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a b s t r a c t

A separation of variables method based on expansions of the electromagnetic fields in

terms of spherical wave functions is expanded at nonspherical (axisymmetric) particles

with a rather large number of layers. Commonly used alternative approaches to systems

of linear algebraic equations relative to unknown field expansion coefficients for layered

particles are considered in some detail. The SVM code developed is compared with the

EBCM, GMT and DDA codes designed for multilayered scatterers and some numerical

results obtained for nonspherical scatterers with up to 100 layers are presented as

illustrations.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Light scattering by layered particles is of growing interest for modelling optical properties of disperse media studied in
astrophysics, physics of atmosphere and oceans, ecology, biophysics as well as in various applications. Such particles are
applied to represent natural scatterers of both quasilayered and more complex structures. A large number of methods have
been used to treat layered particles, but this field has been never reviewed in sufficient detail. Therefore, a state of the art
review is required.

The separation of variables method (SVM) was most often applied to treat light scattering by layered scatterers (see [1,2]).
There are numerous works devoted to layered spheres as the SVM solution (theory) of Mie [3] is easily extended to such
spheres (see for details [4]). After the first paper of Aden and Kerker [5] on core-mantle spheres, there were dozens papers
where this theory was refined and applied to different cases (see reviews in [6,7]). New works on the subject appear till
now (see, e.g., [8–11]).

The SVM using a cylindrical basis was utilized to obtain solutions for layered infinite cylinders which find some useful
applications. Pioneer works were made on core-mantle circular cylinders by Kerker and Matijevich [12] and Shah [13].
Recent studies are presented in [14–16].

The SVM with a spheroidal basis was applied first to core-mantle spheroids [17] and later to multilayered ones (see a
review [18] and recent papers [19–23]). Note that in all the works the particles had spheroidal layers with confocal
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boundaries. A breakthrough was made by Han et al. [24] who obtained an exact solution for spheroids with nonconfocal
layers.

Layered scatterers of arbitrary (but usually axisymmetric) shape were treated by the extended boundary condition

method (EBCM) using a spherical basis and the T-matrix method (TMM). The classic works are a theoretical paper of
Peterson and Ström [25] and a work of Wang and Barber [26] with numerical results. Many papers that apply this approach
to layered scatterers are cited in comprehensive reviews of Mishchenko et al. [27–29]. We note two interesting
modifications of the approach. Kyurkchan et al. [31] have extended their modification of the EBCM called pattern equation
method to coated scatterers. The approach deals with scattering patterns representing the fields in the far field zone and is
easily generalized on multilayered objects. Petrov et al. [30] have calculated the T-matrix for a scatterer with layered
structure from a Sh-matrix that depends only on the shape of the layers (no dependence on their size parameters and
refractive indices). The authors expand their approach at continuously varying layer parameters.

Two methods mainly distinguished by use of different basis—the (generalized) point-matching method (PMM) and the
generalized multipole technique (GMT) are close to the EBCM/TMM approach. Al-Rizzo and Tranquilla [32] have
demonstrated that the generalized PMM can be efficiently applied to core-mantle axisymmetric scatterers. Doicu and
Wriedt [33,34] have combined their null-field method with discrete sources (actually the GMT) with the TMM to treat
layered three-dimensional scatterers of rather large eccentricity.

Other methods—the coupled dipole method (CDM), the method of moments (MoM), the finite difference time domain
method (FDTD), etc. [1,2] are more universal and hence much more computational time consuming than the SVM, EBCM,
PMM and GMT when applied to simple shape scatterers. Therefore, the CDM, MoM, FDTD, etc. are mainly used for
complicated objects.

The discrete dipole approximation (DDA) is a typical representative of the CDM methods based on the volume integral
formulation of the scattering problem. Core-mantle ellipsoids are involved in the standard DDA code of Draine and Flatau
[35]. An example of application of the DDA to complex core-mantle particles can be found in [36].

The FDTD method was applied to quite different layered objects: antennas [37], biological tissues [39], human
head [38], etc. This method is often used also to consider optical properties of layered media (see, e.g., [41]).
Some other methods recently modified to treat layered particles are presented in [42–44] (see, e.g., [45] for references to
earlier works).

Besides the methods mentioned, some approximations can be also useful in study of layered scatterers. Multilayered
ellipsoids in the Rayleigh (RA) and quasistatic (QSA) approximations were considered, for instance, in [46]. Layered spheres
have been recently studied in the Rayleigh–Gans approximation in [47]. The anomalous diffraction (van de Hulst’s) and
geometrical optics approximations are applied to multilayered particles in [48]. Another way to approximate the optical
properties of layered scatterers is the effective medium theory (EMT—see for more details [49]). A special rule of this
theory for layered particles was described in [50]. The EMT is very efficient, but may be inaccurate in particular for layered
scatterers (see discussion in [51]). Naturally, any of the approximations has an essentially limited accuracy level and
applicability range.

Three notes should be added. First, particles with an (large) inclusion can be considered as core-mantle ones. However,
we skipped references to most papers on such particles as the main attention is paid here to multilayered scatterers.
Second, it should be mentioned that there are many not works on scattering of acoustic waves by layered obstacles
(e.g., [52,53]). Third, because of application demands essential efforts were directed at solution of the inverse problem for
layered scatterers and some interesting results have been obtained (see, e.g., [54,55]).

Numerous works recently done on wave scattering by layered particles reflects the fact that they provide a very useful
model for various inhomogeneous natural scatterers. Though many methods were applied or specially developed to treat
nonspherical particles with layers, it is still hardly possible to derive sufficiently accurate results when the number of
(nonspheroidal) layers exceeds 5–10.

In this paper, the SVM based on expansions of the fields in terms of spherical wave functions is applied to
really multilayered nonspherical (axisymmetric) particles. In Section 2 main features of our approach (separation of the
fields, special scalar potentials used, etc.) are described. Two alternatives used to solve systems of linear algebraic
equations relative to the scattered field expansion coefficients are discussed in some detail. In Section 3 we consider
convergence, accuracy and speed of our SVM approach. It is compared with the EBCM, GMT, DDA methods applied to
multilayered scatterers. Some numerical results for multilayered scatterers are also presented. Main conclusions are drawn
in Section 4.
2. Basic equations

2.1. Formulation of the problem

We consider an L-layered scatterer embedded in a homogeneous medium. All layer boundaries Si ði ¼ 1;2; . . . ;LÞ are
assumed to be axisymmetric and to have the same symmetry axis. The boundaries divide the particle and the medium
into domains Di ði ¼ 1;2; . . . ;Lþ 1Þ. They are characterized by dielectric permittivity �i and magnetic permeability mi

(see Fig. 1), the corresponding wave number is ki ¼
ffiffiffiffiffiffiffiffi
�imi
p

k0, where k0 is the wave number in vacuum.
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Fig. 1. An axisymmetric layered scatterer (z-axis coincides with the symmetry one) and notation used.
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The electromagnetic fields in the domain Di are denoted by EðiÞ;HðiÞ. The fields satisfy the Maxwell equations

EðiÞðrÞ ¼ �
1

i�ik0
=� HðiÞðrÞ; r 2 Di;

HðiÞðrÞ ¼
1

imik0
=� EðiÞðrÞ; r 2 Di;

8>>><
>>>:

(1)

where i ¼ 1;2; . . . ;Lþ 1. The boundary conditions at all the layer surfaces are

EðiÞðrÞ � niðrÞ ¼ Eðiþ1Þ
ðrÞ � niðrÞjr2Si

;

HðiÞðrÞ � niðrÞ ¼ Hðiþ1Þ
ðrÞ � niðrÞjr2Si

;

8<
: (2)

where niðrÞ is the outer normal to the surface Si and i ¼ 1;2; . . . ;L.
The fields EðiÞ;HðiÞ in the domains Di with ipL should be represented by sums of incoming and outgoing fields

EðiÞ ¼ EðiÞ1 þ EðiÞ2 ; HðiÞ ¼ HðiÞ1 þHðiÞ2 . (3)

In the innermost layer (a particle core) like inside a homogeneous particle one has just EðLþ1Þ
¼ EðLþ1Þ

1 , HðLþ1Þ
¼ HðLþ1Þ

1 . As
the scattered field must satisfy the Sommerfeld radiation condition at infinity and an incident plane wave can be
represented by incoming waves, we can denote the former by Eð1Þ2 ;Hð1Þ2 and the latter by Eð1Þ1 ;Hð1Þ1 when considering the
fields outside the particle.

Thus, the problem is to find the unknown scattered field (Eð1Þ2 ;Hð1Þ2 ) as a solution to Eqs. (1) with the boundary conditions
(2) for the given incident plane wave ðEð1Þ1 ;Hð1Þ1 Þ.

2.2. Features of the approach used

To solve the problem we apply the SVM with a spherical basis. The following generalization of this method on
nonspherical scatterers is used. All the fields are expanded in terms of spherical wave functions, the expansions are
substituted in boundary conditions, and then integration of these conditions over the boundaries gives a system of linear
equations relative to unknown scattered field expansion coefficients (see for more details, e.g., [56,57]).

We extend this approach to layered scatterers and modify it by extracting an axisymmetric part of the fields and
utilizing special scalar potentials for different parts of the fields.

For each domain Di, the fields EðiÞs ;H
ðiÞ
s (s ¼ 1;2; i ¼ 1;2; . . . ;Lþ 1) are divided in two parts:

EðiÞs ¼ EðiÞs;A þ EðiÞs;N; HðiÞs ¼ HðiÞs;A þHðiÞs;N, (4)

where the fields EðiÞs;A;H
ðiÞ
s;A do not depend on the azimuthal angle j and are hereafter called axisymmetric. Averaging of the

nonaxisymmetric parts EðiÞs;N;H
ðiÞ
s;N over this angle should give zero. It is simple to prove that the light scattering problem can

be solved independently for axisymmetric ðEA ¼ E1;A þ E2;AÞ and nonaxysimmetric ðEN ¼ E1;N þ E2;NÞ parts of the fields [58].
Such representation of the fields has advantages and disadvantages discussed in [59] and can be easily skipped.

Special scalar potentials are introduced for each of the field parts. For the axisymmetric parts, we employ

pðiÞs ¼ EðiÞs;A;j cosj; qðiÞs ¼ HðiÞs;A;j cosj, (5)

where EðiÞs;A;j, HðiÞs;A;j are j-components of the fields EðiÞs;A and HðiÞs;A. Other components of the fields are derived from the
Maxwell equations. The potentials pðiÞ; qðiÞ resemble the Abraham ones, but in contrast to them satisfy the corresponding
Helmholtz equations [60]. It is possible to show that the boundary conditions for pðiÞ and qðiÞ can be separated, with p being
related to the TE mode task and q to the TM mode one (see for more details [59]). A definition of the TE and TM modes is
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given, e.g., in [49]. Spherical coordinates ðr; y;jÞ related with the axisymmetric particle are introduced in such a way that
all layer surface equations take the form r ¼ riðyÞ.

In the case of the nonaxisymmetric parts, for the TE mode we use

EðiÞs;N ¼ =� ðUðiÞs iz þ V ðiÞs rÞ; HðiÞs;N ¼
1

imik0
=�=� ðUðiÞs iz þ V ðiÞs rÞ, (6)

and for the TM mode

EðiÞs;N ¼
1

i�ik0
=�=� ðUðiÞs iz þ V ðiÞs rÞ; HðiÞs;N ¼ =� ðUðiÞs iz þ V ðiÞs rÞ, (7)

where iz is the unit vector along the particle symmetry axis.
As the scalar potentials introduced satisfy Helmholtz equations they can be expanded in terms of spherical functions as

follows:

pðiÞ1

qðiÞ1

¼
X1
l¼1

aðiÞ1;l

bðiÞ1;l

jlðkirÞP
1
l ðcosyÞ cosj;

UðiÞ1

V ðiÞ1

¼
X1
m¼1

X1
l¼m

aðiÞ1;lm

bðiÞ1;lm

jlðkirÞP
m
l ðcos yÞ cos mj, (8)

pðiÞ2

qðiÞ2

¼
X1
l¼1

aðiÞ2;l

bðiÞ2;l

hð1Þl ðkirÞP
1
l ðcos yÞ cosj;

UðiÞ2

V ðiÞ2

¼
X1
m¼1

X1
l¼m

aðiÞ2;lm

bðiÞ2;lm

hð1Þl ðkirÞP
m
l ðcosyÞ cos mj, (9)

where hð1Þl ðkirÞ and jlðkirÞ are the first kind Hankel and Bessel functions, Pm
l ðcos yÞ the associated Legendre functions. So, to

find the scattered field at any point r we need to determine the expansion coefficients að1Þ2;l , bð1Þ2;l and að1Þ2;lm, bð1Þ2;lm. Naturally, the
optical properties of a scatterer such as cross-sections, scattering matrix, etc. are expressed through these coefficients (see,
e.g., [61]).

One should realize that our selection of the scalar potentials U;V is equivalent to use of the corresponding vector wave
functions in the field expansions. For instance, for the TE mode and the electric field, instead of Eqs. (6) and (8) we could
write

EðiÞ1 ðrÞ ¼ EðiÞ1;AðrÞ þ
X1
m¼1

X1
l¼m

ðaðiÞ1;lmMz
lmðrÞ þ bðiÞ1;lmMr

lmðrÞÞ; r 2 Di, (10)

where the vector wave functions are

Mz
lmðrÞ ¼ =� ðiz clmðrÞÞ; Mr

lmðrÞ ¼ =� ðrclmðrÞÞ. (11)

Here clmðrÞ is a solution to the scalar Helmholtz equation Dcþ kic ¼ 0.
It is easy to prove that the coefficients aðiÞs;lm;b

ðiÞ
s;lm in Eqs. (8)–(10) are the same. Note that instead of our potentials U;V

one can use two usual Debye potentials Ve;m and correspondingly expand the fields in the functions Mr
lm and

Nr
lm ¼ =�Mr

lm.
It should be noted that the axisymmetric task is actually scalar—one scalar potential (pðiÞs or qðiÞs ) defines the fields

EðiÞs;A;H
ðiÞ
s;A for each i; s. Hence solution of this task is simple and very fast. Our large experience of dealing with the

axisymmetric and nonaxisymmetric tasks indicates that their properties (convergence behaviour, accuracy, etc.) are very
close. It makes the axisymmetric task very useful in extensive studies of applicability ranges of different approaches.
Solution of this task also allows one quickly to derive proper values of such technical parameters as the number of knots in
quadrature formula and of terms kept in the expansions necessary to reach given accuracy of results. A back side of our
extracting the axisymmetric part of the fields is that generally we need to keep 1–2 additional terms in the field (potential)
expansions to have as high same accuracy as that obtained without extracting. If necessary, one can skip this extraction
simply by taking m ¼ 0 in Eq. (10).

2.3. Linear systems to be solved

The systems of linear algebraic equations relative to the scattered field expansion coefficients are derived as follows. We
write the boundary conditions (2) separately for the axisymmetric (EA;HA) and nonaxisymmetric (EN;HN) parts of the
fields and replace these field parts with the corresponding scalar potentials, using Eqs. (5)–(7). The potential expansions
(8)–(9) are substituted in the reformulated boundary conditions. The conditions for each boundary are then multiplied by
functions Pm

n ðcos yÞ sin my and integrated over the corresponding surface Si. Completeness of the spherical functions allows
one to get systems of linear algebraic equations relative to the expansion coefficients of the scattered field and all internal
ones.

In the axisymmetric task we consider the first N terms in the potential expansions and multiply the conditions written
for p;q by N different spherical harmonics with m ¼ 1. In the nonaxisymmetric task N2=2 terms are kept in the U;V

expansions and multiplication is made for N �mþ 1 spherical harmonics with m ¼ 1;2; . . . ;N.
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For an axisymmetric scatterer, one can solve the systems arising for different m independently, and hereafter we skip
the index m. So, for each m one gets finite systems which look in the matrix form as follows:

AðiÞ BðiÞ

CðiÞ DðiÞ

 !
xðiÞ

yðiÞ

 !
¼

Eðiþ1Þ Fðiþ1Þ

Gðiþ1Þ Hðiþ1Þ

 !
xðiþ1Þ

yðiþ1Þ

 !
; i ¼ 1;2; . . . ;L. (12)

For each m the vectors xðiÞ and yðiÞ contain the expansion coefficients ðfaðiÞ1;lmg
N
l¼m; fb

ðiÞ
1;lmg

N
l¼mÞ and ðfaðiÞ2;lmg

N
l¼m; fb

ðiÞ
2;lmg

N
l¼mÞ,

respectively. The elements of matrices AðiÞ;BðiÞ;CðiÞ;DðiÞ are integrals of products of the Bessel or first kind Hankel functions
and the associated Legendre functions (and their first derivatives) over the surface Si, for instance

AðiÞm;nl ¼

Z p

0
jlðkiriðyÞÞP

m
l ðcosyÞPm

n ðcos yÞ sin ydy, (13)

where r ¼ riðyÞ is the surface equation of Si. Expressions for other matrix elements are presented in [62]. Note that in the
innermost layer ELþ1

2 ¼ 0, i.e., yðLþ1Þ ¼ 0 and one has

AðLÞ BðLÞ

CðLÞ DðLÞ

 !
xðLÞ

yðLÞ

 !
¼

EðLþ1Þ

GðLþ1Þ

 !
xðLþ1Þ. (14)

It should be pointed out that there are two alternative approaches to Eqs. (12)—one either composes one large system
(see, e.g., [21,31,34] and most works on core-mantle particles) or avoids this by using recursive [25,26,33] or iterative
[20,22,30,50] relations.

2.3.1. Single system approach

It is easy to bring the known vector xð1Þ into the right-hand side of system (12) for i ¼ 1 and to join partly related other
systems for i ¼ 2;3; . . . ;L. This gives the following system relative to the unknown coefficients of expansions of the
scattered and internal fields:

�Bð1Þ Eð2Þ Fð2Þ 0 � � � 0

�Dð1Þ Gð2Þ Hð2Þ 0 � � � 0

0 �Að2Þ �Bð2Þ Eð3Þ � � � 0

0 �Cð2Þ �Dð2Þ Gð3Þ � � � 0

� � � � � � � � � � � � � � � � � �

0 0 0 0 � � � EðLþ1Þ

0 0 0 0 � � � GðLþ1Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

yð1Þ

xð2Þ

yð2Þ

xð3Þ

..

.

yðLÞ

xðLþ1Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼

Að1Þ

Cð1Þ

0

0

..

.

0

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

xð1Þ. (15)

The dimension of this system is 2NL in the axisymmetric task and 4ðN þ 1�mÞL for m ¼ 1;2; . . . ;M in the
nonaxisymmetric one. Usually, the number of azimuthal terms to be considered ðMÞ can be essentially smaller than the
number of radial ones ðNÞ.

An advantage of this approach is flexibility in choosing N as its different values can be selected in layers. This may be
useful for scatterers with the layer surfaces of different types as convergence of methods mainly depends on surfaces’
shape. However, the approach meets an obvious problem for particles with a large number of layers as the system size and
computational time quickly grow with an increase of L. This problem is solved by use of sparse matrix inversion
algorithms [34].

2.3.2. Iteration/recursion approach

This approach to system (12) can be presented in different ways. For example, we introduce matrices P1; P2 so that

Að1Þ Bð1Þ

Cð1Þ Dð1Þ

 !
xð1Þ

yð1Þ

 !
¼

P1

P2

 !
xðLþ1Þ. (16)

The matrices P1; P2 are easily derived by considering Eq. (12) with the inverted left-hand side matrix consequently for
i ¼L;L� 1; . . . ;2 and in its normal form for i ¼ 1. This gives

P1

P2

 !
¼

Eð2Þ Fð2Þ

Gð2Þ Hð2Þ

 ! YL�1

i¼2

AðiÞ BðiÞ

CðiÞ DðiÞ

 !�1
Eðiþ1Þ Fðiþ1Þ

Gðiþ1Þ Hðiþ1Þ

 !2
4

3
5 AðLÞ BðLÞ

CðLÞ DðLÞ

 !�1
EðLþ1Þ

GðLþ1Þ

 !
. (17)

We solve the system that is obtained from Eq. (16)

�Bð1Þ P1

�Dð1Þ P2

 !
yð1Þ

xðLþ1Þ

 !
¼

Að1Þ

Cð1Þ

 !
xð1Þ. (18)

Thus, here we make L� 1 inversions of 2N � 2N matrices in the axisymmetric part and 4ðN þ 1�mÞ � 4ðN þ 1�mÞ

matrices for each m to be considered in the nonaxisymmetric one. So, the algorithm is more robust to an increase of the
number of layers than the single matrix scheme presented above.
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Note that one can rewrite Eq. (17) as follows:

P1

P2

 !
¼

YL
i¼2

EðiÞ FðiÞ

GðiÞ HðiÞ

 !
AðiÞ BðiÞ

CðiÞ DðiÞ

 !�1
2
4

3
5 EðLþ1Þ

GðLþ1Þ

 !
. (19)

This rather iterative relation allows one easily to formulate a recursive relation for the matrices P1; P2

P1ðLÞ

P2ðLÞ

 !
¼

Eð2Þ Fð2Þ

Gð2Þ Hð2Þ

 !
Að2Þ Bð2Þ

Cð2Þ Dð2Þ

 !�1
P1ðL� 1Þ

P2ðL� 1Þ

 !
, (20)

where PsðLÞ means the matrix Ps for a particle with L layers (s ¼ 1;2) and the innermost layer of an L-layered particle is
characterized by the matrices Að2Þ;Bð2Þ; . . . ;Hð2Þ.

Instead of solution of a linear system one often calculates a T-matrix that relates the unknown and known field
expansion coefficients in the form yð1Þ ¼ Txð1Þ. In our case the T-matrix is equal to

T ¼ ðAð1Þ � P1P�1
2 Cð1ÞÞ�1

ðBð1Þ � P1P�1
2 Dð1ÞÞ. (21)

Note that in an earlier paper [62] we used other auxiliary matrices Q1;Q2 defined by relation

xð1Þ

yð1Þ

 !
¼

Q1

Q2

 !
xðLþ1Þ. (22)

This gave a more simple expression for the T-matrix

T ¼ Q2Q�1
1 . (23)

However, our use of Q1;Q2 and Eq. (22) instead of P1; P2 and Eq. (18) surprisingly led to several order lower accuracy that
could be reached.

It should be noted that Peterson and Ström [25] suggested a simple recursive relation for T-matrices of layered
scatterers. It may be written as

TðLÞ ¼ ðQ11 � Q13TðL� 1ÞÞðQ31 � Q33TðL� 1ÞÞ�1, (24)

where TðLÞ is the T-matrix of an L-layered particle and Qij are some matrices described, e.g., in [26]. Obviously, Eq. (24) is
applicable to the T-matrices arisen in our axisymmetric and nonaxisymmetric tasks with

Tð1Þ ¼ GðLþ1Þ
ðEðLþ1Þ

Þ
�1. (25)

However, our paper [50] demonstrates that an iterative scheme for the T-matrices being generally equivalent to the
recursive relation (24) should be more computationally efficient

Q1ðLÞ

Q2ðLÞ

 !
¼
YL
i¼2

Q ðiÞ31 �Q ðiÞ33

Q ðiÞ11 �Q ðiÞ13

0
@

1
A Q1ð1Þ

Q2ð1Þ

 !
. (26)

When the EBCM method is applied, elements of the matrices Q ðiÞjk and Qjð1Þ are some surface integrals and use of the
iterative scheme (26) allows one to avoid L inversions of the matrix ~Q1 ¼ ðQ31 � Q33TÞmade in the recursion relation (24).
In the SVM method an extra inversion of ~Q1 to get T-matrix at each step in the recursion scheme is less essential as a matrix
including A;B;C;D is anyway inverted for each i to get the matrix with Q ðiÞjk .

So, we see that the iterative and recursive schemes are tightly related and present an alternative to the single matrix
scheme described above. Use of the matrices P1; P2 or Q1;Q2 looks to be preferable to that of the T-matrices and then there
is practically no difference between iterative and recursive schemes.

3. Numerical results and discussion

We have implemented the suggested SVM approach to layered nonspherical scatterers as a Fortran 77 code. Both
alternative schemes of solution of the equation system were included. All computations were performed with an Intel
1.8 Hz processor.

3.1. Convergence, accuracy and computational time

These three related aspects of our code in the case of layered spheroids are reflected in Fig. 2, where we consider how a
measure of relative accuracy of results—relative difference of the extinction and scattering cross-sections for nonabsorbing
particles

d ¼
jCext � Cscaj

Cext þ Csca
(27)
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Fig. 2. Dependence of an error measure d (left panels) and computational time t (right panels) on the number of terms N kept in the field expansions for 2

and 6-layered prolate spheroids. The aspect ratio of the layer surfaces is the same ðai=bi ¼ 1:5Þ, the size parameters xV;1 ¼ 3, xV;i ¼ xV;i�1 � 0:25, refractive

index outside the particle m1 ¼ 1 and in even and odd layers mi ¼ 1:33 and 1.7, respectively, the incident wave propagation angle a ¼ 45�. Results were

obtained with our SVM code for the single matrix (SVMsm) and iterative (SVMit) schemes and with the EBCM code from [50].
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and computational time t depend on the number of terms kept in the field (potential) expansions N for prolate spheroids
with cyclically repeating layers of several materials. The behaviour of accuracy reflected in the dependence dðNÞ is typical of
the SVM, EBCM and PMM methods—when N grows, accuracy first increases but after some value of N rapidly decreases
[59]. Similar figures were obtained for another accuracy measure—relative difference in a cross-section obtained when N

and N � 1 terms are considered

dN ¼
jCN � CN�1j

CN�1
. (28)

The dependence of computational time on N may be approximated as t�Na with a ¼ 2:5� 3, which is also typical of the
methods. The data given for the EBCM are discussed in the next subsection.

Comparing two alternative schemes, one can conclude from Fig. 2 that use of a big system allows one to reach better
accuracy than application of an iterative/recursive relation. The convergence speed (here the slope of dðNÞ) is nearly the
same, but the former approach is 2–100 times slower than the latter one and this difference grows with N and in particular
with the number of layers L. Note that standard Gauss–Jordan matrix elimination subroutines used to crash when the
number of equations exceeds about 500–1000 (as seen in Fig. 2) and further one should apply sparse matrix inversion
procedures.

The upper left panel also demonstrates results from the paper [62] where we used Eqs. (22) instead of Eqs. (18). As a
result, maximum accuracy reached was lower by a factor of 100, though with an increase of L this difference decreased.

One can also see that the convergence speed does not depend on the number of layers L, while maximum accuracy
reached does. It is still very high (about 10�10) for a spheroid with six layers. So, even for a scatterer with 100 layers one
should get several correct digits in results. Required computational time nearly linearly grows with the number of layers
when the iteration scheme is applied.
3.2. Comparison with other methods

We have compared our SVM code for layered scatterers with available codes based on other methods, namely the EBCM,
GMT and DDA. Fig. 3 shows the phase function computed for 2 to 100-layered spheroids by our code, a GMT code from [34]
and (for Lp10) the standard DDA code [35].

The GMT method described in [34] is often called the null field method with discrete sources (and sometimes a TMM).
The book [34] well explains the method where the fields are expanded in terms of spherical functions at different points
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Fig. 3. Phase function computed by the SVM, GMT and DDA methods for a multilayered prolate spheroid. Equivolume layers consist of vacuum ðm ¼ 1Þ

and ice ðm ¼ 1:33Þwith their volume fractions being equal to 0.33 and 0.67, respectively. The aspect ratio of the layer surfaces is the same ðai=bi ¼ 1:5Þ, the

particle size parameter xV ¼ 3, the axial incidence ða ¼ 0�Þ.

Table 1
Normalized cross-sections obtained with the SVM and GMT codes.

L SVM GMT

N Q sca Qext N Q sca Q ext

2 38 0.832175034371 0.832175034371 10 0.8322 0.8323

6 34 0.86357148727 0.86357148726 8 0.8636 0.8630

8 30 0.87266563639 0.87266563640 10 0.8722 0.8723

10 30 0.87911779316 0.87911779317 8 0.878 0.876

50 20 0.9065868 0.9065863 8 0.88 0.89

100 20 0.911002 0.911004 8 0.9 0.8
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(sources) frng
N
n¼1, which can be presented in our notation like the following (cf. Eq. (10)):

EðiÞ1 ðrÞ ¼
XMrank

m¼0

XNrank

n¼1

ðaðiÞnmMr
m;mþlðr � rðiÞn Þ þ bðiÞnmNr

m;mþlðr � rðiÞn ÞÞ, (29)

where l ¼ 1 for m ¼ 0 and l ¼ 0 otherwise. The GMT code was configured to choose sources automatically, the number of
integration points was Nint ¼ 1000, the number of expansions Nrank was varying from 4 to 40 but kept the same for all
layers, the number of azimuthal expansions Mrank was determined by the code automatically. The figure demonstrates that
the results obtained with the GMT and our SVM codes match very well for particles with up to 10 layers. Essential
difference at large scattering angles can be observed only for a very large number of layers. A deeper insight in accuracy of
the results is provided by Table 1 where we give normalized extinction and scattering cross-sections for the spheroids
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considered in Fig. 3. Computational time required by the GMT and our SVM codes to obtain the data in the table was
comparable. This may be related only with a large number of integration points used to be taken in the GMT code as generally
this method should be faster than the SVM. Table 1 indicates a good match of the SVM results with the law of conservation of
energy (Qext is equal to Q sca for dielectric particles). This fact shows that the proposed SVM method is very robust to an
increase of the layer number and should provide reliable results even for particles with more than a hundred of layers.

The DDA code applied is a very popular CDM tool employed to solve the light scattering problem for nonspherical
inhomogeneous particles. We added a simple subroutine modelling dipole locations for a multilayered particle (target) and
used the basic code described in [35]. The total number of dipoles was Ndip ¼ 1:5� 106, but similar results were obtained
also for Ndip ¼ 105. There is a problem of the DDA method when applied to scatterers with a large (over about 10) number
of layers—it becomes hardly possible to keep the correct volume fractions of materials involved as the layers become too
narrow for appropriate distribution of dipoles even when Ndip exceeds millions. Hence in Fig. 3 we present only data
obtained for 4 and 10-layered particles. One can well see how small difference between the DDA and other methods for
L ¼ 4 becomes essential for L ¼ 10. Nevertheless, the DDA being also a rather slow method is still very useful in
treatment of complex scatterers with a few layers.

The EBCM code used was described in [50]. It includes an iterative scheme based on Eq. (22) that could be improved as
discussed above. Further improvement of performance of the code can be expected after use of the approach utilized in the
well-known EBCM/TMM code of Mishchenko [1]. However, Fig. 2 has clearly demonstrated that the EBCM method is not
quite suitable for treatment of layered scatterers. The reason may be in the fact observed for homogeneous particles for
which the applicability range of the EBCM (in contrast to the PMM and SVM) is strictly limited in space of particle shape
parameters (see discussion in [59]). When more shapes (of layers) are involved, this range quickly decreases. An illustration
is Fig. 4 for core-mantle spheroids. It is well seen from the figure that the EBCM provides acceptable accuracy only for the
aspect ratio a1=b1o

ffiffiffi
2
p

(while the SVM works well beyond this limit). Note that for homogeneous spheroids the EBCM gives
accurate cross-sections for a=b44210. When more layers are considered, convergence of the EBCM becomes worse (see
Fig. 2) and one can hardly obtain reliable results for the number of layers larger than 5.

3.3. Illustrative examples

To illustrate capacity of the method and code suggested, we present some more numerical results obtained for porous
particles. Figs. 5 and 6 show normalized scattering cross-section and phase function, respectively, for spheroids with
Fig. 4. Accuracy of cross-sections of core-mantle spheroids achieved by the SVM and EBCM methods in dependence on the particle aspect ratio a1=b1 and

the size parameter xV;1. Other parameters are as in Fig. 2.
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Fig. 5. Normalized scattering cross-section Q sca in dependence on the size parameter xV for 2, 6, 10, 20, and 100-layered prolate spheroids. Materials of

equivolume layers are vacuum ðm ¼ 1Þ and dirty ice ðm ¼ 1:33þ i0:01Þ. The volume fraction of vacuum (porosity) is 0.33 (left panel) and 0.9 (right panel).

The aspect ratio of all layers is the same ai=bi ¼ 1:5, the axial incidence ða ¼ 0�Þ. For homogeneous spheroids, refractive index was obtained using the

Maxwell–Garnett rule.

Fig. 6. Phase function for 2, 6, 10, 20 and 100-layered spheroids. The outermost layer size parameter xV;1 ¼ 3, other parameters are as in Fig. 5.
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cyclically repeating layers of ice and vacuum. The number of layers L changes from 2 to 100 for two values of particle
porosity (the volume fraction of vacuum) P ¼ 0:33 and 0.9. Note that the (integral) cross-section for P ¼ 0:9 and the phase
function (differential cross-section) for P ¼ 0:33 rather weakly depend on L when L44. In contrast, this cross-section for
P ¼ 0:33 and the phase function for P ¼ 0:9 essentially change with an increase of L even when L�100.

We believe that there should be some limit values of the cross-section and the phase function as the number of layers
tends to infinity. It took place for layered spheres considered in [63], where its author needed, however, about several
thousands of layers to approach this limit. The behaviour of Figs. 5–6 confirms this conclusion for spheroids.

The results presented in this section make more understandable the following Table 2 where we very roughly estimate
properties of the methods mentioned in Section 1 when they are applied to layered scatterers. The table shows the type of
scatterers to which the given method is applicable, a maximum reachable size parameter xV ¼ 2prV=l, where rV is the
radius of a sphere which volume is equal to that of a nonspherical particle, a maximum aspect ratio a=b when the method is
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Table 2
Methods applied to layered nonspherical scatterers.

Methoda Particle type xV a=b L Accuracy Speed

EMT Anyb Medium to largeb Medium to largeb Any Low High

RA Confocal ellipsoidsc Small Medium to larged Any Medium to low High

GMT Any Medium Medium to large Large Medium to high Medium

SVMe Axisymmetric Medium Medium Large High Medium

EBCM Axisymmetricf Mediumg Mediumg Small High Medium

SVMsphh Confocal spheroidsi Large Large Large High Medium

CDM Any Medium Large Mediumj Medium Low

FDTDk Any Medium(?) Large(?) Medium(?) Medium(?) Low

a See the names of the methods in Section 1.
b Depends on the method used for homogeneous particles with an effective refractive index.
c Properties of an extension to nonconfocal ellipsoids in [46] are not clear.
d Large for so called quasistatic approximation [46].
e The method developed in this work.
f For nonaxisymmetric scatterers the speed becomes rather low.
g Medium to large when extended precision is used.
h SVM with a spheroidal basis.
i Properties of an extension to nonconfocal spheroids in [24] are not clear.
j When dipoles form a cubic lattice.
k Properties of the FDTD method when applied to layered scatterers are not quite clear.
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applied to spheroidal scatterers, a possible number of layers L, accuracy of results and speed of the method relative to
others. The table is not a verdict for the methods, but just a background to better realize the place of the suggested approach
(labelled by SVM in the table) among others. We see that our method can be useful when one needs rather efficiently to
treat simple shape nonspherical scatterers with a (very) large number of layers if these particles are more complex than
spheroids with the confocal layer boundaries. Note that such spheroids form a very special set of particles as any layer
shape is strictly determined by its volume and the particle aspect ratio. Our method can also be applied when one requires
(very) high accuracy of results for layered scatterers of a simple shape. It may be in particular useful as a testing tool for
other codes.
4. Conclusions

We have developed a special version of the SVM method for axisymmetric multilayered scatterers. Numerical tests
show that our approach provides high accuracy results for simple shape particles with up to 100 layers.

A consideration of two general computational schemes used for layered scatterers has been performed. We find that the
single system scheme allows one usually to reach more accurate results than the iterative or recursive scheme. However,
the former requires an order of magnitude longer computational time than the latter and is hardly applicable to scatterers
with 10 and more layers without use of sparse matrix inversion algorithms.

Comparison of the developed SVM code with available codes based on other (EBCM, GMT, DDA) methods applicable to
layered particles allows one to see the field of applicability of our code. It should be most useful for treatment of layered
particles being more complex than spheroids with strictly confocal layer boundaries and having a rather large number of
layers or any number of layers if high accuracy of results is required. Note that solution of these tasks is hardly possible by
other light scattering methods.
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