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Abstract: If the positive cosmological constant Λ  explains the recently discovered accelerated stage of the universe it is, at least 
effectively, beside the Newtonian constant GN=mPl

-2, the second fundamental constant of gravity.  
Besides its cosmological implications, affects also astrophysical properties of large structures. We will probe into these matters by 
using virial equation, hydrostatic equilibrium and the Schwarzschild-de Sitter metric. It will be shown that the effects can be 
non-negligible. Moreover, it is legitimate to put forth the question how the mass scale 

Λ

Plmm <<Λ=Λ  or combinations with the 

dimension of mass like 
Λmm Pl , , etc. alter our views not only of large scale astrophysics but also our 

expectations for quantum gravity. We make use of the generalized uncertainty principle and black body radiation to investigate these 
issues.  
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1. Introduction:  
 

The resurrection of the cosmological constant VACNG ρπ8=Λ  in an accelerated universe [1] (or, rather in 
rescue to explain the stage of the accelerated universe) has awakened old controversies about the true nature of 
this constant. Above all, the “to be or not to be” of Λ  has been an eagerly discussed topic up to now. It is 
usually based on the contribution to vacuum energy from zero-point energy in quantum field theory. The latter 
is a divergent integral regularized by a cut-off chosen to be at Planck scale. The result is 10125 too large which 
prompted many physicists to search for a convincing mechanism forcing Λ  to become zero. No such, 
generally accepted mechanism has been found.1

Instead, as for now many physicists and cosmologists accept 0>Λ  as a possible explanation of the 
accelerated universe (and the related problem of the age globular clusters) which in terms of the one of the 
Friedmann’s equations reads: 
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without the inclusion of  would be always negative. The evidence for a new cosmology (dark 

energy as it is called) is gaining speed and comes not only from supernovae type Ia surveys [3], but also from 
cosmic microwave background [4], baryon acoustic oscillations [5] and weak lensing [6]. 

Λ

Having accepted  as a possible theory to explain these facts, we can go back to see what we had to 
modify in order to reach at eq. (1). Although this seems like a mere conceptual undertaking, it has to do with a 
misunderstanding sometimes encountered and rooted in the name “Cosmological Constant” (in other words, 
does  affect only Cosmology?). It is actually the Einstein tensor G

0>Λ

Λ µн which got altered to: 
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and not the energy-momentum tensor Tµн connected to by Einstein’s equations: μν

∧

G

                                                           
1Indeed, arguments can be put forward that the cut-off of Planck scale is wrongly chosen [2] and a different well-motivated value, gives 
a different result. 
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This simple fact makes the modification universal as opposed to situation-specific which would be the case, 
had we changed Tµн for cosmology. This is to say that in spite of the name “Cosmological Constant”, Λ  will 
not only affect cosmological features, but any local physics which emerges from now modified Einstein’s 
equations. In a way, this seems obvious (albeit not always appreciated) as e.g nobody doubts that with the 
inclusion of  the Schwarzschild metric becomes now the Schwarzschild-de Sitter metric, and the Newtonian 
limit receives modifications[7]: 

Λ
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The relevant question is rather: are the local effects of Λ  important?2        
 
2.  Local aspects of  Λ
 
If VACNG ρπ8=Λ  is the correct model to account for the accelerated universe, we ought to have сvac ≈ 0,7сcrit. 

With this value almost all scales set by  are of cosmological order of magnitudeΛ 3. Hence it seems that even 
if Λ  affects, in principle, local physics, it does so in a negligible way. However, it can be immediately seen 
that such an argument is fallacious as it discards the existence of other local scales which in conjunction with 

can give rise to an observable of astrophysical relevance. Such an example is the motion in 
Schwarzschild-de Sitter metric [9]. 
Λ
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The motion of a test-body in such a metric is determined according to the equation: 
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with: 
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playing here the role of an effective potential. Three length scales enter the problem: rs, Λr  and rl (angular 
momentum per unit mass). The first three terms conspire to give Ueff a local maximum close to the center and 
a local minimum (which is the standard minimum of planetary motion). In contrast, the Newtonian part  

r
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and 
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r ; combine to give Ueff  a local maximum beyond which Ueff is a monotone decreasing function. As 

a result, all bound orbits can happen only within r < rmax where rmax is the position of the last local maximum 
                                                           
2 Interestingly, this issue has been addressed before and stirred another controversy (See [8] and references therein). The author of [8] 
summarizes the work of several authors as follows: 
“The essential difficulty with a relativistic theory in which Λ  is positive is that of accounting for the formation and condensation in 
terms of gravitational instability; for, to use force metaphor, the present expansion indicates that the force of cosmic repulsion exceeds 
those of gravitational attraction. This is not likely to disturb the stability of systems (such as the galaxy) of high average density, but it 
is likely to present new condensation in regions of low density”. 
3 The mass 42103 −

Λ ≈Λ= xm  is an exception to this rule. 



due to . We can estimate rΛ max by setting rl=0. The calculation gives: 
 

3 2
max Λ= rrr s                                 (9) 

Since  (Hubble radius) is a large number compared to r1
0
−

Λ ≈ Hr s, the resulting rmax is of astrophysical order of 
magnitude and its specific values in dependence of the mass M bear strange coincidences [9]. With M the mass 
of the black hole in the center of our galaxy (M≈106Msun), rmax≈10Kpc, which is roughly the order of magnitude 
of the extension of the galaxy. 
Another example of the impact of  on local physics is gravitational equilibrium [10]. There the parameter of 
importance is the density of the object i.e с

Λ
vac will play the decisive role. The adequate tool to probe into 

equilibrium matters is the virial theorem [10]. 
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Where Kij is the kinetic part, Wij the potential part and Iij the inertial tensor. Denoting the trace of the tensors by 
K, W and I and making use of the fact that K ≥ 0, we obtain the inequality: 
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which is trivial in case of 0=Λ . To illustrate the relevance of this inequality, let us assume с=const. we obtain 
[10]: 
 

vacρρ Α≥                                     (12) 
 
Where A is a dimensionless ratio of two integrals depending only on the geometry (shape) of the body. As 
сvac≈сcrit again it seems hopeless that (12) is of any phenomenological importance. Indeed, for spherically 
symmetric objects A=2. But for non-spherical objects A can be quite sizable (factor 102 or 103 if the deviation 
from sphericity is large). In passing we note that the dark matter density around astrophysical objects might be 
~ 200сcrit. 
If the dark matter distribution follows the non-spherical shape of the luminous part (oblate and prolate galaxies 
and even galaxy clusters are known), then the relevance of (12) is obvious. Other local effects were discussed 
in [11].  
Interestingly, Newtonian hydrostatic equilibrium and its relativistic counterpart via 
Tolman-Oppenheiner-Volkoff equation, gives for spherical symmetry bρ < 2сvac, where: 
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And R is the size of the object (see [9] and the references therein). We can demonstrate the effect of Λ  in 
gravitational equilibrium using a slightly different approach. 
In place of the inequality, we can maintain K≠0 and solve the scalar virial equation for the mean velocity of the 
components in the astrophysical object under consideration. For an ellipsoid of constant density we obtain: 
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where Г for an prolate type is: 
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with: 
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If for instance, с/сcrit is 103, it suffices to have 1

2

1 10 −≈
a
a , in order that the mean velocity approach to zero, an 

effect due to Λ . This is an explicit example of the effect of Λ combined with non-spherical geometry of the 
object.  
  
In deriving (11) and (12) we relied on the Newtonian limit of the Einstein’s equations with . This limit is the 
static version for the perturbation h

Λ
00 (gµн=зµн+hµн, зµн the Minkowski metric) of the linearized Einstein’s 

equations : )( λ
λhh ≡
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Besides the Newtonian limit which follows from it, is there any other effect in connection with (14)? The first 
what comes to mind are gravitational waves. Eq. (14) is like Fierz-Pauli equation for spin-2 with two sources: 
Sµн and μνηΛ . It goes without saying that (i) we cannot drop ad-hoc theΛ  term in (14) while studying 
gravitational waves and (ii) the solution of (14) will contain the standard oscillatory terms and new terms due 
to Λ . Imposing the harmonic gauge condition (eq. (14) is gauge covariant under local gauge transformation 
(hµн→ h’µн= hµн+∂µен+∂неµ) and demanding the special solution of (14) , which is proportional to Λ  to be 
asymptotically to de Sitter metric (up to a diffeomorphism), we arrive at: 
 

μνμνμν ξγ +=h                         (15) 
 
where гµн is the standard retarded solution (oscillatory for away from the source) and: 
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With еij= xixj for ji ≠  and 0 otherwise. The solution is in agreement with [12] when we let m→0. No 
observable can be calculated without the full solution i.e without the inclusion of оµн. For instance, inserting hµн 
into the gravitational energy-momentum pseudo-tensor tµн and calculating the averaged components <toi>, (the 
averaged gravitational Poynting vector entering the expression for the power), we can infer when the part of 
<toi> proportional to  becomes comparable to the standard oscillatory part for the case of monochromatic 
sources

Λ
4, this happens if the wave is produced at distances larger than: 
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Where f is the frequency of the incoming wave and ĥ is the amplitude of the oscillatory part (wave) as arriving 
in the detector. Typical values of ĥ are 10-20-10-23 which converts  into an astrophysical distance in spite 
of the cosmological suppression factor .  
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3.  Two scales of gravity: GN  and Λ . 

 
The cosmological constant Λ  makes the gravity theory a two scales theory. There is a dual interplay between 
GN and Λ  which emerges in upper and lower bounds on some observables or in range of validity of certain 
approximations. For instance, in order for the Newtonian limit to be valid, one has to impose [7]: 

                                                           
4 If the source in non-monochromatic but a superposition of plane waves, the equation is still valid for each wavelength separately, then 
it is only necessary to analyze the most relevant wavelength, that which has enough amplitude to be detected and which has also  
enough frequency to reach earth. 
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In the hydrostatic equilibrium to ensure global solution, the so-called Buchdald inequalities [13] require: 
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This implies: 
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Equation (20) is valid up to numerical factors of order one; the scales  and  enter again into these 
restrictions. 

Λr ΛM

Another example is Ueff (See eq. (8)), from the equation of motion (7) in the de Sitter metric. To avoid that the 
first local maximum and the local minimum coincide to form a saddle point, one has to respect: 
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If we use this result in the expression for elliptical orbits for elliptical orbits for non-relativistic (celestial) 
mechanics, we obtain: 
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which is now a non-relativistic restrictions on the size of possible bound orbits with non-zero angular 
momentum.  
Since  allows a second local maximum beyond the minimum, we can repeat the procedure for this pair 
of extreme. The result reads [9]: 
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Again, the cosmological constant results into a new bound. Can we see this kind of duality also in other places? 
Yes, through another unexpected connection. In 1966 Andrei Sakharov proved in a general context that the 
maximal temperature of a black body radiation can not exceed [14]: 
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This result seems too extra-orbitant large, Tmax~1032K, to be of any use…, until combined with Hawking’s 
formula for black hole evaporation: 
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Clearly a maximal temperature means here a minimal mass Mmin: 
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Which means that Sakharov’s result implies a black hole remnant of the mass Mmin this is consistent with 
results obtained from Generalized Uncertainty Principle where the mass of the black hole remnant is of the 
order mpl [15]. How can we invoke Λ  along similar lines? Using 
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Schwarzschild- de Sitter metric and demanding g00 > 0 to interpret 0
00 dxg∫  as proper time and trading the 

mass M in rs for the constant density с for which we can use the Stefan-Boltzmann law с=уT4, we finally obtain 
[16]: 
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Obviously, we have to have 2
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, which together with 
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R 1
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As before, we can use this in conjunction with Hawking’s formula. Now, Tmax defines a maximally possible 
mass: 
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One can check that the modifications which the Hawking’s formula will receive due to Λ , will not 
substantially change (29). 
Whereas Mmin in (26) defines a minimum mass of a black hole, Mmax in (29) apparently defines the maximum 
mass. From equations (26) and (29), (24) and (28) one can see the dual nature of GN and . Λ
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