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Abstract.  According to our statistics of the observational data on ring galaxies the ring structure more often is observed in SB-
galaxies. In connection with it we have made an instability analysis of two modes – the ring and the bar modes of perturbations on 
the background of non-linearly radially oscillating disc model developed earlier by the author. The corresponding non-stationary 
analogues of the dispersion equations are obtained.  The criterion of formation of SB-galaxies with ring structure on the background 
of non-stationary model is found: the total initial kinetic energy of the disc should be not more than 5.2 percent of initial potential 
energy. The nature of instability is connected with the radial motions instability mechanism.  The comparative analysis of instability 
growth rates for two above-mentioned oscillation modes is given. 

 
 
 

1. Introduction 
 
 According to the observations many galaxies contain the various ring structures. Mainly they are spiral 
galaxies at that one can meet also the purely ring galaxies without the spiral arms and the barred rings. 
Though our work has only theoretical nature and is connected with analysis of oscillation modes for the 
concrete disc model it is useful at the first to note some results of observations in this field. 
 De Vaucouleurs [ 1 ] was probably the first who paid attention to the necessity of taking into account 
ring-like galaxies in the Hubble’s tuning fork scheme. Vorontsov-Velyaminov [ 2 ]  has revealed the pure 
ring galaxies using the POSS and also suggested to consider the ring structures in general as separated 
sequence  which lays in parallel to the normal and barred galaxies in the Hubble’s tuning fork scheme. Later 
the number of lists and catalogues of ring-like galaxies were combined. Among them we would note the first 
lists, for example, the list of 143 galaxies with a ring structure [ 3 ] ,  and also the list of about 300 galaxies 
of the Northern Hemisphere [ 4 ] and their corresponding classification.   According to the [4]  the most 
observable sample are the SB-galaxies with a ring structure.  Necessary to note also the catalogue of 3623 
ring galaxies [ 5 ] of the Southern  Hemisphere. A statistics shows that the SB-galaxies with a ring structure 
are observed more often in comparison to other their types over here too. 
 Talking again about the theoretical investigations in the field of ring-like galaxies at all, it is 
sufficient to note, that although many interesting works have been made which somehow approach or have 
direct relation to these objects, however in almost all these works the equilibrium and stationary models are 
considered in initial state.  In particular, this is a reason why we should not to stop on them, since in initial 
state we later take evidently nonlinear non-stationary self-gravitating model.  The last is a non-stationary 
generalization [ 6,7 ] of the known equilibrium model of Bisnovaty-Kogan and Zel’dovich [ 8 ]. We would 
note that we do not pretend on constructing the theory of origin of SB-galaxies with a ring structure. 
Understanding, that it is impossible to explain the different ring galaxies SB by means of only one 
mechanism and single theory, we are studying the problems of gravitational instability of two main 
oscillation modes here – ring and bar modes superimposed onto the radiallly oscillating self-gravitating disc. 
The comparison of corresponding results of dependences between the instability growth rates, the initial 
virial ratio and a rotation parameter obtained by us has been made.   

 
 
 

2. The initial model 
 
As it is known, non-stationary Boltzman’s equation could not be analytically solved immediately because of 
existence of non-linear term in it. On the other hand, not every solution of this equation allows the theoretical 
analysis of its instability. That is why it has a sense to generalize known equilibrium solutions taking into 
account that or another characteristic type of a global non-stationarity, if it could be made in analytical form. 
And one of the main kinds of non-stationarity at the early stages of evolution are primarily a global radial 
motions of the system in whole. Namely such generalization of the model of Bisnovaty-Kogan - Zel’dovich 
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has been made by the author of this work, and the following phase density of this non-stationary model was 
obtained   [7] 
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ψ  is an auxiliary variable , the value Ω  is non-dimensional parameter  characterizing the degree of disc’s 
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virial ratio at the time moment t=0, i.e., at 0=λ  we have an equilibrium disc of the authors of the paper [8]. 
In the non-stationary model (1) ,  v10 ≤λ≤ r and v⊥  are the radial  and tangential components of velocity of 
the “particle” with coordinate ( ),y,xrr  module of which is simply expressed  with corresponding equilibrium 
coordinate   in the form . At last, in (1)  0r ( ) 0rtr ⋅Π=
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in which connection the known normalization  is adopted, where the radius of equilibrium 

disc  always taken equal to 1. We would note also that nonlinear non-stationary model   (1)  has the 
surface density  
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It is easy to calculate the potential energy of non-stationary disc  and the kinetic energy of its 
rotation 
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Hereof we fin  the expression for the Ostriker-Peebles parameter d
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As is obvious the Ostriker-Peebles stability criterion [9] is not working in this case and it is necessary  to 
deduce a non-stationary analogue of the dispersion equation (NADE).  
 
3. NADE’s bar-modes   

 
Since the bar-mode is belonging to a sectorial perturbation type, we at first in [ 10 ]  deduced the NADE for 
them in the common case. Herewith we impose a small disturbance onto the nonlinear non-stationary model 
(1) and deduce the equation for the particle shift in the perturbed state  
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dψ
d

ψsin2dψ

2d
)ψcos1( +λ+λ+=Λ , δФ is a potential perturbation. As a deflection 

of the particle in the perturbed state at the current moment of time depends on condition of the field in the 
previous moments of time  and our aim is to search of instability, one could suppose that at  

, . In the current moment of time   in every point there are particles with the 
different velocities, therefore for the calculation of the density perturbation  or deformation of the perturbed 
system border it is required a transion to the centroid deviation 
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where  S( , ) in an analogue of the Green’s function.  ψ 1ψ

 The sectorial modes are belonging to the perturbation class which develop only in the disc plane (x, 
y) and do not depend on z.  Taking into consideration the nature of investigated model, by the analogy with 
the theory of stationary model stability we describe the sector disturbances as  

m)iyx)(ψ(AФ +=δ                                                                                                                         (10) 
where  is  a unknown function of time, m is a azimuth wave number. So we have found the following 
NADE  in the form of a system of differential equations [ 10]: 
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where  ( ) ( )λcosψ2λ1iΩsinψ2λ1Q +−+−= .  
 We have made the analysis of stability in case of bar-mode m = 2 at arbitrary . Then NADE (11) 
would have an appearance as   
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 If we divide the function  Lτ into the real and  imaginary parts due to the existence of the terms  with  
iΩ, then we will get the system of differential equations of the 8-th order. 
 For the non-rotating model , when  Ω = 0, the system of equations (14) might be transformed to the 
one equation [10] 
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Using the method of determination of the critical state, presented by us in [14],  from  (15) we find the 
necessary critical values λ and initial virial ratio  
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Fig. 1. The critical relation of the initial virial ratio on the model rotation degree for the bar-like mode of oscillation. The instability 
region is dashed. 

 
 

At arbitrary Ω ≠ 0 we solve (14) numerically by means of periodical solutions stability method and find a 
relation of critical value of the initial virial ratio on the model rotation degree Ω (Fig.1). As it could be seen 
from the figure, in the region 0.209 < (2T/|U|)0 < 0.430, 0 ≤ Ω < 0.12 there is an island of stability. The 
model rotation always plays destabilizing role, besides the interval 0.289< Ω < 0.49. The marginal curve 
goes up to value (2T/|U|)0 = 1 at two values of Ω, namely Ω1 = 0.289 and Ω2 = 0.507. Тhe point Ω = Ω1, λ = 
0 is a stable one in the frame of linear approximation and forms the likeness of the bifurcation point on 
abscissa axis. At Ω > Ω2 = 0.507 the linear and nonlinear oscillations are fully unstable.  
 
 
 
4. NADE for the (4;0) mode.  
 
Let us consider separately the concrete mode of oscillation N = 4; m = 0, the instability of which could led to 
the formation of the purely ring-like structure on the background of non-stationary model (1). 
 So, let  
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Тhen the centroid deviation in the disturbed system , according (10), defined in the following appearance  
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Substituting this and (4) into the formula for the disturbed density  
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Introducing definition 
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And taking into account the expression for  H one could turn again, as in part II, to the differential form of 
NADE [10]  

 4



 

( ) ( )( ) ψτsinτ3cosψλψ*A
8
45

ψτK −+=Λ            (22) 

 
 

 
                                         Fig. 2. The relation of the initial virial ratio on the rotation degree for the ring mode 

 
 
NADE (22) is the system of differential equations of the 8-th order and could not be solved analytically. It 
was investigated by us numerically by means of periodical solutions stability method. So, we have plotted 
The critical relation of the initial virial ratio on the model rotation parameter (Fig.2). As it is seen from the 
Fig. 2, in the region Ω ≤ 0.117 the ring-like mode of perturbation is unstable for the random value of the 
virial ratio. Then the rotation in the region 0.117 < Ω < 0.3 plays the stabilizing role. In the vicinity of Ω ≈ 
0.3, (2Т/|U|)0 > 0.25 there is a имеется the elongated island of instability with additional narrow bifurcation. 
At Ω > 0.5 the regions of stability and instability are alternate, if (2Т/|U|)0 > 0.3. At last , in the range Ω > 
0.818 the model (1) is instable regarding the ring-like disturbances at the random value of the initial virial 
ratio. In the state (2Т/|U|)0 =1 the critical values Ω =0.117 and 0.818 are well-known from the linear theory 
of  instability, and in the points  Ω =0.31927, 0.7071 and 0.79 the instability exists only in the frame of 
nonlinear model (1). 

 
 
 

5. Discussion of results   
 
If we compare the marginal relations in Figs. 1 and 2 for two oscillation modes considered by us above, than 
one could see that at  (2Т/|U|)0 < 0.2, the both oscillation modes are instable independently of rotation 
parameter value Ω, at that for both modes this instability has , in the main, non-periodic character. Above 
this region there is a oscillation-resonance instability, which is indicated by the complexly-linked roots of the 
characteristic equation, composed from the solutions of NADE in the point  by means of the 
periodical motions stability method. The both modes of oscillations are also instable at the random value of 
the initial virial ratio, if  Ω > 0.82. In the vicinity of (2Т/|U|)

π= 2ψ

0 ≈1 there is an interval rotation parameter value 
0.176 < Ω < 0.507,  where the both oscillation modes are stable simultaneously. In the other cases it is 
difficult to resolve the common for the modes considered due to the complex picture of the marginal 
relations obtained. It is very important also the comparison of the instability increments for the bar-like and 
ring-like oscillation modes. In every case we calculated the corresponding values of the growth rates. 
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Fig. 3.The comparison of the instability increments of the bar-like and ring-like modes for  the various  model rotation parameter 
value. 
 

 
In the Fig. 3 the relations of increments of the modes (2;2) and  (4;0) on initial virial ratio for the 

various values of Ω. The calculations show that for the arbitrary value of the initial virial ratio Inc(4;0) > 
Inc(2;2) in the regions  Ω < 0.15,  0.45 < Ω < 0.55  and   Ω > 0.96. In the regions of the oscillating 
instability, when (2Т/|U|)0 > 0.2, there is an opposite  inequality Inc(2;2) > Inc(4;0), if 0.2 < Ω < 1. In the 
region of instability of the radial motions, when (2Т/|U|)0 < 0.2 always Inc(4;0) > Inc(2;2) independently of 
the values of  Ω.  

The increment of the non-periodic instability is clearly higher than the oscillating instability. For the 
bar-mode the condition (2Т/|U|)0 < 0.2 ia a criterion of non-periodic instability. However for the non-periodic 
instability of the ring-mode  one needs the more strong condition (2Т/|U|)0 < 0.10,  because in the interval 
0.11 < (2Т/|U|)0 < 0.20 the instability of given mode has an oscillating character.  

Though the parent nonstationar model (1) is sufficiently simple, but nevertheless the results obtained 
by us one could consider as a preliminary  « sonde » applying to the early stages of evolution of separated 
non-collision  systems, which are not only the stellar systems, but also the states of the pure dark matter. Our 
results have some relations to the theory of origin of SB -galaxies, containing the ring-like structure, because 
their diversity impossible to explain in the frame of one or two mechanisms.  

 
 
 

6. Conclusions   
 
Let’s note the main results  we obtained in this work. 

1. The non-stationary analogues of the dispersion equations for the two modes of oscillations – the ring 
and the bar modes of perturbations on the background of radial oscillating   model of self-gravity 
disc are obtained. 

2. The corresponding critical relations of the initial virial ratio on the rotation parameter are found for 
these two modes of oscillations.  

3.   The following criterion for the formation of SB-galaxies with the ring structure on the early non-
stationary stage of their evolution is found:  the initial total kinetic  energy of the self-gravity disc 
should be not more than 5,2 percent of initial potential energy. Herewith the nature of instability is 
connected with the mechanism of radial motions instability, which has aperiodic character for the bar 
only in the region of small values of rotation Ω < 0.1, and for the ring structure the result and 
character of instability do not depend on the values of Ω. 

The corresponding relations of instability growth rates on the values of an initial virial ratio and 
of rotation parameter Ω are calculated. The comparative analysis is given for the instability growth rates 
of two above-mentioned oscillation modes. In most cases the ring instability growth rate is larger than 
for bar-like one. In particular, for the arbitrary value  of (2Т/|U|)0   the growth rate of ring mode is always  
larger in the regions Ω < 0.05, 0.45 < Ω < 0.55 and Ω > 0.96. When (2Т/|U|)0 > 0.2  the growth rate of 
bar-mode is larger than that of ring-mode, if  0.2 < Ω < 1.  
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