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Abstract: We have developed an analytical theory for axially symmetric lensing with generalized mass density profile [1]. We apply 
the theory to the statistical study of double-image quasar lenses. Our aim is to recover a universal cusp slope value for the dark mat-
ter halo profiles responsible for lensing. Our lensing model gives a relation between location of the optical axis, the cusp slope of the 
density profile and the magnification ratio of the images. It does not depend directly on cosmology, distance of the lens, distance of 
the source nor mass of the lens object. We use this relation to derive statistics of the upper limits for the cusp slopes, which are capa-
ble producing observed magnification ratios for each lens. The composition of this distribution depends on the general properties of 
the dark matter halos [2]. 
The distortions to the statistics originate from several sources: the lens ellipticity, differential extinction, the variability of the source 
coupled with the time delay effects and the galactic microlensing or the microlensing by substructure within the lens. In our method 
these effects can be considered as a statistical noise. Magnitude of these factors will be studied by using mock data. 
We present preliminary results acquired from the CSL analysis, that do not incorporate detailed error analysis. Our method suggests 
two lens object populations with cusp slopes  and , and corresponding occurrence probabilities 

 and .  
 

1.  Introduction 
 
According to the current understanding, the large scale structure of the universe is generated by gravi-

tationally collapsed non-interacting cold dark matter governed by the expansion of the Universe and cosmo-
logical constant (LCDM-model).  This structure formation paradigm has been very successful at the linear 
regime when considering observed properties of the Universe at the large scale. At the nonlinear scale of 
galaxy clusters and individual galaxies, the structure formation is more strongly coupled to the physical 
properties of the unknown dark matter halo particles, that are not yet properly understood. Nonlinear halo 
formation is a very complicated problem involving galactic dynamics and kinematics, including dynamical 
interactions of poorly understood dark matter halos and their merging processes [3,4]. 

This problem becomes more tractable with increasing computing power. Massive N-body computer 
simulations on large scale structure formation has been conducted by several collaborations, see for example 
[5]. However, the resolution of these N-body simulations is not sufficient to study strongly nonlinear central 
regimes of the dark matter halos. This resolution problem has been tackled with a nested simulation method, 
producing evidence that unperturbed dark matter halos evolve towards a relaxed state with a universal den-
sity profile [6,7,8]. In spite of this, the resolution of the simulations can be questioned. Even a single galaxy 
provides a formidable problem for a faithful N-body modeling especially at the central regions. Although 
these simulations have been complemented with theoretical studies, the exact form and existence of this uni-
versal density profile is still debated [9,10].  Since the exact nature of the dark matter remains a mystery, the 
physical assumption of the noninteracting dark matter in the N-body simulations must be re-examined at the 
dense central regions of the dark matter halos. 

The N-body simulation studies of dark matter halos have produced a host of different halo models  
with varying degrees of freedom [6,7,8,11,12,13]. All these models share some general properties. At the 
central region the halos are cusped following a power law, e. g. , where  At the scale region 

, the exponent of the power law is changing to .  
The models are conflicting with the observations at several areas. The gravitational lensing data and 

single universal density profiles can not be fully reconciliated with high resolution N-body data [14,15]. The 
unobserved substructure within the halos has been proposed as a culprit for anomalous flux ratios produced 
by some lens systems [16]. Furthermore the theory underestimates the proportion of quadrupole lenses and 
arcs  [17]. The problems with the universal density profile culminate at the scale of individual galaxies [18]. 
Especially, the density profiles of dwarf galaxies and rotation curves exhibit inconsistencies [19].  

Here we present results from a preliminary study. We have developed a statistical method for recover-
ing cusp slope populations for density profiles of a double image lens system sample. The method is based 
on our analytical theory for axially symmetric lensing employing the GNFW profile [6,7,8]. The density pro-
file is strongly cusped at the center, i. e. when , mass density , where  is a free 
parameter. The lensing model gives a relation between location of the optical axis, the cusp slope and the 



magnification ratio of the images. It does not depend directly on the cosmology, distances of the lens and the 
source nor mass of the lens object. We use this relation to derive statistics of the upper limits for the cusp 
slopes, which are capable producing observed magnification ratios for each lens (CSL-limit). The composi-
tion of this distribution depends on the general properties of the lens dark matter halos [2]. For example, a 
single population of halos with a universal cusp slope shows a distinct signature in the distribution of the 
CSL values. We apply our method to a carefully sampled ensemble of the observed double-image quasar 
lenses, which resemble systems with a high degree of axial symmetry. 

The resulting statistics include distortions by the lens ellipticity (or other deviations from the axial 
symmetry), differential extinction, the variability of the source coupled with the time delay effects and per-
turbations by the substructure within the lens and possibly microlensing. Magnitude of these perturbations on 
the overall statistics of the cusp slope limits (CSL) will be studied by creating mock lens catalogues. 

Here we briefly review the central results from the lensing theory leading to the CSL formalism. Sub-
sequently, we describe the data used in the analysis and the method for creating the mock lens catalogues. 
We discuss different perturbation sources for the statistics and present preliminary results from the analysis. 

 
2.  The lens equation 

 
The lens equation produced by a GNFW halo with a cusp slope  becomes particularly simple 
when it is normalized with the Einstein radius of the lens [1]: 
 

 
          (1) 

 
 

Here  is a radial coordinate at the lens plane and  corresponding coordinate at the source plane. Informa-
tion on the cosmology, the lens distance, the source distance, the mass and the concentration of the lens ob-
ject is embedded in the constant . See [1] for further details. The lens equation (1) has a piecewise defini-
tion, that is divided at  

 
(2) 

 
in order to avoid negative surface densities. 
 



 
 

Fig. 1. Lensing geometry and the critical points at the lensing curve. The source image at the maximum offset from the optical axis 
produces images at the first critical radius  and at the second critical radius .  

 
The lens system with the source at the maximum source coordinate  produces images at  and 

. At   derivative of the lens equation (1) vanishes, and it can be solved as 
(3) 

Because  by it's definition in [1], it is easy to see that  holds al-
ways. Therefore the maximum  source coordinate  for strong lensing can be solved by setting   
in the lens equation (1), which gives 

(4) 
 See figure 1. 

3. Observational data 

For this study, we composed a catalogue of dual imaged lens systems, which resemble closely to axially 

 clearly separate 

ere used to calculate the mean flux 

. CSL analysis 

agnification of the images, cumulative mass function, convergence and shear of the lens can be ac-

   
 

 

symmetric lensing. The catalogue contains data from JVAS/CLASS radio survey [20] and CASTLES survey 
[21]. Our sample has 44 lens systems,  see [2] for further details. Five of these systems had no data available 
during the conducted background research, which reduces number of useful systems to 39.  
The included systems were chosen with the following criteria: Lens system must have two
lensed images corresponding to a lensed quasar. Triple and quad lenses and Einstein rings were excluded. 
Clearly non-axially-symmetric cases were also excluded from the data. Additional lensed components, such 
as radio jets were allowed as long as the lensed point source was present.  
All the available flux measurements from optical and radio observations w
ratio weighed with the measurement errors in the observations. The flux ratio is calculated by dividing the 
dimmer image flux with the brighter image flux. Thus, the ratio is always below unity. No attempt for cor-
recting extinction or possible time-delay effects were made.  
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(5) 

 
for the solutions of images  and  when . Equation (5) holds most of the time, and it starts to 

(6) 

 
Note that constant  has vanished from this expression. It is also possible to parametrize the lens equation

 for the following pair of equations  

(7) 

 
gives a CSL limit for the lens system. Here magnification ratio of the lens system. The 
value  is the minimum amount of  “cuspiness'', i. e. the maximum value for , that is needed to pro-

bounded by . If all the lens systems in the sample have 
the sa

 from the lens equation (1) as well. In general, for strong lensing it holds  
 

 

break-up only with large len  masses hen  or  exceeds the value . With the lens 
equation (1) and the relation (5) the magnification ratio  of e images   and oduced by 
the source at  can be written as 
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A solution  and 
 
 

 

 is the measured 

duce the observed magnification ratio  with any lensing geometry assuming the axial symmetry. Re-
markable property of the CSL-value is that no information about the location of the ass center or the opti-
cal axis of the lens system is required [2].  

The statistics of  values are constructed by assuming that the source images are uniformly dis-
tributed at the source plane within a circle 

 m

me universal cusp  value, a distinctive distribution of  values is produced, as in figure 2. If 
the  cusp slopes of the halos are randomly distributed in som ge of values, this feature is destroyed. 

The best fit for the theoretical CSL-distribution to the observed data indicates that there is a major 
population of lens systems with a universal cusp slope .  The data also suggests a second popula-
tion o

 slope
e ran

f lenses with a cusp slope . Roughly one out of six systems belongs to this second popula-
tion of lens objects. The similar CSL-distribution is acquired from a mock data created with aforementioned 
population ratios and cusp slope values. See figure 2 and it's caption for further details. Acquired CSL-fits 
are summarized in table 1. 

 



 
Fig. 2. Distribution of the CSL-limit values from our sample of 39 double image gravitational lenses (black asterisk symbols). The 
observations are overlaid with fitted distribution for single population (black dashed line) and dual population model (black solid 
line). Correspondingly, created 100 lens single population mock data is presented with red diamonds, and fit to the data with solid 
red line. Green triangles correspond to 100 lens system mock data containing two populations of halos ( , , 

 and ), and green dashed and green solid lines corresponding CSL-fits. The curves are renormalized to 
cover an unit area and  and  are occurrence probabilities. 
 
5. Synthetic lens catalogue 

 
Effects from the error sources on the distribution of the CSL values are studied by constructing mock 

lens catalogues. Although the CSL-limit of a lens system does not depend on the mass or the concentration 
of the lens nor the distances between the observer, the lens and the source, the created mock data should re-
semble the real lensing data as closely as possible. The distributions of the image separations, the lens red-
shifts, the source redshifts and the magnification ratios were compared between the generated mock-
catalogue and the observed double image lenses. See figure 3.  
 The mock catalogue was created by sampling the Press-Schechter function at the suitable ranges for the 
masses and the redshifts for the lens and the source objects. The absolute luminosity of the source object is 
related to the sampled mass of the source [22]. The effects of the duty cycle time of the quasars on the lumi-
nosity function were ignored.  

The magnification and the image separation biases were introduced by solving the lens equation (1) 
for the system including the perturbations from the error sources. The resulting lens system was accepted or 
rejected correspondingly if it exceeds the threshold magnitude and the necessary image separation for the 
detection. The K-correction nor the extinction need not to be accounted for, because our method uses flux 
ratios of the images. 



 
Fig. 3. Distribution of the image separations, the lens and the source redshifts and the flux ratios from observed data and the synthetic 
data created by sampling the Press-Schechter function (see caption for figure 2). The first set of the mock data (red) contains only 
one population of lenses with a universal cusp slope . The second set of the mock data is created with two populations 
(green) with a universal cusp slopes orresponding probabilities for the lenses are   
and . The curves are renormalized to cover an unit area. 
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The cosmological parameters , ,  and  were used. The power 

spectrum normalization was nd the exponent e generated a mock lens data, which 
resembles the observed data, see figure 3. The CSL-analysis recovers the universal cusp slope value from the 
same mock catalogue, as presented in figure 2. Recovered values are summarized in table 1. 
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6. Perturbations 
 
In the final study, all the perturbing factors will be fully incorporated to the mock lens catalogue gen-

eration described in the previous section. Here we shortly summarize and analyze the contribution from each 
of the error sources. All the elements contributing to the observed magnification for each image in the lens 
system need not to be considered, because we are using flux ratios of the observed images. In our study we 
account the perturbations by the substructure within the lensing halos, the source variability through time 



delay effects, the perturbations arising from the deviations from the axial symmetry and the microlensing. 
Dataset     
Data (single) -1.95±0.06 1.0 - - 
Data (double) -1.95±0.06 0.83 -1.45±0.2 0.17 
Single mock data -1.94±0.03 1.0 - - 
Double mock data (single) -1.93±0.05 1.0 - - 
Double mock data (double) -1.93±0.05 0.80 -1.46±0.14 0.20 
 
Table 1. Fitted cusp slope values for the observational data, and the single and the double population mock data. The single popula-
tion mock data was created with a universal cusp slope  and the dual population model with the universal cusp slopes 

 and  The corresponding probabilities for the lenses are nd rror limits are 
from the covariance matrix acquired from the Levenberg-Marquardt fitting method. The population probabilities are calculated from 
the normalizations provided by the fitting method. 

.   a . E

 
 According to the N-body simulation studies of the structure formation, the dark matter halos should possess 
significant amount of substructure in the form of subhalos [16]. Perturbations by the substructure in the lens 
halos are considered using the linearized theory as presented in [23]. The theory indicates that the brighter 
image is always brightened more than the dimmer image in a double image lens, thus the substructure always 
decreases the magnification ratios. This effect tends to shift the distribution presented in figure 2. towards 

 (leftwards) and erase all the features with greater values. 
The changes in the magnification by the substructure are roughly proportional to the square of the macro-
lens magnification. Thus the magnification ratio is affected the most nearby the critical curves of the lens and 
the effects become negligible elsewhere. Lensing near critical curves produce (partial) Einstein rings that are 
excluded from our data, because they are not seen as double image lenses. Furthermore, their relative abun-
dance is small when sources are distributed uniformly on the source plane, because the source must lie close 
to the optical axis. The same argument can be applied to the microlensing by the stars within the lens galaxy. 
The realistic amounts of substructure in the lensing halo produce negligible effects on the CSL-distribution. 

When the source image luminosity is fluctuating, the time delay between the images produced by the 
lens corrupts the flux ratio. The lens equation (1) can be used to derive the amount of time delay for each 
lens configuration. The intrinsic source variability connected to the time delay is modeled as a power law 
noise, which corresponds to the observed properties of the quasar variability [24]. The variability is scaled 
according to the modeled structure function and parametrization as presented in [25]. The magnitude of fluc-
tuations is proportional to the time delay, which is usually order of few or few tens of days, depending on the 
geometry of the lensing. On average this corresponds roughly 0.2 magnitudes in the absolute magnitude of 
the source, although there are sources with more extreme variability. When it is converted to the fluxes and 
magnification ratios, it is roughly 0.9% of the baseline magnitude, that corresponds order of 2% in the mag-
nification ratio. On average this large deviation should have negligible effects on the CSL-statistics. 

In reality most lenses are not axially symmetric, but they have some degree of intrinsic ellipticity in 
their lensing potential and/or they are perturbed by an external lensing potential, i. e. other nearby galaxies. 
The critical curves of the elliptic and the sheared lenses are diamond shaped, and sources nearby the critical 
curves produce more than two images (usually four). Such lens systems are excluded from our sample as are 
lenses with strongly perturbing companions. 

Elliptic halos produce also double image lenses, but the deviations from the axial symmetry are  toler-
able when lensing does not take place at the vicinity of the critical curves and ellipticities are reasonable. 
Additionally, when randomly oriented three dimensional lensing halos are projected to the lensing plane, an 
average amount of ellipticity in the projected lensing potential  is somewhere between none and the maxi-
mum asymmetry of the triaxial halo. Thence ellipticities of the lens halos should produce only statistical 
noise in the CSL-statistics, that should be manageable. 
Finally, we consider microlensing by stars in our galaxy. In principle a microlens event can significantly en-
hance already lensed image, corrupting the magnification ratio and the CSL-statistics. However, microlens-
ing events are very rare, because they require very precise alignment. In the OGLE project, 20.5 million stars 
in the galactic bulge cloud were monitored during three year period, and 214 cases of microlensing were 
found [26]. The probability for a single star in the bulge to be microlensed during one year of monitoring, is 
about 10-5. If we consider double image lens systems, which are not observed at the regions of high stellar 
density in the Milky Way, a probability for a microlensing event in our sample consisting of 40 double image 
lenses is extremely small. 

We can summarize, that perturbations can be treated as a statistical noise in our method because it is 



based on the statistics of an extremal values for the required cusp slope for each lens. This conclusion will be 
further ensured by our mock lens catalogues, that will incorporate all these effects in a realistic way. 

 
7.  Conclusions 

 
Here we have outlined a statistical method for estimating a universal cusp slope within a sample of double 
image lenses and presented preliminary results. Our method is based on an axially symmetric lens model. 
Although the axially symmetric lens model can not reproduce all the features seen in individual lenses realis-
tic way, it can be used in statistical methods. Our method is based on a statistics of an upper limit for a re-
quired cusp slope for producing observed flux ratios, if we assume axial symmetry. It should be emphasized 
that we are not attempting to model each lens system in a realistic way. Our case is further strengthened by a 
close match between distributions of the CSL-values from the observational data, the mock data and the the-
ory.  

Additionally, because we are limiting ourselves to a lensing occurring far away from the critical 
curves, lensing problem becomes “nice”; there are no extreme magnifications, and effects from the substruc-
ture and ellipticities become tolerable. Therefore the axially symmetric lensing model is moderately good 
approximation for fluxes, and the whole problem can be linearized. 

Our method suggests two populations of lenses, with occurrence ratio 1/6. The major population (I) of 
lenses in our sample has a cusp slope  and the minor population (II) density profile with slope 

. Corresponding occurrence probabilities are  and . The mock data is 
further strengthening this interpretation. 

N-body simulations by [27] studying galaxy formation with dark and baryonic matter components, in-
dicate similar populations for halos. Their results suggest that the population I halo profiles are steepened 
significantly by the baryonic matter component, and population II halos are dominated by the dark matter 
with a poor baryonic matter contribution. 
Our method can be developed further to include lensing near the critical curves, thus accounting Einstein 
rings and four image lenses. Additionally, contribution of the perturbing factors can be studied through our 
method. For example, allowing too large amount of substructure within the halos would destroy the second 
population signature from the CSL-distribution.  
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