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Abstract: Basic properties of geometrically thin and thick discs in the Schwarzschild–de Sitter and Kerr–de Sitter backgrounds are 
summarized. The thin discs are represented by the Keplerian motion of test particles along stable circular orbits in the equatorial 
plane of given spacetime. The repulsive cosmological constant ( 0>Λ ) puts an upper limit on the existence of stable equatorial 
circular geodesics, as well as reduces the values of constants of motion connected with the stationarity and axial symmetry of the 
spacetime. The thick discs correspond to toroidal equilibrium configurations of a barotropic test perfect fluid, which are characterized 
by toroidal equipotential surfaces of the “gravitocentrifugal” potential. To demonstrate the phenomenon we use the simplest case of 
marginally stable tori orbiting the KdS black hole with uniform distribution of the specific angular momentum, =),( θrl const. 
Resulting structure of the equipotential surfaces is similar to the well-known Roche lobe in a close binary system. In addition to the 
critical, i.e. marginally closed, equipotential surface self-crossing in the inner cusp the repulsive cosmological constant enables exis-
tence of the critical equipotential surface with the cusp at the outer edge of the torus, enabling outflow of a matter from the torus to 
the outer space due to the same “Roche lobe overflow” mechanism which enables also an accretion onto the black hole through the 
inner cusp. Moreover, in the case of very rapidly spinning KdS black holes the rotational velocity of particles (fluid) on stable circu-
lar orbits, measured in locally non-rotating frames, is an increasing function of the radius in a small region inside the ergosphere. For 
the current value of the cosmological constant, 0Λ=Λ , the maximal extensions of thin and thick non-gravitating discs around 
supermassive black holes (106-109) Msun are (10-102) kpc. 
 
 
1.  Introduction 

 
Various cosmological observations indicate the current value of the vacuum/dark energy density 
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Putting the dimensionless parameter , we obtain the relic repulsive cosmological constant to be 7.0≈h
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It is well known that the repulsive cosmological constant, 0>Λ , changes the expansion rate of the Uni-
verse, leading finally to exponentially accelerated stage. The repulsive cosmological constant, however, can 
play an important role also for a formation and evolution of disk-like structures around supermassive black 
holes. 
 Basically we can distinguish two types of discs, depending on the relevance of pressure gradients 
inside the disc. If the pressure gradients (connected with both gas and radiation) are negligible, the disc is 
geometrically thin and is well represented by the geodesic motion of test particles around stable circular or-
bits in the equatorial plane of a given black-hole background. On the other hand, if the pressure gradients are 
relevant (as it is in a hot, dense and opticaly thick material), the disc is geometrically thick and can be char-
acterized by toroidal equilibrium configurations of barotropic perfect fluid orbiting with prescribed (non-
Keplerian) distribution of the specific angular momentum. The simplest is the case of marginally stable tori 
with constant specific angular momentum distribution [1]. 

The presence of substantially changes the asymptotic structure of black-hole spacetimes, as 
these become asymptotically de Sitter, not flat spacetimes. Influence of the cosmological constant on station-
ary disc configurations was analyzed in the framework of the Schwarzschild–de Sitter (SdS) and Kerr–de 
Sitter (KdS) spacetimes, where the equatorial circular motion of test particles (Keplerian motion) and the 
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orbital motion of barotropic test perfect fluid characterized by constant distribution of the specific angular 
momentum were studied [2–6]. 

Local kinematics of the disc can be described by a rotational velocity field related to the locally non-
rotating frames (LNRF), see [13] for their definition in the Kerr spacetime. Typically the topology of equive-
locity surfaces is cylindrical, corresponding to monotonic increase of the velocity with decreasing radius. 
Quite interestingly, in the case of near-extreme Kerr black holes the rotational velocity of both particles and 
fluid reveals a hump in its radial profile in the equatorial plane, i.e., there are two radii inside the ergosphere 
where the radial gradient of the rotational velocity changes its sign, and is positive between these radii [7, 8]. 
Moreover, the topology of equivelocity surfaces also changes, becoming toroidal. Humpy profiles of the ro-
tational velocity in KdS backgrounds were analyzed in [9, 10, 11]. 
  
 
2.  Kerr–de Sitter black-hole spacetime 
 
Geometry of the Kerr–de Sitter spacetime in the Boyer-Lindquist coordinates ( ϕθ ,,, rt ) is described by the 
line element 
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The spacetime is characterized by three parameters: central point mass M, rotational parameter or spin a 
(corresponding to the specific angular momentum of the center), and the positive cosmological con-
stant . It is convenient to introduce a dimensionless cosmological parameter  0>Λ
 

3/2My Λ=                                                                                                                                                     
(5) 
 
and put M = 1 to get completely dimensionless formulae, hereafter. 
 Event horizons of the spacetime are given by the condition 0=Δ r . In the KdS spacetimes a cosmo-
logical horizon rC always exists, behind which the geometry is dynamic. The KdS black hole is character-
ized, in general, by two horizons, the outer horizon and the inner horizon; between these horizons the space-
time is not stationary. When both black-hole horizons coincide, we speak about the extreme KdS black hole. 
It should be stressed that a spin of the extreme KdS black hole depends on the cosmological parameter y 
(cosmological constant Л) and for Л > 0, aex > 1. Maximal value of the cosmological parameter allowing the 
KdS black holes is yc(KdS)  0.05924; corresponding spin of the extreme black hole is aex(max)  1.10092 [4]. 
 When the rotational parameter , the KdS spacetime reduces to the Schwarzschild–de Sitter 
spacetime. The limiting value of the cosmological parameter enabling the SdS black holes is y

0=a
c(SdS) = 1/27; 

for y > 1/27 there are no event horizons, no stationary regions, and the spacetime is dynamic everywhere. 
 
 
2.1 Equatorial circular orbits of test particles 
 
Free test particles follow geodesic curves in the spacetime. The geodesic equations in a separated and inte-
grated form were first obtained by Carter [12]. In the KdS spacetime, Carter’s equations for geodesics in the 
equatorial plane ( 2/πθ = ) have the form [4] 
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where 
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The proper time ф of a particle with the rest mass m is related to the affine parameter л as ф = m л. Note that 
the constants of motion, Ẽ and Ц, connected with the stationarity and axial symmetry of the spacetime, re-
spectively, cannot be interpreted as the energy and axial angular momentum at radial infinity, since the 
spacetime is not asymptotically flat. Further we define the specific energy and the specific angular momen-
tum by the relations 
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Analyzing Carter’s equation for the radial motion (6a) it was shown that the equatorial motion of a 

test particle with rest mass m is governed by the effective potential [4] 
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which is parametrized by the axial parameter EaLX −= . In stationary regions of the spacetime ( 0≥Δ r ) 
the motion of a test particle with the specific energy E is restricted by the condition . effE Φ≥
 Equatorial circular timelike geodesics are given by local extrema of Цeff. There are either one local 
maximum or two local maxima and one local minimum in between them. Local maxima correspond to un-
stable orbits, while local minimum determines stable (with respect to any radial perturbation) circular orbit 
of a test particle. Existence of the stable circular orbit depends on spacetime parameters (y, a) and a concrete 
value of the axial parameter X.. If the stable circular orbit exists, two unstable circular orbits are also present. 
In KdS (SdS) spacetimes there are two marginally stable orbits, the inner marginally stable orbit, corre-
sponding to a value of X for which the inner local maximum and the local minimum coincide, and the outer 
marginally stable orbit, corresponding to X for which the outer local maximum and the local minimum coin-
cide. If both local maxima are of the same high, they correspond to the inner and outer marginally bound 
orbit. Otherwise one unstable circular orbit always exists.  

The specific energy and specific angular momentum of a particle on the equatorial circular orbit are 
given by the relations (see [4] for their alternative but equivalent formulation) 
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There are two families of orbits: a plus-family and a minus-family, corresponding to upper and lower signs, 
respectively,  in relations (9). Clearly, there are two reality conditions on the existence of circular geodesics: 
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and 
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The first condition (10) defines the static radius, i.e. the orbit where a freely falling observer with only time-
component of its 4-velocity being non-zero can reside. This orbit is, however, unstable against radial per-
turbations and counterrotating (in terms explained below). Second condition (11) is connected with the fact 
that the orbits, for which the left-hand side of the relation (11) is zero, correspond to null circular geodesics, 
i.e. the orbits of photons.  

tU

 Analogical relations for the motion in SdS spacetimes can be obtained from relations (9) – (11) by 
putting a = 0. Note that a location of the static radius is independent of the rotational parameter a. Photon 
circular orbit in SdS spacetimes is located at the radius r = 3, independently of the cosmological parameter y. 
Detailed discussion of the test-particle motion in the S(a)dS spacetime is presented in [2].  
 Any stationary disk configurations can exist only in those KdS (SdS) spacetimes in which a motion 
along stable circular geodesics is possible. Stable plus-family equatorial circular orbits can exist only in 
those KdS spacetimes for which   0.069, while the stable minus-family equatorial circular orbits 
(and stable equatorial circular orbits in SdS spacetimes) can exist only in the spacetimes with 

 0.00024, see [2, 4]. 
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 In asymptotically flat spacetimes the direction of motion along a circular orbit can be determined 
from the point of view of a static observer at infinity or, equivalently, from the point of view of a locally 
non-rotating frame (LNRF). In the KdS spacetime we can use only the method based on the point of view of 
the locally non-rotating frames. LNRF in the KdS spacetime is defined by the basis tetrad of 1-forms [4] 
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where  
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and the angular velocity of the LNRF ϕϕϕϕω ggdtd t // −==  is given by the relation 
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The orbit is corotating (counterrotating), if locally measured azimuthal component of particle’s 4-momentum 

 is positive (negative). It is shown in [4] that the sign of )()( ϕ
μ

μϕ ePP = )(ϕP  is determined by the sign of 
angular momentum L. 

Combined analysis of circular orbits with respect to the orientation and stability reveals that minus-
family orbits (both stable and unstable) are always counterrotating. Plus-family orbits are usually corotating 
but counterrotating plus-family orbits also exist. In all (black-hole and naked-singularity) KdS backgrounds, 
the plus-family orbits become counterrotating in the vicinity of the upper limit for their existence (the static 
radius or the counterrotating photon circular orbit); these orbits are, however, unstable. In naked-singularity 
backgrounds with the rotational parameter low enough, the counterrotating plus-family circular orbits exist 
also in the vicinity of the ring singularity; these orbits are both unstable (located under the inner marginally 
stable orbit) and stable. For sufficiently high values of the cosmological parameter,  (thus only na-
ked-singularity spacetimes are possible), all stable plus-family orbits are counterrotating. Moreover, as in the 
Kerr naked-singularity spacetimes [14], when the rotational parameter a is very close to the extreme-hole 
state, the counterrotating stable plus-family orbits for which the specific energy is negative, , exist. 
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2.2 Toroidal configurations of a barotropic perfect fluid 
 
Now we shall consider a perfect fluid described by the stress-energy tensor  
 

( ) μννμμν ε gpUUpT ++= ,                                                                                                                     (15) 
 
where е and p are the proper energy density and isotropic pressure of the fluid, which motion is characterized 
by a 4-velocity field 
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and prescribed distribution of the specific angular momentum2
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The specific angular momentum ℓ is related to the angular velocity through the relation with 
metric coefficients 
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Projecting the covariant energy-momentum conservation law, , onto the hypersurface orthogonal 

to the 4-velocity , we obtain the relativistic Euler equation in the axially symmetric form [1, 15] 
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where k = r, и. 
 For a barotropic fluid, i.e., for the fluid with the equation of state p = p(е), the surfaces of constant 
pressure are given by the equipotential surfaces of the potential W(r, и) defined by the relations [1, 15] 
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the subscript “in” refers to the inner edge of the configuration. To obtain the explicit form of the potential W 
we need to define the “rotational law”, i.e. the function Щ = Щ(ℓ). The equipotential surfaces, given by the 
condition W(r, и) = const., can be closed or open. Moreover, there is a special class of critical surfaces self-
crossing in the cusp(s), which can be either marginally closed or open. The closed–toroidal–equipotential 
surfaces determine stationary configurations (tori). 

Topological properties of equipotential surfaces, in general, seem to be rather independent of the dis-
tribution of the specific angular momentum ℓ(r, и), see, e.g., [16, 17]. The simplest, however unrealistic, are 
configurations with constant specific angular momentum,  
 
ℓ(r, и) = const.                                                                                                                                                (21) 
 
In this special case the potential is given by very simple formula 
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2 The specific angular momentum ℓ is the angular momentum per total energy instead of L, which corresponds to the angular mo-
mentum per rest energy, ℓ = L/E. 
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Orbits where 0),( =∂ θrWk  (k = r, и) correspond to free-particle orbits (geodesics), because the 
pressure-gradient forces are zero there. Moreover, at the center of any torus the pressure attains the extreme 
value (maximum) and matter must follow a stable geodesic there. Thus, fluid tori can exist only in the space-
times with stable circular geodesics. 
 In the KdS spacetime the potential (22) takes the form [5] 
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The form of the potential in the SdS spacetime can be obtained by performing the limit a → 0 in (23). De-
tailed discussion of toroidal structures in the SdS black-hole spacetime can be found in [3].  

All relevant properties of the equipotential surfaces are revealed by behaviour of the potential in the 
equatorial plane (и = р/2). Reality conditions of the function W(r, и = р/2) imply that the fluid with a given 
distribution of the specific angular momentum can occupy the stationary regions in the equatorial plane 
where 
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±phl  correspond to the effective potentials governing the equatorial motion of photons; for their alternative 
formulation see [18]. Local extrema of the function W(r, и = р/2) lie at those radii where the specific angular 
momentum coincides with the specific angular momentum of test particles moving on the geodesical (Keple-
rian) circular orbits, i.e., where  
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 Toroidal configurations exist for such distribution of ℓ(r, и) in the disc which intersects the Keplerian 
distribution of the specific angular momentum in the part(s) corresponding to stable circular orbits. In black-
hole backgrounds, stationary toroidal configurations exist for ),( )()( omsims lll∈ , where  cor-
responds to the Keplerian specific angular momentum on the inner (outer) marginally stable orbit. The same 
is true also in most of the naked-singularity backgrounds, however, exceptions exist, concerning the plus-
family discs in naked-singularity backgrounds with the rotational parameter low enough to admit counterro-
tating stable plus-family circular geodesics. In fact, there are naked singularities around which the stationary 
tori can exist for any value of ℓ [5]. 
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2.3 Rotational velocity profiles 
 
Rotational velocity corresponds to locally measured azimuthal component of the 3-velocity in the 
LNRF. In the KdS spacetime the LNRF-tetrad has the form (12) and the rotational velocity is given by the 
relation 
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where Щ is the angular velocity of a matter determined by the specific angular momentum ℓ through the re-
lation (18), and щ is the angular velocity of the LNRF (14). 
 For Keplerian motion of test particles in the equatorial plane the corresponding Keplerian angular 
velocity is given by the relation [5] 
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and the rotational velocity of test particles is therefore described by the relation [10] 
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For the uniform distribution of the specific angular momentum (21) the rotational velocity profiles are de-
scribed by the function [10] 
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3.  Keplerian discs 
 
Radial profile of the angular velocity Щ = dц/dt of a thin, Keplerian disc orbiting the KdS black hole (or 
even naked singularity) is given by the relation (26). In the most extended Keplerian accretion disc a matter 
in the disc spirals from the outer edge located at the outer marginally stable orbit, , through the 
sequence of stable circular orbits down to the inner edge located at the inner marginally stable orbit, 

, losing the energy and angular momentum due to the viscosity. It is easy to show by direct analy-
sis of relations (9) and (26), see [4], that the necessary conditions for such differential rotation, i.e. 

for plus-family discs, and 

)(omsout rr ≈
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0/,0/,0/ ≥≥<Ω +++ drdLdrdEdrd K ,0/,0/ ≤>Ω −− drdEdrd K    
 for minus-family discs are fulfilled. 0/ ≤− drdL

We can define a theoretical efficiency of accretion in the Keplerian disc by the difference of the spe-
cific energies of a particle on the outer and the inner marginally stable orbit, .)()( imsoms EE −=η For Keple-
rian discs corotating extreme KdS black holes, the accretion efficiency reaches maximum value з ~ 0.43 for y 
= 0 (the extreme Kerr black hole) and tends to zero for 059.0)( ≈→ KdScyy , the maximum value of y ad-
mitting black holes. For plus-family discs orbiting the KdS naked singularity with the rotational parameter 
close to the extreme-hole state the accretion efficiency can exceed the efficiency of annihilation processes, з 
> 1. Again, the maximum is for the Kerr naked-singulariy (y = 0), з ~ 1.57 [14], and for the 
maximal efficiency tends to zero. Due to strong discontinuities in the properties of plus-family orbits for ex-
treme black holes and naked singularities with , a hypothetical conversion of naked singularity into 
extreme black hole, induced by the accretion in plus-family discs, leads to an abrupt instability of the inner-
most parts of the discs around the naked singularity that can have strong observational consequences; for 
more details see [4, 14]. 

)(KdScyy →

exaa →

Local kinematics of the Keplerian disc is described by the Keplerian rotational velocity profile (27). 
In all KdS spacetimes admitting stable minus-family orbits the rotational velocity monotonically de-
creases with the radius. On the other hand the rotational velocity profile of plus-family orbits, , con-
tains a hump near the inner marginally stable orbit for discs orbiting near-extreme black holes or naked sin-
gularities. This effect of non-monotonicity was at first discussed by Aschenbach [7] in the case of Kerr black 
holes. The spin of the Kerr black hole, for which the Aschenbach effect exists, must be sufficiently high, 

. Repulsive cosmological constant (Л > 0) shifts the minimal spin even to higher values while 
the attractive cosmological constant (Л < 0) lowers the minimal spin [9, 10]. For cosmological parameters 
from the unterval  the minimal spin, for which the Aschenbach effect exists, is approxi-
mately given by a linear relation [10] 
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4. Marginally stable barotropic perfect fluid tori 
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According to general criterium of stability, 0),( ≥θrl  [19], the tori or their part with uniform distribution of 
the specific angular momentum (21), are marginally stable. Moreover, they are capable to produce maximal 
luminosity at all [16]. As it has been already mentioned, toroidal equipotential surfaces determine stationary 
configurations. The fluid can fill any toroidal equipotential surface; at the surface of the torus pressure van-
ishes but its gradient remaines non-zero. Existence of the critical–marginally closed–equipotential surface 
enables an outflow from the torus through the cusp of the equipotential surface (located in the equatorial 
plane), when the surface of the disc overcomes the critical surface. The outflow, like an accretion onto the 
black hole, is thus driven by a violation of the hydrostatic equilibrium in the torus, rather than by a viscosity 
of the fluid [15]. 
 In the KdS (SdS) spacetime three qualitativelly different types of tori can exist [3, 5]. The first type 
of configurations corresponds to the well known accretion discs. The cusp of the critical marginally closed 
equipotential surface is located at the inner edge of torus between the inner marginally stable and the inner 
marginally bound circular geodesic, )()( imsinimb rrr ≤≤ of the spacetime. Moreover, there is another critical 
surface, self-crossing in the outer cusp, which is open. The second type of configurations is so-called excre-
tion disc. The cusp of the critical marginally closed equipotential surface is located at the outer edge of the 
torus between the outer marginally stable and the outer marginally bound circular geo-
desic, .  In the special case of the so-called marginally bound accretion disc both the 
cusps belong to the same critical equipotential surface, and their locations coincide with the inner and outer 
marginally bound geodesics, 

)()( omboutoms rrr ≤≤

)(),( omboutimbin rrrr == . The marginally bound accretion disc is, therefore, the 
most extended torus in a given KdS spacetime. 
 Existence of the outer cusp in the structure of equipotential surfaces is caused fully by the repulsive 
cosmological constant (Л > 0). It should be stressed that the outer cusp plays an important role also for the 
accretion discs. After a large overfilling of the critical surface with the inner cusp, when also the critical sur-
face with the outer cusp is overfilled, the outflow through the outer cusp begins to complement the accretion 
inflow. As shown by Rezzolla et al. [20] in the case of perfect fluid tori orbiting SdS black holes, the excre-
tion outflow through the outer cusp is able to stabilize accretion discs against the so-called runaway instabil-
ity, discussed, e.g., in [21]. 
 Local kinematical properties of the marginally stable fluid tori are described by the rotational veloc-
ity profile (28). In most cases the isovelocity surfaces inside the torus have cylindrical topology; the rota-
tional velocity decreases with increasing radius. However, as in the case of Keplerian discs orbiting 
near-extreme KdS black holes, the region of increasing with increasing radius also exists inside the to-
rus. This effect is accompanied by the topology change of isovelocity surfaces, which become toroidal. 
These toroidal surfaces are separated from the cylindrical ones by two critical surfaces with the cusp in the 
equatorial plane, where one of the critical surfaces is marginally closed and the second is open. Nevertheless, 
there is also a special case of only one critical marginally closed isovelocity surface containing both the 
cusps. The cusps and the central ring correspond to the local maxima and minimum, respectively, of the rota-
tional velocity in the equatorial plane. The whole region with toroidal isovelocity surfaces is located inside 
the ergosphere of the black hole. Again, existence of the Aschenbach effect in marginally stable tori was at 
first analyzed in tori around Kerr black holes [8]. It was found that a minimal spin of the Kerr black hole, 
necessary for the existence of the effect in the marginally stable torus, is 
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the cosmological parameter approximately as [11] )10,10( 33 −−−∈y
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5. Concluding remarks 
 
Finally, we shall give an idea on scales, at which the cosmological constant substantially influences discs 
around black holes, by expressing locations of the outer edge of the Keplerian disc and fluid tori for the cur-
rent value of the cosmological constant Л0 in astronomical units. Recall that the outer edge of the Keplerian 
disc is located close to the outer marginally stable orbit, while the outer edge of the barotropic perfect-fluid 
torus can be extended up to the outer marginally bound orbit, which is located very close to the static radius 
of the spacetime for the current value of the cosmological constant and typical masses of black holes. The 
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results are presented in Table 1. Remarkably, but rather by coincidence, the dimensions of discs around su-
permassive black holes (106-109) Msun are comparable with the dimensions of galaxies. It should be stressed, 
however, that the presented values correspond to non-gravitating discs and tori.  
 Table 1: Cosmological parameter, and corresponding mass of the central extreme KdS black hole, radius of the 
outer marginally stable circular geodesic, and the static radius of a given KdS spacetime in astronomical units for the 
current value of the cosmological constant Л = Л0  1.3 x 10-56 cm-2. The last line shows the central mass-density of an 
adiabatic non-relativistic torus (with the adiabatic index г = 7/5) orbiting the KdS black hole with a/M = 0.9 and Л = Л0, 
for which mdisc ≈ MBH. 
  

Y 10-44 10-42 10-40 10-34 10-32 10-30 10-28

M/Msun 10 102 103 106 107 108 109

rms(o) / kpc 0.15 0.31 0.67 6.7 15 31 67 
rs / kpc 0.23 0.50 1.1 11 23 50 110 
сc / kg m-3 – – – – 10-12 10-13 10-14

 
Relevance of the “test-disc” approximation can be analyzed for the non-relativistic adiabatic perfect-

fluid tori described by the adiabatic equation of state , where γρKp = n/11+=γ  is the adiabatic index and 
the non-relativistic limit means that ερ ≈<<p ; с is the rest-mass density. The total mass of the torus is 
given by Tolman equation [15] 
 

( )∫ =−+++−=
disc

r
r

t
t ggdddrgTTTTm )det(; μν

ϕ
ϕ

θ
θ ϕθ                                                               (31) 

 
leading to the expression [6] 
 

( ) θθθ
θ

θ
θπρ ddrar

WW
rWW

r
rm

n

cin

in

discc sincos
1}exp{

1)},(exp{
),(1
),(12 222 +⎥

⎦

⎤
⎢
⎣

⎡
−−
−−

⎥
⎦

⎤
⎢
⎣

⎡
Ω−
Ω+

= ∫ l

l
                            (32) 

 
where cρ denotes the mass-density in the center of the torus characterized by the potential value . The 
central mass-densities 

cW

cρ  of the fluid with the adiabatic index г = 7/5 (it corresponds, e.g., to a gas of dia-
tomic molecules), for which the mass of the torus is comparable with the mass of the KdS black hole with the 
spin a = 0.9 and Л = Л0, are also presented in Table 1. The limiting central mass-densities are really small 
but they are still much higher than, e.g., typical densities of current Giant Molecular Clouds 10-18 kg/m3. 
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