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Abstract: We consider an effect generated by the nonexponential behavior of the survival amplitude of an unstable state in the long time region: In 1957 Khalfin proved that this amplitude tends to zero as 
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 goes to the infinity. It appears that a similar conclusion can be drawn for the energy of the unstable state for a large class of models of unstable particles: This energy should be much smaller for suitably long times 
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. This is a purely quantum mechanical effect. It is hypothesized that there is a possibility to detect this effect by analyzing the spectra of distant astrophysical objects. The above property of unstable states may influence the measured values of astrophysical and cosmological parameters.

1.   Introduction
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where 
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where 
[image: image28.wmf])

(

t

a

 is the probability amplitude of finding the system at the time 
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We have 
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From basic principles of quantum theory it is known that the amplitude 
[image: image34.wmf])

(

t

a

, and thus the decay law 
[image: image35.wmf])

(

t

P

u

 of the unstable state 
[image: image36.wmf]ñ

u

|

, are completely determined by the density of the energy distribution 
[image: image37.wmf])

(

e

w

 for the system in this state [1], 


[image: image38.wmf].

)

(

=

)

(

)

.(

e

e

w

e

d

e

t

a

t

i

H

Spec

h

-

ò



(5)

where 
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Note that (5) and (4) mean that there must be 
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From the last property and from the Riemann-Lebesgue Lemma it follows that the amplitude 
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for 
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 [2], [4-6]. This effect is in agreement with the general result (7). Effects of this type are sometimes called the "Khalfin effect" (see eg. [8]). 
The problem how to detect possible deviations from the exponential form of 
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 in the long time region has been attracting the attention of physicists since the first theoretical predictions of such an effect [9, 10, 7]. Many tests of the decay law performed some time ago did not indicate any deviations from the exponential form of 
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 at long times were studied theoretically [11-13]. Conclusions following from these studies were applied successfully in the experiment described in [14], where the experimental evidence of the exponential decay law at long times was reported. This result gives rise to another problem which now becomes important: if (and how) deviations from the exponential decay law at long times affect the energy of the unstable state and its decay rate at this time region.

Note that in fact the amplitude 
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So, there is 
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in the case of quasi-stationary states.

The standard interpretation and understanding of the quantum theory and the related construction of our measuring devices are such that detecting the energy 
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In general, 
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Relations (10) and (11) establish a direct connection between the amplitude 
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where 
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The aim of this note is to examine the long time behaviour of 
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2.  The model
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where 
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 is a normalization constant and  
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Formula (14) leads to the result 
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where 
[image: image137.wmf])

(

1

x

E

 denotes the integral-exponential function [16, 17].

Using (14) or (15) one easily finds that 
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where 
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and 
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Making use of the asymptotic expansion of 
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where 
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for the considered case (13) of 
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From (21) it follows that 
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where 
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The property (22) means that 
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For different states 
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Note that 
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whereas in general 
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The most interesting relation seems to be the following one 
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The relation (27) is valid also when one takes 
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3.  Some generalizations
To complete the analysis performed in the previous Section let us consider a more general case of 
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where 
[image: image167.wmf]0

>

l

 and 
[image: image168.wmf]k

c

 are complex numbers. The simplest case occurs for 
[image: image169.wmf]0

=

min

e

. Note that the asymptotic expansion for 
[image: image170.wmf])

(

t

a

 of this or a similar form is obtained for a wide class of densities of energy distribution 
[image: image171.wmf])

(

e

w

 [2, 4, 5, 6, 8], [11-13].

From relation (29) one concludes that 
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Now let us take into account the relation (11). From this relation and relations (29), (30) it follows that 
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where 
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It seems to be important that results (31) and (32) coincide with the results (21) - (25) obtained for the density 
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 given by the formula (13). This means that the general conclusion obtained for the other 
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 defining unstable states should be similar to those following from (21) - (25).

4.  Final remarks.
Let us consider a class of unstable states formed by excited atomic energy levels and let these excited atoms emit the electromagnetic waves of the energies 
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So in the case of electromagnetic radiation in the optical range registered by a suitably this effect should manifest itself as a red shift. In a general case this effect should cause a loss of energy in the emitted electromagnetic radiation if the distance between an emitter and receiver is suitably long, that is if the emitted radiation reaches such a distance from the emitter that the time necessary for photons to reach this distance is longer than the maximal range of time of the validity of the exponential decay law for the excited atomic level emitting this radiation.

It can be easily verified that relation (27) does not depend on the redshift connected with the Doppler effect [18]. Therefore it seems that there is a chance to detect the possible effect described in this paper using relation (27) and analyzing spectra of distant astrophysical objects. It can be done using this relation if one is able to register and analyze at least three different emission lines from the same distant source. Another possibility to observe this effect is to modify the experiment described in [14] in such a way that the emitted energy (frequency) of the luminescence decays could be measured which could make possible to test relations (33) or (28).

The last conclusion. Cosmic distances and other parameters computed from the observed redshift of very distant objects emitting electromagnetic radiation [19] are calculated without taking into account the possible quantum long time energy redshift described in Sec. 2 and Sec. 3, so these distances as well as the values of these parameters need not reflect correctly the real picture.
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