ 7±  km/s/Mpc.  In 2006 Alan Sandage, 
recognized redshift expert estimated the Hubble constant as 62.3 1.3±  km/s/Mpc [10]. 
 The average mass and energy densities of the universe can be defined using cosmological scales (25, 
26) and Eq. 29 for the Hubble constant: 
 

22 30
4 6

94 8.217 109 64
H

m
H e

M GH
V G c rρ π π

−= = = = ⋅h  g cm-3                               (30)  

 
2 2 22 9

2 6
4 9 7.385 109 64E m

e

c H Gc G c rρ ρ π π
−= = = = ⋅h  erg cm-3                              (31) 

 
 Planck equation causes the self-consistence of quantum physics models providing a conjunction of 
discrete corpuscular and continuous wave descriptions of a motion in microcosm. The self-consistency of the 
fundamental triad of quantum particle characteristics is determined by Planck constant. Substituting into 
Planck equation: 2 2E p m h= = t  of the particle momentum defined by de Broglie equation: p hk h λ= =  
results in the quantum self-consistency condition: 2 2m t hλ = . The analogous self-consistency condition for 
cosmological characteristics represents the quantum equation of the evolution (27). With the use of the 
relation 23 4E mc r3ρ π=  Eq. 27 can be transformed to: 
 

11
3 2 3

8 2.622 109 2 e

m H
Gr c r

τ −= = = ⋅h  g s cm-3                                                     (32)        

                                                 
This relation defines self-consistence of the matter distribution parameters in the process of the universe 
evolution. 
 Planck equation, defining a minimal action 2h  is in fact a laconic formulation of the least action 
principle in the microcosm. Quantum equation of the universe evolution (27) having tight methodological 
unity with Planck equation also can be considered as brief formula of the least action principle in mega-
world. 
 Odd feature of Standard model is the absence of fundamental electromagnetic field constants, even 
though all astrophysical data are exclusively derived from analysis of various forms of electromagnetic 
radiation. Quantum cosmology restores the role of fundamental electromagnetic field constants in the 
universe evolution model. 
 

Self-similarity of the universe and magic great numbers 
 

 Dimensional analysis in cosmology came to attention of astronomers after Dirac applied Eddington' 
“magic great  numbers” to validate a new model of the universe evolution. Eddington noticed that 
dimensionless relation of electromagnetic and gravitational interactions between proton and electron 

2 2,3 10I e pEd e Gm m= ; 39⋅  is close to a value of the relation between estimated universe radius and 

classical electron radius: 403,6 10II eEd R r= ⋅; . It was also noticed that a relation between square root of 



estimated universe mass and proton mass is about the same value: ( )1 2 397,7 10III pEd M m= ⋅; . While 
Dirac’ hypothesis has gone down in history, the unusual close coincidence of Eddington' magic numbers still 
defies all attempts of explanation. 
 Representation of the Hubble constant as a combination of fundamental constants (29) provides the 
relations of characteristic scales for mega- and micro-world, defined with a unique combination of 
fundamental constants. To gain an insight in the general mechanism of forming cosmological scales, we 
should consider the methods of introducing scales basing on universal constants. Thus, to use constants 

 for a mass scales, one may employ: electron mass  and proton mass , the relation 2{ , , , , }e pc G q m m em pm

( )1 22
Gm e G=  and scales of the type: 2

Gi im e Gm∝ . In the same manner, one can use mass equivalent  

corresponding to electron electromagnetic energy 
Gem

2
e eE e r= considered as internal electron energy. Energy 

of the electron gravitational interaction with a relativistic object with mass  at a distance  is defined by 
the relation (see (6): 

Gem er
3Ge Ge e eU Gm m= − 2r . In accordance with the virial theorem 2e GeE U= −  and, 

therefore  2 3e Ge ee r Gm m r= 4 e . This relation defines the mass scale: 
 

2 154 5.060 103Ge
e

em Gm= = ⋅  g                                                                              (33)  

 
This mass scale can be regarded as an estimate of the relation between forces of electromagnetic and 
gravitational interaction.  
 Using mass scales, one can derive corresponding length scales by applying the formulae: 

2
i il e m c∝ 2  or  2

j jl Gm c∝ . This scale set includes, in particular, the classical electron radius: 
 

2 13
2 2.818 10e

e

er m c
−= = ⋅  cm                                                                                 (34) 

  
Time scales can be derived from length scales, using the formula i il cτ ∝ , for example:  
 

2 24
3 9.400 10e

e

e
m cτ −= = ⋅  s                                                                                    (35) 

 
This scale corresponds to the duration of light travel a distance equal to the classical electron radius (34). 
 Using the above mentioned scales, one can develop multiple dimensionless relations and their 
functions. Some relations appear as indeed great numbers, for example those with denominator containing 
gravitational radiuses. Among them is the famous Eddington number , corresponding to the 
relation of the classical electron radius to the proton gravitational radius.  

392,3 10IEd = ⋅

 Great cosmological numbers can be also derived as dimensionless constant combinations from 
relations: ; ;H i H i H iM m R l T t . Dimensional analysis of fundamental constant groups, for example, 

 allows to produce scores of scales for the fundamental triad, in their turn permitting 
generation of hundreds dimensionless complexes. Including of the cosmological scales { ,  into 
the constant set will cause a many-fold increase of the number of dimensionless complexes. The hundreds 
dimensionless numbers thus produced can be used to find scores of triple great numbers coinciding in value 
to various degrees of accuracy. Of particular importance, however, is the scale triad in the system 

 with relations not approximate, like in Eddington’ numbers, but exact:  

2{ , , , , , }e pc G e m mh
, }H H HT R M

2{ , , , , }ec e m G H
 

2 3
4083 8.105 10

2 3
eH H H

T
Ge e e e

r ccM R TK m r t r H G
= = = = = = ⋅

h
                                     (36) 

 
 These equalities determine the dimensionless self-similarity criterion  as a relation of 
characteristic mega- and micro-world scales which, being defined by a unique dimensionless value, are 
invariable during the universe evolution. Therefore, the universe in the course of evolution retains, despite 

TK



monotone change of the scale-factor, the physical self-similarity with constant relation of mega- and micro 
world scales. 
 

 Fractal dimension of large-scale structures in Metagalaxy: D = 2  
 
 During the last quarter of 20th century rapid progress of  instruments for astronomical observations 
and achievements of computer technologies gave birth to new statistical techniques in investigation of 
“three-dimensional” distribution of matter in Metagalaxy. A conversion of two-dimensional projection of 
large-scale structure in Metagalaxy on the celestial sphere to a three-dimensional picture requires the 
estimation of third coordinates, using the galaxy redshifts with consequent calculation of their distances from 
Hubble law: r cz H= . No more than a thousand galaxy redshifts were measured in the 1980s, more than a 
hundred thousand in the 1990s, and more than a million to date. It is well to bear in mind, however, that the 
three-dimensional picture of galaxy distribution obtained with the use of Hubble law is not the true three-
dimensional section of the 4-dimensional space-time at some fixed moment. Hubble law only permits to 
estimate the distance to galaxies by line of sight for retrospective moments of time. Thus, due to finite speed 
of light the distribution of galaxies at a distance, let us say, around 300 Mpc is now seen as it was almost a 
billion years ago. Therefore, the “three-dimensional” galaxy distribution examined with statistical techniques 
consists of a set of two-dimensional projections on celestial sphere of the true three-dimensional galaxy 
distributions but for a set of different consequent epochs. 
 The use of Hubble law for estimation of third coordinates in statistical analysis of galaxy distribution 
presumes employment of the relation: r cτ= . With characteristic time from this relation: r cτ =  the Eq. 28 
transforms to: 
 

1 1 12 1.878 103
T

m
kcH r rG cρ 1rπ

− − −= = ⋅ = ⋅ −⋅  g cm-3                                             (37) 

 
For self-similar fractals, a special Hausdorf fractal dimension D can be introduced by the relation: , 
corresponding to mass density (see e.g. [1]): . A comparison of this relation with Eq. 37 shows 
that Eq. 37 describes the mass density of cosmic structures with fractal dimension: 

Dm r∝
(3 )D

m rρ − −∝

 
2D =                                                                                                                        (38)   

 
Therefore, statistical methods of galaxy distribution analysis, employing Hubble law to define third 
coordinates, should disclose the fractal dimension of distributions 2D = . 
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Fig. 1 Observational data from different galaxy catalogues [7] compared with theoretical equation (37) (dotted line). 

 
 Fig. 1 gives comparison of formula (37) with results of statistical analysis of galaxy distributions [7]. 
Different marks at figure correspond to analyses with data from different galaxy catalogues. As the Fig. 1 
demonstrates, theoretical formula (37) (dotted line) agrees satisfactorily with observational data at least up to 
a distance scale around 300 Mpc. 
 

Universe evolution as the global energy source  
 
 Standard cosmological model can not explain from where the present immense mass of the universe 
appeared if the initial Planck mass of the newborn universe was infinitesimal:  g. Increasing 
radius of the expanding universe with invariable mass should result in gradually decreasing universe 
gravitational energy. In the relativistic ideology with variable number of particles and where the energy 
conservation law includes energy equivalent of potential mass change, decreasing gravitational energy in an 
isolated system can be only compensated by the increase of internal energy and mass. That is, at least in part, 
by generation of the new matter. Characteristics of possible universe mass growth can be estimated from 
analysis of the relativistic relation (7) for an isolated system. From this relation and the evolution description 
in the form (4, 22) it follows that the relation defining universe mass growth is: 

52.2 10Plm −= ⋅

 

( )
1 16 2 2

2
8

3
cM HG τ=                                                                                              (39) 

 
Average rate of the universe mass growth can be estimated with the use of cosmological scales (24 – 26): 

34 3 5 10M H HQ M T c G= = = ⋅ 38  g s-1. To gain a visual impression of the universe mass growth, one may use 
an estimate of the mass growth rate in a unit of Metagalaxy volume: 3 48 27 1.1 10MQ V H Gπ −= = ⋅ 7  g s cm-

3. This mass growth rate means, for instance, that in the whole volume of the Earth during all its history 
could appear no more than  g of hydrogen, not enough to fill a child balloon. The relative universe 
mass growth also seems insignificant: 

32 10−⋅
182 3 1.3 10M M HQ M Hδ −= = = ⋅  s-1. Yet in the whole Metagalaxy 

this mass growth means the birth of new cosmic objects with the total mass of more than  solar masses, 
i.e. of the same order as masses of globular star cluster or a dwarf galaxy, emerging every second. 
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 The estimated characteristics of the universe mass growth discussed above by no means suggest 
uniform matter synthesis across the Metagalaxy. It seems rather that such high-energy processes occurred 
and, most likely, still proceed in relatively few centers, like quasars or active nuclei of massive galaxies. 
 The universe evolution results in the universe mass growth and in accordance with relativistic 
ideology in a growth of the universe internal energy. Total power of this global process can be estimated as 
current value of the time-derivative of (39):  
 

( )
1 110 522 522

2
2 2( ) 2.420 1033p H

p H
T

d c cW c M Td GHGττ
−

=
= = = = ⋅  W                    (40) 

 
 Non-stationary state of the universe appears as a global source of energy, and we could try to 
identify “evolutional” energy effects, entering cosmological terra incognita. Probably major part of the 
evolutional energy consumed by the processes of the new matter synthesis, but, alas, we know nothing about 
these processes. We may suggest that some fraction of the evolutional energy is absorbed by cosmic objects, 
in particular, by planets. Local non-stationary state of the space-time may be allegorically described by the 
local cosmological space “expansion” and by apparent “growth” of massive cosmic bodies with consequent 
their gravitational energy decrease [14]. For an isolated massive cosmic body with the constant total energy a 
decrease of potential gravitational energy during its cosmological “expansion” ought to result in the 
compensating growth of its internal energy. Cosmological “increase” of the planet radius in accordance with 
Hubble law:  must lead to decrease of gravitational energy: 0( ) (1 )r t r Ht= + 2

0 (1 )GU Gm r H= − + t , initiating 
a compensating energy transfer of the initial gravitational energy into internal thermodynamic energy. 
Defining the energy flow from the planet interior as a certain fraction of the current momentary cosmological 
change of the planet potential gravitational energy we can get: 



 
2 2

0
[ ](1 ) (1 )

p p

G
G

p pt t t t

dU d Gm HGmL Hdt dt r Ht Ht r
= =

∝ = − = ∝ −+ + U

p

              (41)  

 
Here  is the planet age. In transformations leading to Eq. 41 the relation: pt 0 (1 )pr r Ht= +  is used. The Eq. 
41 corresponds to virial theorem. The heat flow from planet interior is proportional to planet internal energy 
that in its turn in accordance with virial theorem is proportional, as demonstrates Eq. 41, to planet 
gravitational energy: .   GL U∝ −
 To estimate the proportionality coefficient in Eq. 41 the investigation of the heat flow from the Earth 
interior can be used. In the last quarter of the 20th century thousands of heat flow measurements were 
performed in different regions of our planet, and the Earth heat flow is reliable estimated as  
W (see e.g. [16]). It appears that the energy of radioactive minerals decay is not enough to explain the Earth 
internal heat flow (see e.g. review in [16]). Several independent studies showed that at present the generation 
of radiogenic energy in the Earth does not exceed 

13(4.2 4.5) 10− ⋅

131.3 10⋅  W (out of which  W in the earth crust 
and  W in the earth mantle) that totals only 30 % of the entire heat flow. Therefore, the gravitational 
component of the energy flow not related to radio-chemical processes is about  W. For 
theoretical value of Hubble constant (29) corresponding proportionality coefficient in Eq. 41 is 

 and this formula becomes:  

130.9 10⋅
130.4 10⋅

13(2.9 3.2) 10L = − ⋅

2(4.15 0.2) 10−± ⋅
 

22(4.15 0.2) 10 (4.15 0.2) 10G
mL HU r

− −= − ± ⋅ ⋅ = ± ⋅ ⋅2 HG  erg s-1                        (42)      

 
 To compare Eq. 42 with observations it is possible to use key energy parameters of the Earth and 
outer planets (see e.g. Table 4.3 in [14]). Fig. 2 represents in decimal logarithmic coordinates the comparison 
of the formula (42) (dotted line) with the estimations of heat flows based on the astrophysical data.  
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Fig 2 The observational estimations of surface heat flows (filled circles) compared with Eq. 41 (dotted line). E – Earth, U – Uranus, 

N – Neptune, S – Saturn, J – Jupiter.  
 
 Fig. 2 demonstrates a satisfactory coincidence of the formulae (41, 42) with observational data, and, 
in particular, Eq. 42 can be used for estimation of heat flows from the outer planet interiors with the error 
that does not exceed one standard deviation for the observational data. An important result of our analysis is 
the independence of the planet heat flows on the chemical and structural characteristics of planet interiors. 
Energy balances of planets governed only by their gravitational energy and by Hubble constant, defining 
global rate of the universe evolution. Quite good agreement of theoretical analysis of the planet heat 
balances, based on the estimations of the global cosmological evolution effects, with observational data may 
be regarded as one of the arguments in favor of the assumption about existence of the evolutional energy 
effects caused by the local non-stationary space-time state. 
 



Large-scale structure parameters in Metagalaxy 
 
 Quantum cosmology is attractive not only by its analysis of the unity of physical laws in the mega- 
and micro world. An advantage of quantum cosmological models is the effective description of the large-
scale structure parameters in Metagalaxy. Observational data discussed in this article suggest that all physical 
processes in a non-stationary universe evolve in the cosmologically decelerating physical time and just this 
time should be used in mathematical models of the large-scale structure of Metagalaxy. This assumption 
raises a question: how one can be certain of the physical time advantages in astrophysics if there are no 
methods of direct estimation of the time intervals between astrophysical events? 
 Mathematical models in cosmology can be formulated as the general relations: 
 

( ; ,...) 0iF t x =    ( ; ,...) 0ixτΦ =                                                                                 (43) 
 
Here ix  stands for the observable parameters of cosmic structures. To exclude time from these mathematical 
models, cosmology uses the relation between luminosity distance , estimated from apparent magnitudes, 
and the redshift, with an assumption of the speed of light constancy: 

Lr
( ;...)Lt r z c=  and ( ;...)Lr z cτ = . Using 

these relations, we can obtain from Eq. 43: 
 

( ;...)i ix f z=    ( ;...)i ix zϕ=                                                                                       (44) 
 
Comparing these relations with observational data, we can judge the correctness and usefulness of the 
concept of cosmological deceleration of the course of physical time. 
 
 Solutions of the quantum cosmological model equations (11, 12) are useful in defining relations for 
cosmological distances and redshifts. For a frame of reference with zero-time reference point at the emission 
moment Eq. 14 is valid and the following initial conditions for Eq. (11, 12) can be used:  and 1a = + z

10( 0)a aτ = = = . In this case Eq. 16 and formula Lr cτ =  define the following relations between redshift 
and luminosity distance :  Lr
 

( )
1

2
1 2 1Lrz H c= + −                                                                                               (45)      

2[(1 ) 1]2L
cr zH= + −                                                                                               (46) 

 
Using the dependence of luminosity distance (Mpc) on distance modulus Lr m Mμ = −  , Eq. 46 can be 
rewritten in the form convenient for comparison with astrophysical observations: 
 

25lg{ [( 1) 1]} 252T
c zHμ = + − +                                                                             (47) 

 
The corresponding formula for Newtonian time derived from Hubble law (18) is:  
 

5lg( ) 25H
cz

Hμ = +                                                                                                 (48) 

 
Formulae (47) and (48) are a good example of the relations (44). 
 Observational data for distant bright quasars at  and 2.5z > 28.2 0.3m

g
M = − ± m  (see e.g. Table 

A5 in [14]) can be combined with data for supernovae SNe Ia (see e.g. Table A3 in [14]) to test Eqs. 47, 48 
with theoretical value of Hubble constant (29) in the wide redshift range: 0 4.65z = − . Spectral bands of 
supernovae apparent magnitudes data (B: 0.45 mcm) and quasar apparent magnitudes data (g: 0.47 mcm) are 
almost the same and for distance modulus the following relations: 19.5Bmμ = + (supernovae) and 

28.2gmμ = +  (quasars at ) can be used. 2.5z >
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Fig. 3 The observational data (filled triangles for SNe Ia , filled circles for quasars at z ) compared with Eq. 47 (dotted curve 

1) and Eq. 48 (dotted curve 2). 
2.5>

 
Fig. 3 demonstrates that Eq. 47 matches observational data much better than Eq. 48. A difference in apparent 
magnitude estimates by Eqs. 47 and 48: 5lg(1 2)T Hm m z− = +  becomes substantial at , for example at 

 the relative divergence comes up to 11 %. 
2z >

4z =
 
 In quantum cosmology a doctrine of “expanding” space of the universe: 0( ) ( )l a lτ τΔ = Δ  with 
monotone increasing scale-factor ( )a τ  together with a condition of the constancy of the speed of light: 

0 0; ;l c l c c constτ τΔ = Δ Δ = Δ =  lead to the relation: ( ) 0( ) aτ τ τ τΔ = Δ  with unlimited extent of time intervals. 
Using the Eq. 14 to transform this relation one can get an equation defining cosmological growth of time 
intervals: 
 

0 (1 )zτ τ= +                                                                                                              (49)  
  
Here 0τ   is the time interval at . Eq. 49 suggests cosmological growth both for microscopic time 
intervals like photon periods, and quite bigger macroscopic time intervals [13, 14]. 

0z =

 Recent studies of supernovae SNe Ia (with z up to 0,85) discovered an expansion of supernova light-
curves (time-dependences of luminosity) with the growth of redshifts [3]. Fig. 4 with plotted relative 
luminosity periods kτ  of SNe Ia  corresponding to observational data (see e.g. Table A3, column 7 in [14]) 
demonstrates satisfactory agreement with Eq. 49 (dotted line), attesting to appreciably increase of the 
supernova luminosity times with the growth of distances to them. The value 0 1 0.14τ = ±  in Eq. 49 is the SN 
initial relative luminosity time derived from the observational data at .  0z →
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Fig. 4  The agreement of Eq. 49 (dotted line) with observational data for supernovae  SNe Ia. 

 



 A concept of cosmological deceleration of the course of physical time explains the phenomenon of 
the supernova luminosity time growth in the same way as the increase of photon period in the redshift 
phenomenon: all process durations in the past seem longer in our epoch due to cosmological deceleration of 
time and the increase of time standards. But the increase of SN luminosity times differs fundamentally from 
the redshift phenomenon. The photon period phτΔ  (around 152 10−⋅ s) is a typical microscopic quantum 

parameter, and the redshift can be explained, in accordance with the quantum relation ph cτ λΔ = , by alone 
photon wavelength growth in the expanding universe space. On the other hand, the SN luminosity period is 
usually around four weeks i.e. about  s, being by 21 orders of magnitude over the photon period and 
belonging not to micro- but to macro parameters. No reasonable characteristic length could be found for this 
macro parameter to explain its growth by the expanding universe space. The phenomenon of increasing SN 
luminosity times with the growth of the redshifts provides an impressive evidence of the macroscopic time 
interval enlargement due to cosmological deceleration of the course of physical time. 
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 A constancy of the speed of light enables to describe any length with the relations: Ld cτ=  and 

0Ld c 0τ= . Using these relations, Eq. 49 can be transformed to: 
 

0 (1 )L Ld d z= +                                                                                                          (50) 
 
This relation allows to suggest not only cosmological growth of microscopic parameters like the photon 
wavelength, but the increase of apparent macroscopic dimensions of cosmic structures like angular diameters 
when distances between observer and an object grow up. Apparent size of a cosmic object, for instance the 
luminosity radius LR , will increase according to (50) with the growth of a distance from the observer. Using 
Eqs. 50 and 46 one can derive the following relation for the angular dimension:  
 

2

1
(1 ) 1

L

L

zRtg r z
θ θ +

= ∝
+ −

;                                                                                   (51)   

 
To test this relation observational data published in [2] can be used. The authors collected and analyzed 
statistics of 25 elliptic galaxies (Table A4 in [14]) at various distances at 0,00317 1,175z = ÷ . Fig. 5 
illustrates a comparison of Eq. 51 with published observational data [2] in decimal logarithmic coordinates, 
using angular galactic radii θ  in radians. As one may see there is a satisfactory agreement of the 
observational data with theoretical estimation of Eq. 51. 
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Fig. 5 Elliptic galaxy observational data (filled circles) compared with Eq. 51 (dotted line).  
 

Slow increase of apparent magnitudes with the growth of redshifts and a complex form of quasar 
parameters domain in {  diagram lead to an opinion that Hubble law in the forms (18) or (21) 
cannot be used in analysis of quasar observational data. However, Hubble law appears a quite effective tool 

lg( ) }cz m−



if additionally the influences of quasar dimension and structure are taken into account. It helps to avoid the 
overestimated quasar luminosities and reveals statistical parameter relations hidden in the exotic form of 
quasar domain in {l  diagram. g( ) }cz m−
 It can be suggested that the estimation of quasar luminosity depends on its volume and apparent 
angular diameter, since the main source of quasar luminosity is linear structure of the quasar plasma jets. 
Therefore luminosity should be directly proportional to the quasar  volume  and inversely 
proportional to its angular diameter: 

3
LV d:

3
0 LL L d θ= . This relation after use of Eqs. 50, 51 transforms to: 

 
3 2

0 0 (1 ) [(1 ) 1]LL L d L z zθ= = + + 2 −                                                                        (52) 
 
Here  is the quasar luminosity at a standard distance of 10 pc from the observer, i.e. at . The relation 
between luminosity and observed radiation flux is described by: 

0L 0z ;
2

LF L r= . Using Eqs. 46 and 52, the 
relation for the quasar flux can be transformed to: 
 

2 2 2

2 0 2 2 2

4 (1 ) [(1 ) 1]
[(1 ) 1]L

H z zLF Lr c z
+ + −

= =
+ −

                                                                     (53)  

 
The formula for quasar apparent magnitudes can be derived from the definitions of apparent and absolute 
magnitudes: 02,5lg( ) 25m M F L= − + . In this formula luminosity distance is estimated in Mpc. After 
introduction of Eq. 53 and the value: 2 2lg(4 ) 6.785H c = − (with theoretical Hubble constant (29), this 
formula for quasar apparent magnitudes becomes:  
 

2 2 25lg[(1 ) 1] 2,5lg{(1 ) [(1 ) 1]} 41.96m M z z z= + + − − + + − +                                (54)  
 
The second term in this formula accounts for the decrease as  21 Lr  of the radiation flux. The third term 
describes the influence of quasar volume and plasma jet size on its apparent magnitude. 
 A possible approach to compare Eq. 54 with observational data for quasars is to use the calculated 
from catalog SDSS DR6 (Sloan Digital Sky Survey. Data Release 6) [11] average magnitudes rm (r: 0.62 

mcm), gm  (g: 0.47 mcm) and z  for intervals, for example: 0.1zΔ =  (see e.g. Table A5 in [14]). A 

differences between rm  and gm  is less than their standard deviations at least up to 4z =  and due to it 

as average apparent magnitudes the values of ( r gm m m= + ) 2  can be used. Fig. 6 illustrates a 
comparison of the averaged observational data (filled circles) with the Eq. 54 (dotted curve 1). Estimations 
yield the average absolute quasar magnitude 23 0.2mM = − ± m  for quasars with redshifts in the 
range 0 2.5z = ÷ , which is less than often published estimates and corresponds to absolute magnitudes of 
large galaxies.  
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Fig. 6 Quasar observational data (filled circles, corresponding to average apparent magnitudes, plotted with interval ), 
compared with Eq. 54 (dotted curves 1) and Eq. 55 (dotted curve 2).  

z 0.2Δ =

 
At quasar dimensions and structure don’t influence the estimates of their apparent magnitudes and 
quasars can be considered as radiation point-sources. The magnitude-redshift dependence at  is 
described by Eq. 54 without the third term:  

2.5z >
2.5z >

 
25lg[(1 ) 1] 41.96m M z= + + − +                                                                             (55)  

 
Selection effects are of crucial importance for large distances and at  only high-luminosity quasars 
with absolute magnitudes 

2.5z >
28.2 0.3mM = − ± m  (dotted curve 2 in Fig. 6) are observable. Eqs. 54, 55 enable 

one to estimate quasar luminosities, using the relation: lg lg ( ) 2.5L L M M= + −e e .Analysis of the catalog 
data [31] indicates that all quasars fall into the two main groups: 
- quasars at  (more than 90 % of data in [31]) with absolute magnitudes in the range: 

 with the mean value 
2.5z <

22.6 23.5mM = − ÷ − m 23 0.2mM = − ± m

m

, corresponding to luminosities 

 W, typical for large galaxies  37(3 8) 10L = − ⋅
- distant bright quasars at  with absolute magnitudes in the range:  with the 
mean values: 

2,5z > 27.7 29.8mM = − ÷ −
28.2 0.3m

g
M = − ± m  and 29.1 0.4m

r
M = − ± m , corresponding to luminosities 

 W. 39(4 27) 10L = − ⋅
 

Spectral asymmetry of the cosmic microwave background radiation 
 

Quantum cosmology considers the microwave background phenomenon as a result of the universe 
self-similarity during the evolution and a specific characteristic of the universe matter state. To analyze 
parameters of the microwave background a methodology of quantum scaling may be used. Scaling is 
effective when no parameters with the dimension of a length are involved. Therefore, our analysis employs 
the quantum energy density-time dependence (27) of the form: i i Tkρ τ = . This equality for example allows to 
use for two cosmic subsystems the following relation: 

 
eHMB

E ep

τρ
ρ τ=                                                                                                        (56) 

  
Here  is the average energy density and Eρ HMBρ  is energy density of the high-frequency microwave 
background (HMB). Thermodynamic characteristics of cosmic fluid are determined mainly by two 
subsystems: molecular, atomic and ionized hydrogen and helium and free electron and proton gas amounting 
to more than 98 % of the total universe mass. Scaling properties of electrons, nucleons and nucleon-electron 
structures in cosmic plasma with constants { ,  are described by three sets of quantum scales: , }em e h



1. Ce em cλ = h  (Compton electron wavelength) and the time scale: 2 21.288 10e Ce ec m cτ λ −= = = ⋅h 1  s. 
2. 2

Ba m= h 2
ec  (radius of the first Bohr orbit) and the time scale: 3 4 12.421 10ep em eτ −= = ⋅h 7 s. 

3. Cp pm cλ = h  (Compton proton wavelength) and the time scale: 2 27.016 10p Cp pc m cτ λ −= = = ⋅h 5  s. 
After substitution of first two time scales into Eq. 56 it takes the form: 
 

4 5
2 2 5.320 10eHMB

E pe

e
c

τρ
ρ τ

−= = = ⋅h                                                                    (57) 

 
Interestingly, the right-side part of this relation includes, in addition to the speed of light, the Kozyrev 
constant 2e h  with the dimension of velocity, which Kozyrev applied in 1958 to evaluate “the course of 
time” in our world [15]. The use of the average energy density estimation (31) allows deriving from Eq. 57 a 
relation for the HMB energy density: 
 

4 13
2 2 3.929 10HMB E

e
cρ ρ −= = ⋅h  erg cm-3                                                                 (58) 

 
The HMB temperature is defined from this energy density with the use of Stephan-Boltzmann constant 
( * 14 7.566 10cσ σ −= = ⋅ 5  erg cm-3 K-4): 
 

( ) ( )
1 1

4 4

* 2.6844
HMB HMB

HMB
cT ρ ρ

σ σ= = =  K                                                        (59) 

 
This scaling temperature estimation is surprisingly accurate since it differs by less than 2 % from, say, the 
microwave background temperature: 2.728 0.004CMBRT = ±  K, precisely measured by the COBE. 
 The use of time scales epτ  and pτ  allows to estimate energy density of the low-frequency microwave 
background (LMB):  
 

4
16

2 2 2.139 10p e
LMB E E

pe p

e m
c m

τρ ρ ρτ
−= = = ⋅h  erg cm-3                                      (60)                              

 
Corresponding temperature of LMB radiation one can evaluate similar to Eq. 59: 
  

( )
1

4

* 0.41LMB
LMBT ρ

σ= =  K                                                                                    (61) 

 
 Comparing HMB and LMB radiations it is helpful to note that the maximum HMB intensity 
corresponds to: GHz and  cm, while the maximum LMB intensity conforms to: 

 GHz and  cm. Maximum intensities ratio is: 

max 159HMBν = max 0.189HMBλ =
max 24.1LMBν = max 1.243LMBλ = max max 3 3( ) 3.5LMB HMB LMB HMBI I T T 10−= = ⋅ . 

HMB and LMB radiations compose a joint spectrum of cosmic microwave background radiation (CMBR) 
with average temperature slightly higher than HMB temperature (59): 0.35CMBR HMBT T− =  mK. The excess 
of predicted CMBR  intensity over intensity of CMBR with temperature 2.728CMBRT = K grows with the 
decrease of frequency: from 1 % at 25 GHz  to 10 % at 5 GHz.    
 The presence of two sources of microwave radiation with different emission temperatures may cause 
the CMBR spectral asymmetry. Blackbody CMBR spectrum can be represented with the use of Planck 
function ( ; ) 1 [exp( ) 1]Bp T h k Tν ν= −  as: 
 

3
2

2( ; ) [ ( ; ) ( ; )]LMB HMB
hI T p T p Tc
νν ν ν= +                                                                 (62) 

 
From this equation the formula for CMBR spectral temperature can be derived: 
 



( ) ln{1 1 [ ( ; ) ( ; )]}B LMB

hT k p T p Tν
νν ν ν= + + HMB

                                                     (63) 

 
Fig. 7 demonstrates this CMBR spectral temperature-frequency dependence (curve 1), which shows bigger 
low-frequency temperature than high-frequency one. The Eq. 63 estimates CMBR spectral temperature 
corresponding to spectral intensity in narrow frequency interval. Averaging Eq. 63 in wide frequency 
interval one can estimate the CMBR mean spectral temperature Tν . Curve 2 in Fig. 7 shows the 
dependence on frequency of the CMBR mean spectral temperature for interval 50ν ÷  GHz. 
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              Fig. 7 CMBR spectral temperature-frequency dependence (63) (curve 1). Filled circles - COSMOSOMAS data, filled 

triangles - WMAP data. 
 
 Probably this CMBR spectral “overheat” already has been registered by  COSMOSOMAS-team 
which recently reported that unresolved extragalactic sources are found to be dominant foreground at 11 
GHz as a signal detectable in the frequency range 11 - 33 GHz with amplitude of order 3 - 6 Kμ at 11 GHz 
[5]. A single Gaussian law with maximum at GHz and GHz mimics this anomalous 
signal corresponding well to predicted LMB maximum at 24.1 GHz. With the average CMBR amplitude 
estimated as 

3.8
3.721.7+
−

4
3.415.8σ +
−=

27 2 Kμ±  this anomalous signal corresponds to predicted CMBR low-frequency overheat of 
order 3.0 - 3.3 K. 
 Predicted CMBR low-frequency spectral asymmetry does not contradict precise measurements of 
FIRAS (Far Infrared Absolute Spectrophotometer) aboard the COBE, that have demonstrated deviations 
from the blackbody spectrum form not more than 55 10−⋅ , since these measurements only made in high-
frequency range 60 - 600 GHz. In this high-frequency range the predicted share of LMB intensity is less than 
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Conclusion 

 
 In 1927 G. Gamov, D. Ivanenko and L. Landau proposed a convenient classification of physical 
theories by means of three fundamental constants: , used by Planck early in the 20, ,G c h th century to 
introduce his "natural" primary units. For example, the classical mechanics was nominated as: 
{ 0;1 0; 0G c h→ → → } and relativistic quantum mechanics as: { 0;1 ;G c→ }h . In this classification 
cosmological theories can be nominated as follows: 
- Newtonian gravitational cosmology: { ;1 0; 0}G c h→ →  
- Cosmology of the general relativity theory: { ;1 ; 0}G c h →    
- Quantum cosmology: { ;1 ; }G c h  with the equation of the universe evolution (9) represented, using Eq. 29, 
as a function of the fundamental constants of quantum physics (27). 
 New physical theories extending previous theoretical models, in accordance with Bohr 
“Correspondence Principle”, usually can be reduced to previous models by some limit transformation. The 
concept of quantum cosmology is consistent with cosmological interpretation of Einstein equations of 



gravitation. The quantum equation (27) can be regarded as a special condition defining energy-momentum 
tensor of the cosmic fluid at the right-part of Einstein equation of gravitation. To see it, one should first use 
Eq. 10 in the form: aaa ′=&  to transform equation ( ) ( ) EcGaa ρπ 22 3/8/ =&  of the Standard cosmological 
model to physical time derivatives: 
 

2
2

8
3 E

Ga c
π ρ′ =                                                                                                                (64)  

 
Substituting in this equation one of the possible solutions of quantum cosmological model equation (11, 12): 

( )1 22a Hτ= , we obtain the relation:  
 

2 13
16E

c H
Gρ τπ

−=                                                                                                           (65)  

 
This relation differs from (27) only by the constant multiplier, demonstrating that the standard classical 
cosmological model can be regarded as a specific form of the quantum model with constant average energy 
density instead of the non-stationary equation (27). In standard cosmological model energy density has no 
explicit dependence on time and varies only due to increasing space volume. The quantum equation (27) can 
be interpreted as a description of the “long tail relaxation”, typical of complex structures with memory, 
governing the universe evolution. 
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