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Abstract:  The physics of  space expansion  is still an obscure subject of the standard cosmological model,  because the phenomenon  
of the expanding space can not be tested in the laboratory physics and because ``space expansion'' means continuous creation of vac-
uum, something that leads to several paradoxes. Recent discussion, summarized by Francis, Barnes, James, and Lewis (2007), on the 
physical sense of the increasing distance to a receding galaxy without motion of the galaxy is just a particular consequence of the 
arising paradoxes.  Here we present an analysis of deep conceptual problems of the standard cosmological model, among which the 
violation of energy conservation for local commoving volumes, the exact Newtonian form of the Friedmann equations, the absence 
of an upper limit on the receding velocity of galaxies which can be greater than the speed of light, and the presence of the linear 
Hubble law deeply inside inhomogeneous galaxy distribution.  The common cause of these paradoxes is the geometrical description 
of gravity, where there is no a well defined concept of the energy-momentum tensor for the gravitational field, no energy quanta – 
gravitons, and no energy-momentum conservation for matter plus gravity. 
 
1. Space expansion paradigm in general relativity  

 
Einstein’s equations and Bianchi identity. 

 
The basic element of the standard cosmological model (SCM)  is the general relativity (GR), which is 

a non-quantum geometrical gravity theory. Classical relativistic gravity effects were predicted by GR and  
successfully tested for the weak gravity conditions in the solar system and binary neutron stars. It is assumed 
that GR can be applied to the Universe as a whole and hence describe cosmological models. 

According to GR gravity is described by a metric tensor  of a Riemannian space. The "field" equa-
tions in GR may be written in the form (we use Landau & Lifshitz 1971  notations): 
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where  ikR  is the Ricci tensor, R is the scalar curvature,   is the energy-momentum tensor (hereafter 

EMT) for usual matter, and   is the EMT of the dark energy component, which includes the cosmological 
constant and cosmological vacuum. The most important feature of the Einstein’s eq.(1) is that the right part 
does not include the energy-momentum of the gravity field itself. 
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From the Bianchi identity one gets the continuity equation in the form:                                                                     
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where  ikT  is the total EMT of the matter and dark energy and in the case of  non-interacting matter and dark 
energy the covariant divergence of each EMT equals zero separately. 

Note that gravity in GR is not a kind of matter, so the total EMT  does not contain the EMT of grav-
ity field. This is why eq.(2) is not a conservation law for gravity plus total matter (Landau  & Lifshitz 1971 
[19], sec.101, p.304), though in external gravity field it could be interpreted as conservation laws. We shall 
call eq.(2) the continuity equation. 

 
Einstein’s cosmological principle. 
 

The second basic element of the SCM is the Einstein's Cosmological Principle, which states that the 
universe is spatially homogeneous and isotropic on "large scales" (see e.g.  Weinberg 1972 [31]; Peebles 
1993 [23]; Peacock 1999 [22]).  Here the term "large scales" relates to the fact that the universe is certainly 
inhomogeneous at scales of galaxies and clusters of galaxies.  Therefore, the hypothesis of homogeneity and 



isotropy of the matter distribution in space means that starting from certain scale , for all scales  

we can consider the total energy density  and the total pressure  p as a function of time only, i.e.  
homr homrr >
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energy density of ordinary matter and dark energy :  
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An ideal equation of state is usually considered 
 

2cp γρ=  ,                                                                       (4) 
 
where usual matter and dark energy have equations of state: 
 

mmp εβ=  ,  with   10 ≤≤ β    and     dede wp ε=  ,   with      01 <≤− w   . 
 
Recently values w<-1 also were considered for description the “fantom” energy. 
 
Space expansion paradigm. 
 
 An important consequence of homogeneity and isotropy is that the line element may be presented in 
the Robertson-Walker form:   
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where  ч, и, ц    are the "spherical" comoving space coordinates, t is synchronous time coordinate,  and 

χχχχ sinh,,sin)( =kI   corresponding to curvature constant values k = +1,0,-1 respectively,   S(t) is the 
scale factor of the Friedmann model. 
 

                         
  
Fig.1. Comoving metric distances:  internal r , given by eq.(6), and external l , given by eq.(8). Radius  of the sphere is the scale fac-
tor S(t) of the Friedmann model. 
 
The expanding space paradigm states that the proper (internal) metric distance r  to a galaxy with fixed co-
moving coordinate ч from the observer is given by 
 

χ⋅= )(tSr             (6) 



 
and increases with time t as the scale factor S(t).  Note that physical dimension of metric distance [r] = cm , 
hence if  physical dimension [S] = cm,  then ч is the dimensionless comoving coordinate distance.  In direct 
mathematical sense ч  is the spherical angle and S(t) is the radius of the sphere (or pseudosphere) embedded 
in the 4-dimensional Euclidean space.  

It means that the "cm" (the measuring rod) itself is defined as unchangeable unit of length in the em-
bedding 4-d Euclidean space. The distance r ,  which is measured in such external units (“cm”), usually  is 
called the "internal" or proper comoving distance on the 3-dimensional hypersurface of the embedding space.  
In other words r and ч  represent  the Eulerian and Lagrangian comoving distances. 

Often, "cylindrical" comoving space coordinates м, и, ц  are used in the literature. In this case the 
line element is 
                                     

)sin()(
1

)( 22222
2

2
2222 φθθμ

μ
μ ddtS
k

dtSdtcds +−
−

−=  ,     (7) 

 
and the comoving “external” metric distance l may be introduced as 
 

μ⋅= )(tSl     ,            (8) 
 
which mathematically presents the external distance from z-axis in an embedding Euclidean 4-dimensional 
space. The relation between these two metric distances is given by means of the inversion function for  :  kI
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Exact  velocity-distance law in Friedmann’s models. 
 
It is important to point out that the hypothesis of homogeneity and isotropy of space implies that for a given 
galaxy the recession velocity is proportional to distance. Indeed, due to the "space expansion" the metric dis-
tance between any two galaxies becomes larger and the recession velocity  of a body with fixed Lagran-
gian comoving coordinate ч is the rate of increasing of the metric distance r as a function of time.   The exact 
general relativity expression for the expansion velocity is the time derivative of the metric distance given by 
eq.6, so that 
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where H(t)=  / S is the Hubble constant (also is a function of time) and  = c/H(t)  is the Hubble distance 
at the time t. Here and in the following the dot indicates derivative with respect to the cosmic synchronous 
time d/dt. This means that the theoretically predicted linear velocity-distance relation V=Hr, identified with 
the observed redshift-distance Hubble law, can exist only if the matter distribution is uniform: "the connec-
tion between homogeneity and Hubble's law was the first success of the expanding world model" (Peebles et 
al.,1991 [24]).  However as we shall discuss later, according to modern data on galaxy distribution, this is  
not to be the case at least for luminous matter. 
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Friedmann’s equations. 
 

In comoving coordinates the total EMT has the form: 
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and for the case of unbounded homogeneous matter distribution  the Einstein's equations (eq.1) are directly 
reduced to  the  Friedmann's equations (FLRW – model). From the initial set of 16 equations we have only 
two  independent equations for the (0,0) and (1,1) components, which may be written in the form: 
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From the Bianchi identity (eq.2),  the  continuity equation takes the form: 
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which must be added to eqs.(12, 13) as the consistency condition. Using the definition of the Hubble con-
stant , we rewrite eq.(12) as SSH /&=
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and equation (13) as 
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In terms of the critical density , the total density parameter GHcrit πρ 8/3 2= critρρ /=Ω , the 

curvature density parameter , and the deceleration parameter , these equa-
tions also may be presented in the form: 

222 / HSkck =Ω 2/ SSSq &&&−=
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were Щ, p, с  are the total quantities, i.e. the sum of corresponding components for matter and dark energy. 
Solving the Friedmann's equation (18) one finds the dependence on time the scale factor S(t) or the metric 
distance r(t), which is the mathematical presentation of the space expansion. 
 
What does space expansion mean physically? 
 

Each comoving finite box in expanding universe continuously increases its volume, so gets more and 
more cubic centimeters. Physically expansion of the universe  means the creation of space together with 
physical vacuum. Creation of space may be visualized by 2-d analogy with expanding sphere in 3-d space, 
where the surface of the sphere increases with time and for 2-d beings their universe grows with time 
(gets more square centimeters) . 

Real Universe is not homogeneous, it contains atoms, planets, stars, galaxies. Bondi (1947) consid-
ered spherical inhomogeneities in the framework of GR and showed that inside them the space expands 
slowly. In fact bounded physical objects like particles, atoms, stars and galaxies do not expands. So inside 
these objects there is no space creation. This is why the creation of space is a new cosmological phenome-
non, which cannot be tested in laboratory because the Earth, the Solar System and the Galaxy do not expand. 
 
Below we consider several puzzling properties of the expanding space, which are a direct consequence 
of the above derived exact equations. 



 
 
2.  Violation of the energy conservation in expanding space 
 

Intriguingly the continuity equation (14) can be written also in the form  
 

0=+ dVpdE   ,          (19) 
   
where  is the change of energy within the comoving volume V .  
Eq.(19) looks like the law of conservation of energy in the lab thermodynamics.  

)()( 2VcdVddE ρε == 3SconstV ×=

However, as it was emphasized by Harrison (1981) there is an essential difference between the lab 
and the cosmological cases. Eq.(19) in the laboratory reads:  if inside a finite box the energy decreases, then 
it reappears outside the box as the work produced by the pressure (e.g. acting on a piston of a machine, in-
creasing the volume of the box). The work performed by the pressure inside the box is the cause of the en-
ergy decrease inside the box.  

Contrary to the lab case, in expanding space  the cosmological pressure does not produce work. It 
was noted by Harrison(1981; 1995) that in a homogeneous unbounded expanding FLRW model one may 
imagine the whole universe partitioned into macroscopic cells, each of comoving volume $V$, and all hav-
ing contents in identical states. The -pdV energy lost from any one cell cannot reappear in neighboring cells 
because all cells experience identical losses. So the usual idea of an expanding cell performing work on it 
surroundings cannot be applied to the cosmological case.  

In cosmology eq.(19) gives us a possibility to calculate of how much the energy increases or de-
creases inside a finite comoving volume but it does not tell us where the energy comes from or where it goes. 
As Edward Harrison emphasized:  "The conclusion, whether we like it or not, is obvious: energy in the uni-
verse is not conserved" (Harrison, 1981 , p.276). The same conclusion was reached by Peebles (1993) when 
he considered the energy loss inside a comoving ball of the photon gas. On page 139 he wrote "The resolu-
tion of this apparent paradox is that while energy conservation is a good local concept, ... there is not a gen-
eral global energy conservation in general relativity."  But what is more there is no also local energy conser-
vation in each comoving cell, and the root of the puzzle is in the geometrical description of the gravity. 

As Landau & Lifshitz (1971) emphasized in paragraph 101 ("The energy-momentum pseudotensor") 
the expression for Bianchi identity (eq.2) has the form 
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and because of the mathematical structure of the covariant divergence in Riemannian space the eq.20 has an 
extra (second) term which violate the integral conservation ∫ − k

ik dSgT , for which the condition 

0/)( =∂−∂ kik xTg  should be fulfilled. This is why according to Landau & Lifshitz the equation (20)  
does not generally express a law of conservation. To get the total (all kinds of matter plus gravity) 
energy-momentum conserved, they suggest to consider energy-momentum pseudotensor, which could de-
scribe energy density of the gravity field itself. However this violates the tensor character of the laws of con-
servation. The root of the problem lies in the equivalence principle and in the absence of a true gravity force 
in GR, while all other fundamental fields have true forces, true EMTs and operate in Minkowski space. It is 
important that Noether theorem relates a conserved EMT of a material field to maximal symmetry of the 
Minkowski space and this is why in curved Riemannian space the EMT of gravity field can not be properly 
defined. 

The problem of the absence of a true EMT for gravity field in cosmology appears as the violation of 
energy conservation during the space expansion. Indeed, let us consider the energy content of a comoving 
ball with radius χ)()( tStr =  . The volume element in metric eq.(5) is 

φθχθχ dddISdV k )sin()(23=   ,        (21) 
 
and energy content of the comoving sphere is 
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To calculate the time dependence of the energy density  we use the continuity equa-
tion (14) and an ideal equation of state . Then  the energy inside a comoving ball with radius r 
will change with time as 
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so that for dust, radiation and vacuum within the comoving sphere of radius r we get  
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In fact, only for dust (where p=0) one may speak about energy conservation in expanding universe. 
But for any other matter with   within any local comoving volume energy is not conserved. This is 
because in GR there is no EMT of gravity field itself, which could play the role of an additional substance to 
restore the conservation laws.  

0≠p

 
3.  Newtonian form of the relativistic Friedmann equation 
 

Because of Lagrangian comoving coordinate  χ  does not depend on time,  the exact Friedmann 
equation (16) can be also written in the form, where the metric distance χ⋅= )(tSr   appears explicitly 
(eq.6), so that  
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where the active gravitating mass   of a comoving ball with radius r  is given by the exact relation )(rM g
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Exact Friedmann equation in the form eq.(25) is identical with the Newtonian equation where matter 

density contains also the term . Multiplying eq.25 by the mass of  a receding galaxy one gets the 
cosmological Friedmann force acting on a test galaxy placed at distance r from a fixed point at the center of 
coordinate system: 
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Therefore the exact relativistic equation describing the dynamical evolution of the universe is exactly 

equivalent to the non-relativistic Newtonian equation of motion of a test particle in the gravity field of a fi-
nite sphere containing a mass  within the radius r. The second term in eq.(26) does not change the 
Newtonian character of the solutions. 

gM



Such a similarity was first mentioned by Milne(1934) [21] and McCrea \& Milne(1934) [20], though 
they consider the Newtonian model an approximation to Friedmann model. Later many authors claimed that 
the Newtonian model can be used only for small radius compared to the horizon distance. Here, however, we 
see that the Newtonian form of the Friedmann equation is exact and true for all radius.  This creates a prob-
lem in cosmology because eq.(27) places neither such relativistic restrictions as motion velocity less than 
velocity of light, nor retardation response effect. The root of the puzzle lies in the geometrical description 
of gravity in GR and in the derivation of Friedmann's equation from Einstein's gravity equations, using the 
comoving synchronous coordinates with universal cosmic time t and homogeneous unbounded matter distri-
bution. 

The Newtonian form of the Friedmann equation also creates the so called Friedmann-Holtsmark 
paradox.  According to the Friedmann equation there is the cosmological force eq.(27) acting on a galaxy 
situated at the distance r from another fixed galaxy.  This is in apparent contradiction with well known 
Holtsmark result for the probability density of the force acting between particles in infinite Euclidean space 
in the case of   behavior of the elementary force (Holtsmark,1919 [16]; Chandrasekhar,1941 [6]).  For 
symmetry reasons, due to the isotropy of the distribution of particles the average force in any given location 
is equal to zero and one is left with the finite value of fluctuating force, which is determined by the nearest 
neighbor particles. Hence in infinite Euclidean space with homogeneous Poisson distribution and Newtonian 
gravity force there is no global expansion or contraction, but there is the density and velocity fluctuations 
caused by local gravity force fluctuations. 
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 Continuous creation of gravitating mass 
 

A puzzling property of the FLRW model also come from consideration of the active gravitating mass 
of the cosmological fluid, which may be either positive or negative and changes sign with the cosmic time. 
In the case of one fluid with equation of state  the active gravitating mass (eq.26) will be 2cp ργ=
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Hence for the case of dust  the gravitating mass does not depend on time, but  in the case of radiation 

the gravitating mass continuously disappear in the expanding universe. The most strange example is the vac-
uum, where 1−=γ  and the gravitating mass is negative. This means that vacuum antigravity continuously 
increases in time due to the continuous creation of gravitating (actually "antigravitating") vacuum mass. In 
this sense the continuous creation of matter in the Steady State cosmological model is just a particular case 
of the new physics of the expanding space. 
 
5.  Lemaitre’s effect of cosmological redshift 

 
Harrison (1981; 1993) [13, 14] clearly demonstrated that the cosmological redshift due to the expan-

sion of the universe is a new physical phenomenon and is not the well known in laboratory the Doppler ef-
fect. Recently this subject was intensively discussed by Kiang (2003) [18], Davis \& Lineweaver (2003) [8], 
Whiting (2004) [32] and Abramowicz et al. (2006) [1] in an attempt to clarify some "common big bang mis-
conceptions" and the "expanding confusions" widely spread in the literature. A summary of the discussion 
was done by Francis et al. (2007) who also cited Rees & Weinberg (1993) state: “ … how is it possible for 
space, which is utterly empty, to expand? How can nothing expand? The answer is: space does not expand. 
Cosmologists sometimes talk about expanding space, but they should know better.” While Harrison (1981) 
stated: “expansion redshifts are produced by the expansion of space between bodies that are stationary in 
space”. 

In the SCM the cosmological redshift is a new physical phenomenon due to the expansion of space, 
which induce the wave stretching of the traveling photons via the Lemaitre's equation: 
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where z is cosmological redshift, 10 , λλ  are the wavelengths at the emission and reception, respectively, 



and    are the corresponding values of the scale factor.  Equation (29) may be obtained from the radial 10 , SS
null-geodesics of the FLRW line element. 

The cosmological redshift (29) is caused by the new physical phenomenon, the Lemaitre’s effect, 
which is different from the familiar in lab the Doppler’s effect. On can also see this if compare relativistic 
Doppler and cosmological FLRW velocity-redshift V(z) relations. To get V(z) in SCM one should consider 
first V(r) and then r(z) relations. Exact velocity-distance relation in FLRW model is given by eq.(10): 

,  and the exact distance-redshift r(z) relation in FLRW model is: rtHrV )()(exp =
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where h(z) is taken from Friedmann equation (15): 
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where   is the density parameter in present epoch,   is the normalized den-
sity of the total substances. Analytical expressions for r(z) may be obtained only in some simple cases. For 
example for empty universe FLRW model with 
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Now we can compare the exact FLRW  V(z) relation with exact relativistic Doppler relation: 
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Clearly these are two different mathematical formulae which corresponds to two different physical phenom-
ena -- Lemaitre and Doppler effects. Eqs.(32) give the same results only in the first order of V/c, however the 
physics of space expansion is different from motion in static space. Indeed, the expansion velocity  

for such redshifts where metric distances   , while the Doppler velocity is less than c for any large z . 
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6. Bondi’s effect of cosmological gravitational redshift 
 
In 1947 in the classic paper "Spherically symmetrical models in general relativity" by Sir Hermann 

Bondi it was shown that, at least for small redshifts, the total cosmological redshift of a distant body may be 
expressed as the sum of two effects: the velocity shift (Doppler effect) due to the relative motion of source 
and observer, and the global gravitational shift (Einstein effect) due to the difference between the potential 
energy per unit mass at the source and at the observer. It means  that the spectral shift depend on the distribu-
tion of matter in the space around the source. 

In the case of small distances Bondi derived a simple formula for redshift which is simply the sum of 
Doppler and gravitation effects, and which explicitly showed that "the sign of the velocity shift depends on 
the sign of v, but the Einstein shift is easily seen to be towards the red" (Bondi,1947 [6],p.421). Hence ac-
cording to Bondi the cosmological gravitational frequency shift is redshift (contrary to Peacock 1999 [22], 
p.619 and Zeldovich \& Novikov 1984 [33] p.97 considerations). 

It was shown by Baryshev et al.(1994) [2] that from Mattig's distance-redshift relation one can derive 
directly for the case of z<<1,   the relation for cosmological redshift in the form the sum of 
the Doppler and the gravitational redshifts 
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where the cosmological gravitational redshift is 
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Note that the eq.(33) describes the global gravitational shift due to the whole mass within the ball hav-

ing the center at the source and the radius equal to the distance between the source and the observer. Hence 
cosmological gravitational shift depends on the whole matter distribution between the source and the ob-
server (and should not be confused with the local gravitational shift at the source). 

It is important that the center of the ball is placed at the source. Then the cosmological gravitational 
redshift is consistent with the causality principle according to which the event of emission  of a photon by the 
source (which marks the centre of the ball) must precede the event of detection of the photon by an observer 
on the surface of the ball. The detection event marks the spherical edge of the ball, where all potential ob-
servers are situated. 

In the literature there are a few discussions of the cosmological gravitational shift but they contain mis-
taken claims. For instance,  if one consider the observer at the center of the cosmological ball and a galaxy at 
the edge of the sphere, then one may conclude that cosmological gravitational shift is blueshift (see Zeldo-
vich & Novikov,1984 [33], p.97). Also one should use proper metric distance for calculation the mass within 
a ball, instead of angular distance used in Peacock,1999 [22], problem 3.4. 

Note that in the case of the fractal matter distribution with fractal dimension $D=2$ the cosmological 
gravitational redshift gives the linear distance-redshift relation and becomes an observable cosmological 
phenomenon (see e.g. Baryshev et al.1994 [2]). 

 
7. Hubble-deVaucouleurs paradox 

 
According to SCM the linear Hubble law is a consequence of the homogeneity of the matter distribu-

tion.  However studies of the 3-dimensional local galaxy Universe have shown that at least in the range of 
scales 1  -  100 Mpc galaxy distribution is strongly inhomogeneous and has fractal properties (e.g. Sylos 
Labini et al.,1998 [25]; Baryshev \& Teerikorpi 2006 [5]).  This confirms de Vaucouleurs' prescient view on 
the matter distribution so we call it de Vaucouleurs law of large scale galaxy distribution (Baryshev et al. 
1998 [3]; Baryshev \& Teerikorpi 2002 [4]). 

At the same time modern observations of the local Hubble flow based on Cepheid distances to local 
galaxies, Tully-Fisher distances from the KLUN program, and other distance indicators, demonstrate that the 
linear Hubble law is well established within the Local Volume (r<10 Mpc), starting from distances as small 
as 1 Mpc (see Teerikorpi,1997 [26]; Ekholm et al.,2001 [9]; Karachentsev et al. 2003 [17]; Teerikorpi et al. 
2005 [27] ). 

A puzzling conclusion is that the strictly linear redshift-distance relation is observed just inside inho-
mogeneous galaxy distribution, i.e. deep inside the fractal structure for distances less than homogeneity scale 
(it is known that  Mpc):   100hom >r
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This empirical fact presents a profound challenge to the standard model where the homogeneity is the basic 
explanation of the Hubble law, and "the connection between homogeneity and Hubble's law was the first 
success of the expanding world model" (Peebles et al.,1991 [24]). In fact, within the SCM one would not 
expect any neat relation of proportionality between velocity and distance for close galaxies, which are mem-
bers of large scale structures. However, contrary to the expectation, modern data show a good linear Hubble 
law even for nearby galaxies. It leads to a new observationally established puzzling fact that the linear Hub-
ble law is not a consequence of the homogeneity of visible matter, just because the visible matter is distrib-
uted inhomogeneously. 

The Hubble and de Vaucouleurs laws describe very different aspects of the Universe, but both have in 
common universality and observer independence. This makes them fundamental cosmological laws and it is 



important to investigate the consequences of their coexistence at the same length-scales (see Baryshev et 
al.,1998 [3]; Gromov et al. 2001 [12]; Teerikorpi et al. 2005 [27]). 

 
8.  Problems for quantum approach to geometrical gravity 
 
A cosmological model is in fact a particular solution of the gravity field equations. This is why the 

roots of the conceptual problems of modern cosmology considered above actually lie in the theory of gravita-
tion. In fact, all fundamental forces in physics (strong, weak, electromagnetic)  have quantum nature, (i.e. 
there are energy quanta of corresponding fields which carry the energy-momentum of the physical interac-
tions), while GR is a non-quantum theory, which presents the geometrical interpretation of gravitational 
force (i.e. the curvature of space itself which is not material field in space) and exclude the concept of local-
izable  gravitational energy. This is why the main problem of GR is the absence of the energy of the gravity 
field or pseudo-tensor character of gravity EMT (Landau & Lifshitz,1971 [19]). Together with GR the en-
ergy problem comes to cosmology and is the cause of the conceptual problems of SCM. 

Many years of attempts to unify general relativity with quantum physics have little success. Concep-
tual tensions between quantum mechanics and general relativity first were noted by Wigner in 1957 and have 
recently again attracted attention (e.g. Alley 1995; Yilmaz 1997; Amelino-Camelia 2000; Chiao 2003). They 
emphasize that the most pressing problem in present-day theoretical physics is how to unify quantum theory 
with gravitation, so called “the quantum gravity problem”. The standard scheme of quantization applied to 
general relativity gives a theory that is not renormalizable (i.e. leads to inevitable infinities in physical quan-
tities). Other attempts are based on the string/M theory,  canonical/loop quantum gravity, non-commutative 
geometry. However the difficulties on this way so large that  there is still no generally accepted quantum 
geometrical gravity theory. 

Existing partial approaches to quantum geometry predicts violation of the equivalence principle, possi-
ble violation of the Lorentz invariance, and time-varying fundamental physical constants at such a level that 
their detection may be realistic in near future (Amelino-Camelia et al. 2005). However, up to now increas-
ingly strong limits have been derived on variations of fundamental constants (Levshakov et al. 2005). Also 
first observations of sharp images of a very distant supernova did not confirm the predicted quantum struc-
ture of space-time at Planck scales (Ragazzoni et al. 2003). There is also no deflection from the Newtonian 
gravity law at small distances down to мm scales (Nesvizhevsky \& Protasov 2004). 

 
9. Conclusion. 
 
It is possible that in cosmology we have an example of a new physical phenomena where conservation 

laws are violated, receding velocities of whole galaxies may exceed the velocity of light and cosmological 
redshift is due to space expansion.  Note that the explanation of the cooling of the photon gas in SCM, and 
hence the origin of the cosmic microwave background radiation, rest on the violation of the law of conserva-
tion of energy by the expanding space. However physics of "space creation" can not be tested in laboratory 
and hence needs more observational evidences. 

The most perspective and clear observational test on the reality of the space expansion was suggested 
by Sandage (1962)  and related to the measurement of the variation of redshift with time ( ), 
which is within the reach by the OWL ESO telescope (Pasquini et al. 2005). 

dtdzz /=&

The big bang SCM is not the ultimate model of the Universe. There are several cosmological models 
which are based on other fundamental hypotheses and give different interpretation of observable phenomena.  
A classification of possible relativistic cosmologies in accordance with basic initial assumptions were dis-
cussed by Baryshev et al.(1994) [2].  In particular relativistic quantum field approach to gravity where the 
Minkowski space and conservation laws are valid (Baryshev 2008a), may be considered as the basis of the 
field gravity fractal cosmological model (Baryshev 2008b). Crucial observational tests of alternative cosmo-
logical models and gravity theories should be developed to get a progress in the cosmological physics. 
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