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Abstract:    Crucial observational tests of gravity physics are reviewed. Such tests are able to clarify the key question on the nature 
of gravitational interaction: is gravity the curvature of space? or is gravity a matter field in Minkowski flat space as other physical 
forces? Up to now all actually performed experiments do not allow to distinguish between these two alternatives in gravity physics.  
The existence of well-defined positive energy-momentum of the gravity field in Poincare-Feynman approach leads to radical changes 
in gravity physics and cosmology which may be tested by laboratory experiments and astrophysical observations. New possibilities 
for observational distinction between geometrical general relativity and field gravity theories are discussed. Among them: the contri-
bution of the scalar repulsive force into Newtonian gravitational interaction, post-Newtonian translational motion of rotating bodies, 
gravitational deflection of light by small mass bodies, scalar gravitational radiation from spherically pulsating stars, existence of 
limiting radius, surface, magnetic field for massive bodies and absence of singularities and horizons for relativistic compact objects. 
 
 
 
1. What is the nature of the gravitational interaction?  

 
The central problem of the gravity physics is to understand the nature of the gravitational interaction. 

According to general relativity the gravity is a property of the geometry of the curved space, while in the 
frame of the field gravity theory the gravitational interaction is analogous to other physical forces.  In the 
literature there is a statement that geometrical and field approaches are the same stories expressed by differ-
ent languages. However as we demonstrated in the preceding paper (Baryshev 2008a) there are testable pre-
dictions which can distinct between these two alternatives in gravity physics. 

Geometrical approach of the classical general relativity predicts such specific objects as singularities, 
black holes, and expanding space of Friedmann cosmological models. While in the field gravity theory there 
is no horizons and singularities, no expanding space, but there is the energy-momentum of the gravity field. 

Weak gravity  experiment performed by Nesvizhevsky et al. (2002; 2005) using freely falling ultra-
cold neutrons,  showed that the gravity force acts similarly to the usual electric force producing quantum en-
ergy levels for the micro-particles motion in the gravity field (Westphal at al. 2006). This experiment points 
to the field nature of the gravity force and lead us to look for other possibilities of testing the gravity physics. 

 
 
2.  Basic equations of the field approach 
 

As we discussed in the preceding paper (Baryshev 2008a), within the framework of the field gravity 
theory the field equations have the form of the wave equation with the energy-momentum tensor of matter 

ikT  as a fixed source of gravitational tensor potential ikψ  : 
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where  ikT  contains all kinds of interacting  matter including gravity, symmetric tensor potentials satisfy the 
Hilbert-Lorentz gauge conditions iik

k
,

, 2/1 ψψ =  , and the scalar part of the field is ik
ikψηψ = . 

 The equation of motion of a test particle in a given fixed gravitational  field  ikψ  was derived by 
Baryshev (1986) in the form 
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where   is the 4-momentum of the particle,  kk pmcu =
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 Here we present some solutions of these equations and calculate several observable effects which 
may be used as a crucial tests of the field gravity approach. 
 
 
3. Post-Newtonian predictions of the field gravity theory 
 
 The field equations (1) and equations of motion (2) lead to important observable consequences of 
the field gravity theory. We consider some simple cases that demonstrate how to calculate weak-field predic-
tions within FG. For solution of the field equations we use the method of iteration, where the non-linearity is 
taken into account by the iteration procedure. 
 
Weak gravity field of static spherically symmetric mass 

 
Zero approximation – Newtonian limit.  For a spherically symmetric static weak field of a body with 

rest mass density )(0 rρ  and total mass M, the zero approximation of the total EMT equals that of the matter 
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and the field equations have the usual Poisson’s form 
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Solution of the field equations (4) is the Birkhoff's potential 
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where rGMN /−=ϕ  is the Newtonian potential outside the gravitating body. We note again that ikψ  is a 
true tensor quantity in Minkowski space, hence the rules for contravariant and covariant components are 
usual. 

The Birkhoff gravitational potential (5) can  be expressed as the sum of the pure tensor and scalar 
components 

)1,1,1,1(
2
1)

3
1,

3
1,

3
1,1(

2
3

−−−−= diagdiag NN
ik ϕϕψ   ,    (6) 

Note that the scalar part of the Birkhoff potential is  
 N

ik
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which has opposite sign relative to Newtonian potential. 
 
First approximation – post-Newtonian limit. In the first (post-Newtonian) approximation in accor-

dance with the expression of the action integral ( )((int))( gm SSSS ++= ) the total EMT of the system is 
equal to the sum of the three parts -- EMT for the matter, interaction and gravity field  (Kalman 1961; 
Thirring 1961; Baryshev 1988): 
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Taking into account the Birkhoff potential (5) and using the expressions for the interaction EMT in 

the form 
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and the EMT of the gravity field in the form 
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we find the  total  energy  density ( 00T ) for the system gas + gravity in the form 
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Here ( ) gives  the  rest  mass  and  kinetic (or thermal)  energy densities, ec +2
0ρ Nϕρ0  is the negative 

interaction energy density, and 2)(
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 is  the positive and localizable energy density of the gravita-

tional field. 
 
Physical sense of the potential energy. The total  energy  of  the system in PN approximation will be 
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where  is the rest-mass energy, ∫= dVcE 2
00 ρ ∫= dVeEk  is the kinetic energy, and  is the classical 

potential energy, that equals the sum of the interaction and gravitational field energies: 
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The PN correction due to the energy of gravity field. In the field approach a gravitating body is sur-

rounded by a material gravitational field ikψ  whose mass-energy density is given by the 00-component of 
the EMT of the gravity field (11). In the PN approximation this leads to a nonlinear correction for the gravi-
tational potential. 

Outside the body the positive energy  density  of  the gravitational field (the last term in eq.12) 
should be considered as the source in the field equation of the second order, then we get a nonlinear addition 
to Birkhoff's 00ψ  component 
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Corrections to other components do not influence the motion of particles in this approximation. 
Very important that the positive energy  density  of  the gravitational field is a measurable physical 

quantity within the framework of the field gravity theory as the additional non-liner term in equation (15). 
 
 

PN equations of motion and Poincare gravity force  
 

Poincare force. In the post-Newtonian approximation we keep terms down to the order of 
 in  equation of motion of a test particle (2).  For the PN accuracy we need calcula-

tions of the  

1// 222 <<∝ ccv Nϕ
00ψ  component with the order (15). Under these assumptions, from (2) for  α=i  we get an 

expression for the PN  3-dimensional gravity force (which we shall call the Poincare gravity force remem-
bering his pioneer work in 1905 on the relativistic gravity force in flat space-time): 
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where , and 00ψφ = αψ 0=Ψ
r

. 
Taking into account the expression (15) for the 00-component of the gravitational potential, we get the 

corresponding PN 3-acceleration of a test particle: 
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The work of the Poincare force. From the ( 0=i ) component of the equation of motion (2) it follows 
an expression for the work of the Poincare force in PN approximation: 
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According to (18) the gravity force produce a work by changing kinetic energy of a test particle. 



Bi-component  structure of the Newtonian force. Inserting Birkhoff potential (6) in the equation of 
motion (2) we directly get that spin 2 part corresponds to attraction  and spin 0 part gives the repulsion force. 
Indeed, in the Newtonian approximation we neglect all terms of order  in the equation of motion (2), 
which gives for spatial components 

22 / cv
α=i  the expression for the gravity force in the form, which demon-

strate the contribution from each part of the Birkhoff potential: 
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This means that the pure tensor (spin 2) part of the tensor field gives a repulsive force and only to-

gether with the scalar (spin 0) part result is the Newtonian force }0{}2{ FFFN

rrr
+= . This calculation shows 

that even on the Newtonian level the physics of the field gravity theory dramatically differs from general 
relativity. 

 
The case of static spherically symmetric field. Substituting Birkhoff's potential (5) with non-linerity 

correction (15)  into the equation of motion (2)  one gets the 3-acceleration for a test particle in the frame of 
the field gravity: 
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From the equation of motion (20) it is clear that the acceleration of a test particle depends on the value and 
direction of its velocity, and this is a coordinate-independent relativistic gravity effect which may be tested 
experimentally. 

 
The pericenter shift and positive gravity energy. The rate of the pericenter shift of the orbit of a test 

particle with semi-major axis a, eccentricity e and period P, can be directly calculated from the eq.(20): 
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This formula is the same as in GR, but the interpretation is different. E.g. the nonlinear contribution, i.e. the 
2nd term in (15) caused by the positive energy density of the gravity field ,  provides 16.7 % of  the total 
value (21). 
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Therefore in the field gravity theory the pericenter shift is directly affected by the positive energy den-
sity of the gravity field, making this physical quantity experimentally measurable. 

 
Light and atoms interacting with a weak gravity field 

 
Light in the gravity field. Within the field gravity theory the deflection of light and the time delay of 

light signals are consequences of the gravity-electromagnetic field interaction, described by the Lagrangian 
. This gives the effective refraction index in the PN approximation: ik
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Hence the velocity of a light signal will have the value 
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So that the direction of light propagation is changed and the time delay appears, both with the same amount 
as actually observed. 

 
Atom in gravity field.  The gravitational redshift of spectral lines has another nature than in GR. It is a 

consequence of the shift of atomic levels. It is universal, because gravitation changes the total energy and all 
energy levels of an atomic system. In the PN approximation 
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Moshinsky (1950) was the first who calculated the interaction of the gravity field with the spinor and 
electromagnetic fields of a hydrogen atom. He got the same result as from the energy argument above. A 
more general formula for the gravitational redshift is: 
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which gives the correct PN result . 2/ cz Nϕ≈
 

 
4. Astrophysical tests of the field gravity theory 
 
 
Classical relativistic gravity effects 
 

As we discussed above, from the post-Newtonian approximation of the field gravity theory it follows 
that classical   relativistic gravitational effects - the deflection of light, the gravitational redshift of spectral 
lines, the time delay of light signals, the perihelion shift, and the Lense-Thirring, Weyl, Schiff precessions, 
have the same values in  GR  and FG. Though, the interpretation of the classical effects is different. 

This means that one can not make a distinction between geometrical and field approaches just by ob-
serving classical relativistic gravity effects in the Solar System and in binary pulsar systems. However, even 
in the weak field regime there are new, still untested relativistic gravity effects, which may offer crucial ex-
periments for the nature of gravity. 
 
Testing the equivalence principle 

 
Modern tests of the equivalence principle achieved  the precision in the inferred equality of the inertial  

and gravitational masses  about .  Several new high-accuracy tests of the equivalence prin-
ciple have been suggested in last years (Haugan & Lammerzahl 2001; Bertolami, Paramos & Turyshev  
2006), which have a goal to discovery a violation of the equivalence principle predicted by modern quantum 
theories. 
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Within the field gravity theory the basic concept is the least action principle and the principle of uni-
versality of the gravitational interaction (Baryshev 2008a), according to which in the equation of motion (2) 
the rest mass  of a test particle appears in both sides and hence plays the role of inertial and gravitational 
(passive) mass . For a body consisting of many particles interacting with each other the 
most important problem is how to give proper relativistic definitions for inertial and gravitating masses with-
out referring to the non-relativistic Newtonian equation of motion. 
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According to the PN equation of motion (20) the 3-acceleration of a test particle  
• does not depend on the rest mass   of the test body, 0m
• depends on the velocity v of the body, 
• depends on the value of the gravitational potential Nϕ  at the location of the particle. 

This means that there are different ways in relativistic regime to define the inertial  and the gravitational 
 masses. Hence it gives new possibilities to test their equality. 

)( Im
)( Gm
For example a new test of the equivalence principle could utilize the translational motion of a rotating 

body. According to GR, as a consequence of the equivalence principle, such a body will have the same trans-
lational motion as the non-rotating one (if tidal effects can be neglected). However according to FG one 
should integrate the Poincare gravity force (16) over the volume of the rotating body. 

In the case of the translational  motion of a rotating body in the weak static spherically symmetric 
gravitational field the 3-acceleration will be (Baryshev 2002a): 
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The equation (26) shows that the orbital translational velocity V
r

of the center of mass of the body will have 
extra perturbations due to the rotation.  The last term depends on the direction and value of the angular ve-
locity ω

r
 of rotation. Its order of magnitude is and it is possible to use this effect for testing the 

equivalence principle for rotating bodies by astronomical observations with lunar laser ranging (LLR) and 
timing of pulsars in binary systems. 

22 / cvrot

Baryshev (2002b) calculated the expected violation of the equivalence principle in the case of the 
LLR experiment as a generalized Nordtvedt effect. Taking into account the rotation of the Earth one can de-
rive that there will be a signal at three frequencies which corresponds to the period D = 29.1 days with ampli-
tude , and at two satellite periods 131032.0 −× 41.25=+D  days and 22.35=−D  days with amplitude 

. 131048.0 −×
 
 
Deflection from Newtonian law at small masses 

 
Another test of the nature of the gravitational interaction was suggested by Baryshev & Raikov (1995).  

Let us compare the  gravitational interaction energy rGmME /int =  between two particles (masses m and 
M at a mutual distance r)  with the uncertainty principle in the form htE >ΔΔ . Here the accuracy in meas-
uring the energy is  during the interaction time intEE ≈Δ vrt /≈Δ , which imply the following condition on 
the product of masses: 
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This means that the geodesic motion will be violated if the product of masses is less than the square of 
the Planck mass  multiplied by v/c. So it is expected that for small masses the Newtonian law of the 
gravity force will be not valid and particle trajectories will have large fluctuations. 

Plm

If one of the particles is a photon, then it will not be deflected if the wavelength λ  of the photon is 
longer than the gravitational radius of the deflecting mass , so such a photon will not 
move along a geodesic line. Radio astronomical observations to test this effect were suggested by Baryshev, 
Gubanov & Raikov (1996). 

2/2 cGMRg =>λ

 
 
Gravitational waves from binary stars 
 

Gravitational field equation (1) describe the radiation of two types of gravity waves – pure tensor 
(traceless, spin 2) and scalar (trace of the tensor potential, spin 0). The best test of the validity of the gravita-
tional radiation formulae is offered by binary pulsar systems. For a  binary  system  the  loss  of  energy  due  
to  the pure  tensor gravitational radiation is given by  the quadrupole  luminosity (which is the same in field 
gravity and general relativity): 
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Here    are masses of the two stars, a is the semimajor axis and e is the eccentricity of the relative 
orbit. 
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Within the field gravity theory there is an additional loss of energy due to the scalar monopole radia-
tion (that does not appear in GR),  given by the relation (Baryshev  1995): 
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Hence the ratio of the scalar to tensor luminosity is 
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The value of this ratio lies in the interval 0 -  1.1 %  and for a circular orbit equals zero.  However  for  a  
pulsating spherically symmetric body there is no quadrupole radiation and the scalar radiation becomes deci-
sive.   

According to Damour & Taylor (1991) the orbit of the  binary  pulsar  PSR1913+16 has an eccen-
tricity  e = 0.6171309(6), hence the expected scalar radiation contribution (30) is 735.0=Δ scalar  % . Be-

cause the rate of change of the orbital period P&  is proportional to the total energy loss, one expects a corre-
sponding  excess in the decrease of the orbital period due to  scalar gravitational radiation. 

The data by Weisberg & Taylor (2002) show that the excess of the orbital period decrease relative 
to the predicted quadrupole energy loss is 78.0)()( =−=Δ quadrupoleobservedobs  % . This is interest-
ingly close to  the  expected value 0.735 %  for  the additional energy loss predicted for scalar gravitational 
radiation (30). 

It has been shown by Damour & Taylor (1991) that one must take into  account  the "Galactic effect" 
of the accelerations of the pulsar  and  the Sun in the Galaxy,  and that of the proper motion of the pulsar. 
The  distance d to the pulsar PSR1913+16 is a critical parameter in the calculation of the Galactic effect. Un-
fortunately, the line of sight to  the  pulsar passes through a complex region of our Galaxy, and one must be 
very careful, when using known distances to other pulsars for a distance  estimate  to PSR1913+16. 

Damour & Taylor (1991)  used  indirect  arguments  to re-estimate the standard dispersion-measure 
distance of 5.2 kpc. With their new distance d  =  8.3  kpc  the Galactic effect is  +0.69 %, which could al-
most explain the observed excess. Weisberg & Taylor (2002) took the distance to the pulsar d=5.9 kpc, 
which gives a Galactic effect of  +0.52 %. However, there are also arguments,  based on an analysis  of the 
pulse structure of  PSR1913+16, lead to a distance of about 3 kpc. For such a short distance the Galactic ef-
fect is only  +0.11 %. 

It  is  evident  that the distance to the pulsar PSR1913+16 requires further investigations. A direct de-
termination of its distance may be regarded as a test of fundamental physics, related to the nature of gravita-
tion. Also distances to other binary pulsars will be crucial for gravity physics. 
 
 
Scalar gravitational radiation from supernovae  
 

The problem of supernova explosion.  Expected amplitudes and forms of  gravitational wave (GW) 
signals from supernovae explosions detected on the Earth by gravitational antennas essentially depend on the 
adopted scenario of core-collapsed explosion of massive stars and  relativistic gravity theory. This is why the 
forthcoming GW astronomy will give for the first time experimental limits on possible theoretical models of 
gravitational collapse including the strong field regime and even quantum nature of the gravity force. 

For the estimates of the energy, frequency and duration of supernova GW emission one needs a real-
istic theory of SN explosion which can explain the observed ejection of massive envelope. Unfortunately, for 
the most interesting case of SNII explosion such a theory does not exist now. As was noted by Paczynski 
(1999) if there were no observations of SNII it would be impossible to predict them from the first principles. 
Modern theories of the core collapse supernova are able to  explain all stages of evolution of a massive star 
before and  after the explosion. However, the theory of the explosion itself, which includes the relativistic 
stage of collapse where a relativistic gravity theory should be applied for the calculation of gravitational ra-
diation, is still controversial and unable to explain the  mechanism by which the accretion shock is revital-
ized into a supernova explosion (see the discussion by Paczynski 1999). 

Within the field approach to gravity besides the tensor (spin 2) waves there is the scalar (spin 0) 
ones, generated by the trace of the energy-momentum tensor of considered matter. For the field gravity the-
ory, there is no detailed calculations of the relativistic stages of the core collapse, but in principle, the energy 
of scalar GW released by a SN explosion may reach values of about  one solar rest mass, with characteristic 
frequency Hz and durations up to  several seconds (Baryshev 1997; Baryshev & Paturel 2001). 310
 

Scalar waves from spherical pulsations of collapsing SN core. The trace of the tensor field equation 
(1) gives the field equation for the scalar part  ik

ikψηψ =  ,  which is the usual wave equation:  
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The source of the scalar field is the trace of the energy-momentum tensor of collapsing matter in the core of 
SN. Taking into account the expression for the EMT of the scalar free field, which is 
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and considering the approximation of slow motion in the source, one gets the expression for radiated power 
in the form of scalar gravitational waves (Baryshev 1997): 
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where the kinetic energy of matter is  . 2/2mvEkin =
 In particular it follows that in the field gravity theory it is impossible to have a ``quiet" relativistic 
collapse of  a spherical body because of the violent scalar gravitational radiation. It was shown in Baryshev 
(1997) and Baryshev & Paturel (2001) that the observed signals from SN 1987A and also detected by Rome 
bar detectors group  (Astone et al. 2002,   Pizzella 2008 in this Proceedings) , may be understood as a scalar 
gravitational waves events. 
 
 
No black holes in the field approach 
 

In the case of strong gravity the predictions of FG and GR diverge dramatically. In FG there is no 
black holes and singularities, and no such limit as the Oppenheimer-Volkoff mass. This means that compact 
massive objects in binary star systems and active galactic nuclei are good candidates for testing GR and FG 
theories. 

According to FG for  a static weak field conditions the positive mass density of the gravitational field 
around  an object with mass M and radius R is  
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It is positive, localizable, and does not depend on a choice of the coordinate system. On the surface of a neu-
tron star the mass density of the gravity field is about the same as the mass density of the nuclear matter. 

A very general mass-energy argument shows that there cannot be singularities in FG. The total en-
ergy of the gravitational field existing around a body is given by  
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This energy should be less than the rest mass energy of the body, which includes the energy of the gravity 
field. From this condition it follows that: 
 

2
)( McE fg <       ⇒        22c

GMR >    .        (36) 

 
If one takes into account the non-linearity of the gravity field, then the value of the limiting radius further 
increases, because "the energy of the field energy" should be added. Hence a safe estimate for the limiting 



minimum radius of any massive body in the field gravity is  . This argument is a precise ana-

logue to that of the classical radius of electron , following from the requirement that the elec-

tric field energy  should be less than the electron's rest-mass energy . 

gm rR 5.0>
22 / cmeR ee =

0
2 2/ ReE fe =

2
0 cmE e=

Thus black holes and singularities are excluded by the existence of the positive energy density of the  
gravitational field. 
 
The limit on the gravity force 
 

The positive energy-density of the gravitational field leads to a limit on the gravity force acting on a 
test body from an object having the limiting radius  . Indeed, in the weak field approximation 
the field equation outside a body with mass M, surrounded by a positive field energy density (34), should  
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take into account the source term caused by this mass-energy: 
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For a maximally compact relativistic object having the radius , the gravitational acceleration 
and the gravity force are restricted by 
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where  the last equality is written for the case  m = M .         

In general relativity the energy-density of the gravity field is negative (see discussion in preceding 
paper ), hence the sign of the right-hand side of  the field equation is negative and in this case 
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So the gravity force will be  
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And for  the gravity force is infinite at finite radius. This difference in the behavior of the gravity 
force in GR and FG has important consequences for the structure and stubility of relativistic astrophysical 
objects. 
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Hydrostatic equilibrium configurations 
 

In general relativity the Tolman- Oppenheimer-Volkoff equation of hydrostatic equilibrium leads to 
a maximum mass of a neutron star, about 2 solar masses, called the Oppenheimer-Volkoff limit. Larger 
masses can exist only in the form of black holes. 
In the field gravity theory  the equations of motion are contained in the conservation laws  , where 

 ,  is the total EMT of considered system gas + gravity field in corresponding 
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approximation. The post-Newtonian equation of hydrostatic equilibrium in FG was derived by Baryshev 
(1988). It depends on a particular choice of the interaction EMT and may be written in the form 
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equations of hydrostatic equilibrium in FG  and in GR is that within FG the relativistic gravity corrections 
lead to a decrease of the gravitating mass relative to the rest-mass due to the negative value of the gravita-
tional potential ( 0<φ ). According to eq.(39) a hydrostatic equilibrium is possible for any large mass. 

The internal structure of the neutron stars within FG was numerically studied by Tanychin (1995), 
who showed that in FG the stars are more homogeneous than in GR, and that there is no upper limit on their 
masses. 
 
Stability of supermassive stars in field gravity theory 
 

Hoyle & Fowler (1963) suggested that a mass of the order of  (solar masses) may condense 
in a galactic nucleus into a supermassive star (SMS), in which the nuclear energy generation takes place. 
However, a year later Fowler (1964) showed that in general relativity a SMS is unstable and will collapse to 
a black hole within a lifetime  yr   before the nuclear reactions begin. Hence in the 
standard GR only black holes can be the primary power sources of the active galactic nucleus. 
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Within the field gravity theory the SMS is stable, which was shown by Baryshev (1992) using the 
method developed by Fowler (1966) for considering the PN hydrostatic equilibrium and small adiabatic 
pulsations of a slowly rotating SMS. The total equilibrium energy of SMS (excluding the constant term  
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which is a consequence of the relativistic virial theorem in the PN approximation. Here e is the thermal en-
ergy density, p is the pressure,  is the density of the kinetic rotational energy, so that 

. The first two terms in (40) can be expressed via the Newtonian potential energy 

 plus the relativistic correction  , hence 
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where  1/ <<= totgas ppβ   is the gas to the total pressure ratio (  for a SMS mass ) and 
the relativistic correction is  
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where   is the rest-mass of the SMS,  0M c0ρ  is the central mass density,  K(n, gt) is a constant defined by 
the polytrope index n and the gravity theory. 
 The stability of the SMS follows from the fact that in FG the constant  K>0, while in GR the con-
stant  K<0.  For the n = 3 polytrope  the calculation of  the value of K(3, FG) within the field gravity theory 
was done by A.Raikov (details in Oschepkov \& Raikov 1995):  K(3, FG) = + 1.7349  , while  in GR we 
have  K(3, GR) = − 0.9183  . The different signs of the relativistic gravity corrections for GR and FG show 
that in general relativity we have a PN instability, while in field gravity the supermassive star is stable. 
The PN stability of the SMS in the field gravity theory radically changes the understanding of their evolu-
tion. In particular, at the last stages of the SMS evolution the main energy source will not be nuclear reac-



tions which produce the energy output of about 1 % of  , but the gravitational binding energy of the 

order of total . 
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5. Conclusion: crucial astrophysical tests of gravity physics 

 
 

Relativistic compact objects  
 
Observations of relativistic compact objects (RCO), also called as "black hole candidates", in the X-

ray binary stellar systems (RCO masses about 10 solar masses) and in galactic nuclei ( solar 
masses)  provide astrophysical tests of the strong gravity effects and hence the nature of the gravitational in-
teraction. Within the geometrical approach, classical general relativity predicts black holes --- theoretical 
objects having the event horizon at the Schwarzchild radius , after which a one-way fall 
into the singularity is inevitable. This radically new physics has no counterpart in all other fundamental 
physical interactions. 
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There is no singularity and event horizon in the frame of the field gravity theory. As we discussed 
above, the positive localizable energy density of the gravity field prevents the appearance of a singularity at 
the center and also at the gravitational radius of a RCO. This is strictly the same physical reason as the ab-
sence of the singularity of an electron in electrodynamics. Instead of black holes, the field gravity theory 
predicts the existence of massive compact relativistic objects having radii ,  close to the 
gravitational radius. Field gravity RCOs have a highly redshifted surface and  an intrinsic magnetic field. 
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To prove or disprove observationally the existence of black holes means to prove or disprove the exis-
tence of the event horizon in relativistic compact objects. Crucial observational tests, which would convinc-
ingly show the existence of the event horizon around a RCO, have not yet been made. 

A discussion about the "visibility" of the event horizon of black holes is going on in the literature. It is 
difficult to prove the existence of such a one-way sphere, because of many astrophysical processes are in-
volved. It has been even stated (Abramowicz et al. 2002), that it is impossible to prove observationally that 
an object has an event horizon. The most difficult for black hole models is to explain the observed very small 
luminosity in a certain variability phase, when the accretion rate is still large enough. 

Narayan & Quataert (2005) suggested that the low luminosity could be explained by introducing a new 
physical process, the "advection dominated accretion flow (ADAF)" or "radiatively inefficient accretion flow 
(RIAF)". ADAF is based on the assumption that protons and electrons are decoupled in the flow, so the ki-
netic energy is absorbed by the event horizon without an outward radiation. However, it was noted by Bisno-
vatyi-Kogan \& Lovelace (2000) and Binney (2003) that the magnetic field present in astrophysical plasmas 
of the accretion flow make ADAF practically impossible. 

Robertson & Leiter (2002, 2003) analyzed observational data on black hole candidates in X-ray binary 
stars and active galactic nuclei and found evidence for intrinsic magnetic fields, which is in conflict with the 
black hole model. The low luminosity phase is naturally explained by the "propeller effect" of the magnetic 
field of the RCO. In the frame of general relativity, Robertson and Leitner used a new RCO model, the 
"magnetospheric eternally collapsing object (MECO)" that has no event horizon though its size is close to the 
Schwarzschild radius (see Mitra 2008 in this Proceedings). Observations of the gravitationally lensed quasar 
Q0957+561A,B revealed the inner structure of the accretion disc, which demands an intrinsic magnetic field 
of the central RCO and may be well modeled by the MECO (Schild, Leiter & Robertson 2006, Schild 2008 
in this Proceedings). Note, that the field gravity RCO also can explain the intrinsic magnetic fields in the ga-
lactic "black hole candidates" and active galactic nuclea. 

Another unexpected finding in the RCO observations is the very small radius of radiating matter in ac-
cretion discs. E.g., in the best studied accretion disc, around the central object in the Sy1 galaxy MCG-6-30-
15, the inner radius of the orbiting matter is ginner Rr 615.0= . This is less than the Schwarzschild radius and 
within general relativity it had to be interpreted as an extremely rotating Kerr black hole (Wilms et al. 2001). 

Crucial observational tests, capable of distinguishing between the alternative models for RCO, are dif-
ficult. Perhaps the most direct test of the black hole model was suggested by Falcke, Melia \& Agol (2000), 
who discussed VLBI observations of the black hole candidate in the Galactic center with micro-arcsecond 
angular resolution. The profile of such an image can even distinguish between non-rotating and rotating 
black holes. 



 
Core-collapse supernovae, gamma-ray bursts and gravitational waves 

 
Another direct test of the strong gravity effects would be the detection of a gravity wave signal from 

the relativistic collapse. The absence of black holes in the field gravity makes dramatic changes in the phys-
ics of supernova explosions. The collapse of the iron core of massive pre-supernovae stars will have a pulsa-
tion character and leads to long duration gravitational signals, comparable with neutrino signals and gamma 
ray bursts, i.e. several seconds. 

The relation of the gamma-ray-burst (GRB) phenomenon to relativistic core-collapse supernovae has 
become a generally accepted interpretation of the GRBs (Paczynski 1999, Sokolov 2008 in this Proceed-
ings). If the compact GRB model suggested by Sokolov et al. (2006) obtains further confirmation, then there 
should be a correlation of the gamma-x-ray signal with gravitational bursts. The gravitational antenna 
GEOGRAV observed a signal from SN1987A (Amaldi et al. 1987) together with the neutrino signal ob-
served by the Mont Blanc Underground Neutrino Observatory (Aglietta et al. 1987,  Pizzella 2008 in this 
Proceedings). This has been interpreted by Baryshev (1997) as a possible detection of the scalar gravitational 
radiation from the spherical core-collapse of the pre-supernova. An observational strategy to distinct between 
scalar and tensor gravitational waves by using siderial time analysis was considered by Baryshev & Paturel 
(2001) and Paturel & Baryshev (2003a,b). Recent, still controversial, claims about possible detections of 
gravitational signals by  Nautilus and  Explorer antennas (Astone et al. 2002,   Pizzella 2008 in this Proceed-
ings), if confirmed, require a new analysis of the potential sources of gravitational waves (Coccia, Dubath & 
Maggiore 2004). 
 
Applications to cosmology 

 
Observational cosmology provides the possibility to study matter distribution and its evolution on 

largest achievable scales. Such observations also test gravity theories in their ability to describe the whole 
Universe. The geometrical approach of general relativity leads to the Friedmann cosmological model, the 
standard frame for modern cosmological research. The expanding homogeneous universe explains all avail-
able data, though suffering from some paradoxes, which is discussed in this Proceedings. 

The field gravity theory allows one to operate with a matter distribution in infinite Minkowski space 
without the gravitational potential paradox. A global evolution of matter is possible without space expansion 
and initial singularity. Cosmological redshift could have gravitational nature. The energy-momentum tensor 
of the interaction plays the role of an effective cosmological Λ term (Baryshev 2008c in this Proceedings ). 
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