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Abstract: The new generation galaxy redshift surveys which became available over the last five years are first to provide 
three-dimensional maps containing hundreds of thousands of the local galaxies. These new data allow researchers to extend 
the range of scales available for correlation analysis to more than 100 Mpc/h. Correlations in the volume limited samples ex-
tracted from the latest available versions of  2dF and SDSS galaxy catalogs are characterized using the conditional density 
and the reduced two-point correlation function. For the conditional density a power-law behavior is detected in the range of 
scales from about 0.5 Mpc/h to 30 Mpc/h, having an exponent 2.08.0 ±=γ  for the 2dF and 1.09.0 ±=γ  for the SDSS. 
Extending analysis to the larger scales using the SDSS data shows an evidence of possible homogeneity detection with the 
conditional density going towards a constant value; reliability of this evidence is then discussed. The samples are then tested 
for a presence of the super-large structures or systematic biases which may affect correlation analysis using simple methods 
of the differential number counts and the radial density distribution. 

1. Introduction 

Statistical characterization of the large scale galaxy structures is one of the most important problems of the 
modern observational cosmology. A detailed understanding of the galaxy clustering and the physics of the 
structure formation process are crucial in the process of building of the self-consistent model of the evolving 
Universe. Although it is believed nowadays that the Universe is dominated by a non-baryonic dark matter of 
an unknown kind, the visible matter distribution is still the only direct way available to study the local extra-
galactic structures. The cosmological principle postulating the homogeneity of the matter distribution at large 
scales is one of the basic assumptions of the standard (Friedmann-Lemaitre-Robertson-Walker) solution, [1]. 
However recently discovered evidences of super-large structures (see e.g., [2] and [3]) and voids (such as 
described in [4] and [5]) both in visible and dark matter (see for [3] details) give rise to a question: can the 
scale at which visible matter distribution becomes statistically uniform be clearly identified? 

The problem of galaxy clustering has been actively discussed during several last years, especially in 
relation to two modern galaxy surveys: the Two degree Field Galaxy Redshift Survey (2dFGRS, [6]) and the 
Sloan Digital Sky Survey (SDSS, [7]). These new generation three-dimensional surveys represent a signifi-
cant improvement of our knowledge of the local Universe properties: the numbers of accurately measured 
redshifts have grown from several thousands at maximum in previous surveys to more than half of a million 
in the latest releases of the SDSS catalog. Moreover accurate redshift determinations and the multi-band pho-
tometry allow one a precise characterization of many parameters and effects (e.g. K-corrections) which were 
poorly constrained up to a few years ago. However it should be clearly understood that to study the structures 
at large scales without making a priori assumptions it is not enough for the survey to be deep along the line 
of sight: a large solid angle is also required. Currently only the latest versions of the SDSS data partially sat-
isfy these requirement, nevertheless the final release of the SDSS shall provide a large contiguous angular 
sky region (about ¼ of the celestial sphere) in 2009. 

When the statistical properties of the large scale structure are considered, the first question is usually 
about the two-point correlation properties. The two-point correlation analysis methods most commonly used 
to study galaxy correlations are the reduced two-point correlation function )(rξ , in redshift and real space, 
and its Fourier conjugate, the power spectrum (see e.g. [8], [9] for 2dFGRS-related results and  [10], [11], 
[12] for some recent studies of SDSS). These methods as discussed in [13] can be affected by effect of a fi-
nite volume of a sample being analyzed, moreover the estimators commonly used to compute these functions 
indirectly suppose that the homogeneity scale is achieved within the sample (i.e. that the structures and cor-
relations can be considered as small fluctuations). An alternative statistics useful to determine correlation 
properties in the regime of strong clustering (i.e. in case of irregular distributions) is the conditional average 
density, [14]. Recent analyses of the SDSS data using conditional density method show a simple power-law 
scaling with correlation exponent 1≈γ  up to 20-30 Mpc/h ([15], [16]). 

Estimations of the two-point correlation properties in a finite sample volume can be affected by two 
systematic factors: (i) systematical biases specific for a certain estimator and (ii) specifics of the sample it-
self. Latter can be, for example, a systematic error of the observations and/or data pre-processing (e.g. selec-
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tion effects) or a presence of real super-large structures inside the volume which can not be properly aver-
aged. The samples can be simply tested for a presence such distortions by e.g. considering the standard num-
ber counts and tracking average density changes between different parts of the sample. In case of a generally 
homogenous distribution these quantities are very well predicted, so expected and actual values can be easily 
compared 

The text below mostly summarizes the results of our previous published papers [17] and [17]. A re-
freshment is given in case of SDSS as the results for the newest data release are given. Moreover the tests of 
the samples’ systematics are added with a brief discussion of the current data limitations. 

2. Building volume limited subsamples 

Before proceeding with an analysis of the two-point correlations in three-dimensional galaxy distributions 
one has to extract some volume limited (VL) samples (i.e. including all objects in a given range of radial dis-
tances for a given range of luminosities, see [13] for more details) out of the given survey data which is typi-
cally magnitude limited (i.e. includes all galaxies for a certain range of apparent magnitudes). A comparison 
between VL samples with various distance and magnitude limits, in different sky regions, allows one to test 
the statistical stationarity of galaxy distributions in these samples and to estimate the luminosity dependence 
of galaxy clustering. 

To construct VL subsamples one first has to compute metric distances as 
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H
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where we use the standard model parameters 3.0=ΩM  and 7.0=ΩΛ . Then absolute magnitudes can be 
calculated as 

[ ] 25)()1()(log5 10 −−+⋅⋅−= zKzzrmM , (2)

where  is an apparent magnitude and  is a K-correction which can estimated by a certain method 
depending on particular galaxy catalog considered. 

m )(zK

2.1 Two degree Field Galaxy Redshift Survey 
The 2dFGRS survey project was completed in 2002 and the complete catalog data were made public in 

2003 (the Final Release, available at http://www.mso.anu.edu.au/2dFGRS/). A detailed description of the 
volume limited samples extraction from this catalog is given in [17]. We select two rectangular regions on 
the celestial sphere near the northern galactic pole (NGP, ) and the southern galactic pole (SGP, 

). Having metric distances and absolute magnitudes computed as Eq.

oo 660 ×
oo 984 × (1) and Eq.(2) respectively, we 

then select three distance intervals and corresponding magnitude limits to obtain  VL subsamples 
whose main parameters are presented in 

623 =×
table 1. 

 
VL sample minr  maxr  minM  maxM  Ω  gN  

SGP250 50 250 -19.5 -17.8 0.20 14177 
SGP400 100 400 -20.8 -19.0 0.20 29373 
SGP550 150 550 -21.2 -19.8 0.20 26289 
NGP250 50 250 -19.5 -17.8 0.11 12474 
NGP400 100 400 -20.8 -19.0 0.11 23208 
NGP550 150 550 -21.2 -19.8 0.11 18030 

Table 1. Properties of the 2dFRGS VL samples:  and  are the chosen limits for the metric distance;  and 

 are the corresponding limits for the absolute magnitude; 

minr maxr minM

maxM Ω  is the solid angle of a region in steradians;  – the 

resulting number of galaxies in each subsample. 
gN

2.2 Sloan Digital Sky Survey 
The SDSS is currently the largest spectroscopic survey of the extragalactic objects and one of the most ambi-
tious observational programs ever undertaken in astronomy. The data considered here is taken from the latest 
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public version of the data: Data Release Six (DR6, [20]) which can be accessed at http://www.sdss.org/dr6/. 
Extraction of the VL samples from the catalog is done similarly to the procedure described in section 2.1 and 
analogously to the data preparation explained in [18], while main features and differences are highlighted 
below. 

There are two independent parts of the galaxy survey in the SDSS: the Main Galaxy (MG) sample and 
the Luminous Red Galaxy (LRG) sample: here both are analyzed. The former consists of the objects similar 
to the ones targeted in the 2dFGRS survey, being magnitude limited in r  filter as . At the same 
time LRG sample galaxies are selected on a basis of color and magnitude to yield a sample of luminous in-
trinsically red galaxies that extends fainter and farther than the SDSS main galaxy sample (see 

77.17<r

[21] for de-
tails). Instead of typical magnitude limited scenario these galaxies are selected using a variant of the photo-
metric redshift technique and form approximately volume-limited sample of objects in the range of redshifts 

 with additional galaxies extending up to 38.016.0 << z 6.0≈z .  
To select objects from the MG sample we first of all constrain the flags indicating the type of object so 

that we select only the objects from required sample. We then consider galaxies in the redshift interval 
 and with the redshift confidence parameter  having no redshift determination 

errors. Finally we apply 

3.010 4 <<− z 35.0≥confz
77.17<r  magnitude limit as it is required and thus select 479417 galaxies. For the 

luminous red galaxies we follow a similar  procedure selecting objects of the appropriate type with the same 
redshift quality constraints in  range, without magnitude limits; this results in 99799 matched 
galaxies. 

6.016.0 << z

The angular coverage of the survey is not uniform but observations have been done in different sky re-
gions. We have considered three rectangular fields (named R1, R2 and R3) in the SDSS internal angular co-
ordinates ( )λη,  not taking into account completeness and fiber collision corrections (assuming complete-
ness in the selected regions enough for our goals). The parameters of the chosen fields are reported in table 2. 

 
Region minη  maxη  minλ  maxλ  Ω  
R1 -48.0 32.5 -6.0 36.0 0.94 
R2 -54.0 -17.0 -33.5 -16.5 0.15 
R3 -14.0 43.0 -36.0 -26.5 0.15 

Table 2. Properties of the angular regions considered for the SDSS: the limits (in degrees) are chosen using the intrinsic 
coordinates of the survey ( )λη, ;  is the solid angle of each region in steradians. Ω

Analogously to the 2dFGRS data processing metric distances and absolute magnitudes are computed 
as Eq.(1) and Eq.(2) respectively. We use Petrosian apparent magnitudes corrected for galactic absorption in 
r  filter for MG sample and in  filter for LRG sample, the latter chosen in order to comply with a proce-
dure described in 

g
[22]. The K-corrections for both analyzed samples are extracted from the latest release of 

the Value Added Galaxy Catalog (VACG, [23]). A simple data extraction procedure results in a successful 
retrieval of the K-corrections from VAGC for more than 98% of the selected galaxies, while for the rest a 
simple polynomial approximation of  based on extracted VAGC data is taken. We have considered 4 
different VL cuts (defined by limits in absolute magnitude and metric distance) for main galaxies (named 
MG1, MG2, MG3 and MG4) and 1 VL cut for luminous red galaxies (named LRG). The limits defined 
analogously to 

)(zK

2.1 are reported in table 3.  
 

VL cut minr  maxr  minM  maxM  

MG1 50 200 -21.0 -19.5 
MG2 100 300 -22.0 -20.0 
MG3 150 500 -22.5 -21.0 
MG4 200 600 -23.0 -21.5 
LRG 460 990 -22.4 -20.5 

Table 3. Selected VL cuts for SDSS galaxies:  and  are the chosen limits for the metric distance;  and 

 are the corresponding limits for the absolute magnitude (

minr maxr minM

maxM r -band for MG1 – MG4 and -band for LRG). g

While MG1 and MG2 cuts actually contain relatively faint galaxies in the local universe, MG3 and 
MG 4 cuts cover a wide range of distances for main galaxies, and LRG cut consists of the bright red galaxies 
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at distances up to 1 Gpc/h. Considering three different rectangular areas, as a result we consider 1535 =×  
VL subsamples, the number of galaxies in each is reported in table 4. 

 
Region / VL cut R1 R2 R3 

MG1 33259 5435 3891 
MG2 43394 8765 9256 
MG3 51717 9153 9324 
MG4 30532 5061 5020 
LRG 27150 4440 3957 

Table 4. Number of galaxies in each VL subsample extracted from SDSS. 

3. Two-point correlations 

A number of statistical methods can be used to study galaxy distribution; the main ones involve the determi-
nation of two-point properties although the study of the higher order correlations, has also been applied to 
SDSS data by some researchers. The methods discussed below are the conditional density, which is a suit-
able method for highly correlated samples and the two-point reduced correlation function which is a widely 
used method for studying galaxy correlations. For a discussion of the small scale correlations characteriza-
tion using the nearest neighbor distance probability distribution one may refer [17] and [17] for 2dFGRS and  
SDSS data analysis respectively. 

3.1 Conditional density 

The conditional density in spheres  is defined for an ensemble of realizations of a given point process 
as  

)(* rΓ

)(
)(

)(*

rC
rN

r P=Γ . (3)

This quantity measures the average number of points 
P

rN )(  contained in a sphere of volume 

3

3
4)( rrC π=  with the condition that the center of the sphere lies on an occupied point of the distribution 

(and 
P

...  denotes the conditional ensemble average). Such quantity can be estimated in a finite sample by a 
volume average (supposing stationarity of the point distribution) 
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where  – the number of points (centers) with spheres fully contained in the sample volume, )(rNc ( )P...  
means averaging by the sample points. Given a sample of an arbitrary geometry and a scale r  at which cor-
relations are measured, only a subsample of the points contained in it will satisfy the following requirement: 
when chosen as center of a sphere of radius r , the sphere is fully contained in the sample volume. When the 
average in Eq.(4) is made over such a subsample one considers the full-shell (FS) estimator of the condi-
tional density. 

The behavior of the conditional density in spheres is reported on Fig.1 –  Fig.3. Volume limited sam-
ples with the same luminosity and distance cuts show approximately the same behavior for different angular 
regions (Fig.1, Fig.3). The slopes of   for 2dFGRS ()(* rΓ Fig.1) show a power-law behavior for most of the 
scales without a crossover towards a constant value (the scales are limited by at most 40 Mpc/h due to a nar-
rowness of the survey areas). The deviations from a power-law at smallest and largest scales can be ex-
plained by considering the limitations of the estimators which is done in section 0. Note that all results here 
are provided for the redshift space while a comparison of redshift space and real space approaches is given in 
[17] and [17]. 

The range of scales analyzed with the SDSS data at R1 region extends up to 200 Mpc/h (R1LRG sam-
ple). Conditional density estimation for SDSS (Fig.2) clearly shows a crossover towards a constant mode 
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which starts at 20-40 Mpc/h depending on VL subsample. A scale where  becomes a constant value 
(which can be interpreted as the evidence of homogeneity)  ranges from 30 Mpc/h to 80 Mpc/h increasing for 
the deeper subsamples. 

)(* rΓ

If one fits the behavior of the estimated , with a power-law function of type )(* rΓ γrB ⋅  (in the range 
of scales where it conforms to a power-law) one finds that 2.08.0 ±=γ  and 1.09.0 ±=γ  for 2dFGRS and 
SDSS subsamples respectively. This corresponds to the values 2.02.2 ±=D  and  of the 
metric dimension 

1.01.2 ±=D
γ−= 3D  which can be interpreted as fractal dimension if one considers a fractal model 

for the irregular structures (see [13] for an extensive discussion). 
The conditional density in spherical shells )(rΓ  is defined as 

),(
),(

)(
drrC
drrN

r P=Γ , (5)

where 
P

drrN ),(  represents the ensemble average number of points in a sphere of radius r  and thickness 

, of volume dr drrdrrC 24),( π= , around a point of distribution (and thus this is a conditional ensemble 

average  
P

...  as in case of ). Note that one can also write Eq.)(* rΓ (6) as  

)0(
)0()(
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n

nrn
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where ...  represents the (unconditional) ensemble average and  is the microscopic number density at 
distance 

)(rn
r  from a given point. The conditional density in shells can be estimated in a finite sample by the 

following volume average 
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where we consider again only the full-shells, i.e. )( rrNc Δ+  represents the number of points (centers) con-
tained in the spherical shells fully contained in the sample volume. 
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Fig.1: Conditional density in spheres for different VL subsamples of 2dFRGS (see labels). The reference line has a 
power-law behavior with slope 8.0=γ . 
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Fig.2: Conditional density in spheres for different SDSS VL subsamples in R1 angular region. The reference line has a 
power-law behavior with slope 9.0=γ . 
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Fig.3: As for Fig.2 but MG3 distance-magnitude cut is considered and formal statistical errors are shown. 
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Fig.4: Conditional density in shells for different SDSS VL subsamples in R1 angular region. The reference line has a 
power-law behavior with slope 9.0=γ . 
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The estimation of the conditional density in spheres for SDSS VL samples in R1 region is shown on 
Fig.4. Basically the behavior of  is similar to  but clearly more affected by a statistical noise. 
Note that formal statistical errors (standard errors of the mean values) for the estimations of  and 

 are only plotted on 

)(rΓ )(* rΓ
)(* rΓ

)(rΓ Fig.3. Actually these errors appear to be quite small in comparison with systematic 
variations due to the fact that the volume average cannot be performed at large scales and sample to sample 
variance. 

3.2 Reduced correlation function 
The reduced two-point correlation function )(rξ  for a stochastic point process is defined (see e.g. [24]) as 

1)(1
)0(

)0()(
)( 2 −

Γ
=−=

n
r

n

nrn
rξ , (8)

where ...  indicates the ensemble average and n  is the ensemble average number density. The last equal-
ity follows from the definition of the conditional density (see Eq.(6)). 

There are several estimators of )(rξ  (see [25] for a detailed discussion). Analogously to the full-shell 
estimator of the conditional density, one may define the full-shell estimator )(rFSξ  which gives a very con-
servative estimation of the correlation function, its application to the 2dFGRS data is discussed in [17]. An 
estimator considered below is the Landy & Szalay (LS) estimator that is the most widespread in modern 
studies of correlation function for large scale structures as it has the minimal variance estimator for a Poisson 
distribution. This can be written as: 

( )
( ) 1
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1)( +

−
−

−
−

=
rRR
rDR

N
N

rRR
rDD

NN
NNr

D

R

DD

RR
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where  is the  number of data (sample) points;  – the number of random points homogeneously dis-
tributed in the sample geometry;  is the number data-data pairs,  – data-random pairs and 

 – random-random pairs. We evaluate 

DN RN
)(rDD )(rDR

)(rRR )(rξ  with LS estimator using artificial random catalogs with a 
number of points  about three times more than . RN DN
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Fig.5: Two-point correlation function for different VL subsamples of 2dFRGS using Landy & Szalay estimator. 

The behavior of the reduced two-point correlation function evaluated with LS estimator for the 
2dFGRS VL subsamples is presented on Fig.5. The amplitude of )(rξ  appears to be similar for all samples 
in contrast to the full-shell estimator as shown in [17]. While at small scales 1)( >>rξ  and the behavior 
similar to  i.e. power-law is observed (which follows from Eq.)(rΓ (8)), at larger scales )(rξ  decays rapidly 
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and crosses zero. The values of characteristic scales  and  such that 0r zcr 1)( 0 =rξ  and  0)( =zcrξ  depend 
on the sample analyzed; this can be explained as a systematic effect of the finite volume in each sample. If 
one fits )(rξ  with a power law at scales where 1)( >>rξ  one should obtain a value of 9.08.0 ÷≈γ . 
However at the scales around  an exponent value 0r 8.17.1 ÷≈γ  is typically obtained, see [17] for more 
details. 

3.3 Differences and limitations of methods 
The main difference between two approaches of studying two-point correlations described above is 

that estimation of the correlation function actually requires a reliable estimation of the ensemble average 
density n  as follows from Eq.(8). This can be easily achieved in case of weakly correlated distributions, 
i.e. homogenous with weak fluctuations. For the intrinsically irregular distributions (such as fractals) a sam-
ple average value n  can not be a reliable estimator of n  and strongly depends on the volume being ana-

lyzed. Moreover it was shown in [13] that some of the estimators of )(rξ  such as )(rLSξ  can display a false 
tendency of a crossover towards homogeneity in case of the model irregular samples with a non-spherical 
shape. Therefore conditional density functions  and )(* rΓ )(rΓ  estimated using the full-shell estimator are 
in general more suitable for the characterization of galaxy distribution in the regime of strong clustering (one 
may refer to [13] for a comprehensive discussion).  

An important consequence following from Eq.(8) is that the functions )(rξ  and  can not have a 
power-law behavior for the same sample. When performing a power-law fitting at different scales we find 
that for most of the VL subsamples extracted from 2dFGRS and SDSS it is the conditional density (in 
spheres and spherical shells) that shows a power-law behavior with almost constant exponent at the scales of 
strong clustering. The same fitting applied to the correlation function (locally) shows a systematic increase of 
the exponent when the scale 

)(rΓ

r  increases. For example Hawkins et al. [8] studied 2dFGRS data in redshift 
space with )(rξ  and found that in the full magnitude limited value of the correlation exponent is 75.0=γ  
in the range [  Mpc/h and then ]4,1.0 75.1=γ  in the range [4,10] Mpc/h (see their Fig.6). 

The maximum scale available for the FS estimator (for , )(* rΓ )(rΓ  and )(rξ ) is limited by the 
maximum radius of the galaxy-centered sphere  fully contained in the sample volume. The minimal scale 
up to which correlations can be reliably measured by all considered estimators is given by the average dis-
tance between neighbor galaxies : clearly for smaller scales discrete shot-noise dominates estimations of 

any statistical quantity. The values of  for the VL subsamples considered above are about  Mpc/h 

while  ranges as  Mpc/h. 

m
sr

sepr

sepr 101÷
m

sr 20010÷
Note that for the full-shell estimators of  and )(* rΓ )(rΓ  the number of centers  is a function of 

the scale 

)(rNc

r  at which correlations are estimated. At scales approaching to  only the points lying close to 
the outer boundary of the sample will be considered as centers (due to the specifics of the shape of analyzed 
samples). One can define various characteristics in addition to  to check statistical relevancy of  
and  determination at certain scale. It is shown in 

m
sr

)(rNc )(* rΓ
)(rΓ [17] that one can rely on results at scales 2-3 times 

smaller than . Therefore finite size effects such as presence of the super-large structures become espe-
cially important for the large scales (e.g. a large cluster or void near the sample’s outer boundary). A couple 
of very simple tests for a presence of such structures in the considered samples is briefly discussed below. 

m
sr

4. Tests for structures and sample effects 

To verify whether a considered VL sample is statistically uniform as a whole (i.e. that the statistical 
properties are more or less the same in each part of the sample) one may use various methods. In case of a 
homogenous sample (i.e. a sample where all fluctuations are well averaged at large scales) one knows what 
exactly to expect for various tests and can simply compare expected values with actual results for a real sam-
ple. Here we apply two simple tests to the studied samples: the differential number counts by radial distance 
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and the distribution of the average density along radial distance. These methods could show over-density or 
under-density regions at scales comparable to a sample’s size. 

4.1 Differential number counts 
The behavior of the differential number counts  as a function of distance for different VL 

samples of the 2dFGRS catalog is presented on 
drrdN /)(

Fig.6. As an example the best fit for the SGP400 volume lim-
ited sample is reported, which shows an exponent corresponding to a metric dimension  larger than 
the space dimension ( ). This can be interpreted a purely finite-size effect corresponding to the large 
fluctuations still visible at scales of the order of 100 Mpc/h. Similar fit for the R1MG3 sample of SDSS also 
gives a metric dimension larger than the space dimension (

7.3=D
0.3=D

3.3=D ). The counts up to certain apparent mag-
nitude  applied to 2dFGRS and SDSS magnitude limited catalogs also yield to the same conclusion. )(mN

An important question is whether the observed systematics are due to the real structures or it is pro-
duced by some selection effects or errors in the original data of the catalogs. This question is yet to be an-
swered and is beyond the of the scope of the current text. 
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Fig.6: Differential number counts for VL subsamples of 2dFRGS. Best fit for SGP400 sample is shown. 

4.2 Radial density distribution 
A simple method clearly showing local properties of the various regions in a sample is a comparison 

between the values of the average density computed in each region. Here we consider the following simple 
test: a volume limited sample is divided into several slices along the line of sight and an average density 

)(rnrad  is computed in each slice as 

( )( )33

3

),(
),(
),(),(

rrr

rrN
rrV
rrNrrnrad

−Δ+⋅
Ω

ΔΔ
=

ΔΔ
ΔΔ

=Δ , 
(10) 

where  is the number of galaxies in the slice delimited by radial distances ),( rrN ΔΔ r  and rr Δ+ , 
 – the volume of this slice and ),( rrV ΔΔ Ω  – the solid angle of the sample. While the volume of a slice 

increases along with the radial distance, it’s obvious that in case of uniform distribution one should not see 
the systematical changes of density at large scales. 

Examples of the radial density distributions are presented on Fig.7 and Fig.8 for some of the VL sam-
ples of 2dFGRS and SDSS respectively. One can clearly see that in 100-400 Mpc/h distance interval (VL400 
cut) for 2dFGRS the value of density differs 2-3 times with a scale of fluctuations about 100 Mpc/h. More-
over all three independent angular regions of SDSS show the same systematical 3 times growth of the den-
sity towards outer boundary of the MG4 subsamples (2dFGRS regions are located at different poles of the 
spherical coordinate system thus showing no correlation with each other). These results lead us to a conclu-
sion that the samples are not uniform at large scales comparable to their sizes. 
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Fig.7: Radial density profile for various angular regions of 2dFRGS reported in 100-400 Mpc/h interval. 
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Fig.8: Radial density profile for various angular regions of SDSS reported in 200-600 Mpc/h interval. 

5. Discussion and conclusions 

We have studied redshift space correlation properties of several volume limited samples extracted from 
the final release of 2dFGRS survey and the sixth data release of SDSS survey. We characterize correlations 
in volume limited subsamples with a conservative two-point statistics – the conditional density which ap-
pears to be well fitted with a power-law in the range of scales approximately from 0.5 Mpc/h up to 30 Mpc/h 
(exact range varies from sample to sample). The power-law exponent γ  value ranges from  to  hav-
ing average values of 

7.0 1.1
2.08.0 ±=γ  for 2dFGRS and 1.09.0 ±=γ  in case of SDSS. Extending two-point 

correlation analysis to the scales of 100-200 Mpc/h with the latest SDSS data we observe almost constant 
behavior of the conditional density. This can be interpreted as an evidence of the detection of homogeneity 
scale, still one has to be sure that the analyzed samples are uniform at large scales to make such a conclusion. 
The two-point correlation function, which is commonly used as a two-point statistics, does not show a 
power-law behavior with a constant exponent γ . 

While it is claimed in [15] and [16] that galaxy distribution is homogenous starting from at most 70 
Mpc/h we put several arguments to show insufficient motivation of such strong statement. First of all it is 
noted here as previously in [17] and [17] that current surveys still do not provide continuous large samples to 
make proper averages for the scales around 100 Mpc/h without including some a priori artificial assumptions 
into the analysis procedure. Then by performing the differential number counts  and computing drrdN /)(
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the radial density )(rnrad  we find strong evidences of the existence of super-large scale structures which 
appear as 2-4 times density contrast and are comparable in size with the samples they belong to (more than 
100 Mpc/h). This density contrast simply invalidates the statement of homogeneity detection for these scales. 

Both 2dFGRS and SDSS data demonstrate significant variations of density at very large scales which 
can be interpreted as catalogs’ errors or real structures (the latter being more probable). These effects obvi-
ously can not be properly averaged in the estimations of the conditional density and the two-point correlation 
function. Analysis of the possible biases which can be induced by these structures will be a subject of a 
forthcoming paper. Furthermore it’s becoming more and more clear that we still need deeper samples with a 
larger solid angles to give a trustworthy answer to the question of scale of true homogeneity for the visible 
matter distribution. 
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