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Abstract. There are indications that interstellar and interplanetary dust grains have an inhomogeneous and fluffy structure. We
investigate different methods to describe light scattering by such composite particles. Both a model of layered particles and
discrete dipole calculations for particles with Rayleigh and non-Rayleigh inclusions are used.
The calculations demonstrate that porosity is a key parameter for determining light scattering. We find that the optical properties
of the layered particles depend on the number and position of layers if the number of layers is small (<∼15). For a larger number
of layers the scattering characteristics become independent of the layer sequence. The optical properties of particles with
inclusions depend on the size of inclusions provided the porosity is large. The scattering characteristics of very porous particles
with inclusions of different sizes are found to be close to those of multi-layered spheres.
We compare the results of these calculations with the predictions of the effective medium theories (EMT) which are often used
in astronomy as a tool to calculate the optical properties of composite particles. The results of our analysis show that the internal
structure of grains (layers versus inclusions) only slightly affects the optics of particles provided the porosity does not exceed
50%. It is also demonstrated that in this case the optical properties of composite grains calculated with EMT agree with the
results of the exact method for layered particles. For larger porosity, the standard EMT rules (i.e., Garnett and Bruggeman rules)
give reliable results for particles with Rayleigh inclusions only.
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1. Introduction

Various processes operating in interstellar and circumstellar
media are believed to produce inhomogeneous and porous cos-
mic dust grains (Dorschner 1999; Draine 2003). However, the
real structure of interstellar grains remains to be established.
The particles may have a layered structure because of the their
formation in circumstellar environments (Dominik et al. 1993)
and further evolution in molecular clouds (Ehrenfreund 1999;
Greenberg 1999). On the other hand, collisions of grains tend to
induce coagulation and partial destruction of particles. Because
of this, interstellar grains should have inclusions of different
size. Therefore, considering the optical properties of cosmic
dust grains we are forced to solve the difficult problem of the
interaction of radiation with composite particles of different
structure.

Fortunately, scientists had felt the necessity to treat the
scattering by composite and inhomogeneous particles or me-
dia consisting of several components even earlier than the
existence of interstellar dust was established. Garnett (1904)
was the first to find the averaged (effective) dielectric func-
tions of such a medium assuming that one material was a

matrix (host material) in which another material was embed-
ded in the form of small inclusions (so called Maxwell-Garnett
mixing rule of the Effective Medium Theory; EMT). Later,
Bruggeman (1935) deduced another rule which was symmet-
ric with respect to the materials. These classical mixing rules
are still the most popular ones.

Many scientific and applied problems require calculations
of light scattering by inhomogeneous particles with good accu-
racy.

This first became possible at the beginning of the 1950s
when the Mie solution for homogeneous spheres was gener-
alized to core-mantle spherical particles in three independent
papers (Aden & Kerker 1951; Shifrin 1952; Güttler 1952).
Güttler’s solution was used by Wickramasinghe (1963) who
first calculated the extinction of layered (graphite core-ice man-
tle) analogues of cosmic grains.

Mathis & Whiffen (1989) introduced the first consistent
model of composite cosmic grains which were very porous (the
volume fraction of vacuum ∼80%) aggregates of small amor-
phous carbon, silicate and iron subparticles. The optical prop-
erties of such particles were calculated with the Mie theory
and EMT. Mathis (1996) updated the composite grain model
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taking into account the abundances of heavy elements obtained
for cluster and field B stars and young F, G stars (Snow & Witt
1996). The new model consisted of three dust grain popula-
tions where the visual/near-IR extinction was explained by ag-
gregates with ∼45% vacuum in volume.

Now light scattering computations for inhomogeneous
(composite) particles with layers or inclusions from different
materials or aggregate particles are often made using the dis-
crete dipole approximation (DDA) or simpler theories (see
Voshchinnikov 2004, for discussion). Note that the DDA is a
method which still is computationally demanding. Therefore,
it is mostly used for illustrative calculations and not for mass
production (e.g., Wolff et al. 1994, 1998; Vaidya et al. 2001;
Andersen et al. 2003).

The idea to represent composite interstellar grains by multi-
layered spheres (Voshchinnikov & Mathis 1999; see also Iatì
et al. 2001) has no immediate physical justification1 (although
such particles may form in stellar envelopes and molecular
clouds), but is very attractive as an exact method to calculate
the optical properties of composite particles. Such a model per-
mits us to include an arbitrary fraction of any material, and
computations do not require large resources. However, the
distribution of material inside particles is always spherically
symmetric even when its volume fraction tends to zero.

In this paper, we compare the optical properties of compos-
ite interstellar grains of various porosity obtained from calcu-
lations for layered spheres, pseudospherical particles with in-
clusions and homogeneous spheres with an effective refractive
index. The description of the particle models is given in Sect. 2.
We compute different efficiency factors, albedo, etc. and ana-
lyze how these quantities depend on the order and number of
layers and the size of inclusions (Sect. 3). Special attention is
paid to the consideration of very porous grains (Sect. 3.2) be-
cause of their particular importance in astronomy, for example,
for modelling of comets (Greenberg & Hage 1991) and the disc
of β Pictoris (Li & Greenberg 1998). The possibility to describe
the light scattering by porous particles using Mie theory with
different EMT rules is studied in Sect. 4. Concluding remarks
are presented in Sect. 5.

2. Models of composite grains

Processes operating in the winds of late-type stars such as
grain nucleation and growth, shattering in the diffuse interstel-
lar medium, and finally coagulation and accretion in molec-
ular clouds and protoplanetary disks lead certainly to dust
grains with rather irregular shapes and very complicated in-
ternal structure (Dorschner & Henning 1995). The details of
the grain interiors are not directly important for surface chem-
istry, but the optical behaviour of the particles may be a strong
function of this structure. Direct evidence for the structure of

1 B. Michel (1995, J. Opt. Soc. Am. A, 12, 2471) has shown that
the spherical multi-layered particles are the lowest order approxima-
tion to the strong-permittivity fluctuations theory, i.e., an ensemble
of randomly oriented, arbitrarily oriented particles is equivalent to a
multi-layered particle, if spatial correlations inside the particles can
be neglected.

Fig. 1. The cut of the spherical particles by the plane. The models
of composite grains containing the same amount of carbon and sili-
cate are shown. The 3- and 9-layered spheres consist of equivolume
spherical layers with the total volume fractions of carbon, silicate and
vacuum equal to 33.33%. The core-mantle particle includes the same
mass of carbon and silicate but is free of vacuum.

Fig. 2. The cut of the pseudospherical particles with the maximum size
dmax = 45 by the plane. The models of very porous particles with small
single size (left) and different size (right) cubic inclusions are shown.
The volume fractions of carbon and silicate are equal to 5%.

these particles is difficult to obtain with the exception of inter-
planetary dust grains collected in the upper atmosphere and the
solar system. Therefore, a more general attempt to describe the
particles and to explore changes in their optical properties is
required.

A frequently used approach in astronomy is the modelling
of inhomogeneous grains by two-layered (core-mantle) spheres
and particles with voids or inclusions using EMT-Mie calcu-
lations. In this paper, we consider layered particles and parti-
cles with inclusions as the models for the description of the
optical properties of the inhomogeneous or composite grains.
The amount of a material in such particles is determined by
its volume fraction Vi (ΣiVi/Vtotal = 1). The particle porosity
P (0 ≤ P < 1) is introduced as

P = Vvac/Vtotal = 1 − Vsolid/Vtotal, (1)

where Vvac and Vsolid is the volume fraction of vacuum and solid
material, respectively.

In our calculations presented below, composite particles
of several materials are considered. The refractive indices
for them were taken from the Jena-Petersburg Database of
Optical Constants (JPDOC) which was described by Henning
et al. (1999) and Jäger et al. (2003).

Carbon and silicates are the materials most often used in
cosmic dust models (see Mathis et al. 1977; Draine & Lee
1984, and so on). We consider the particles composed of
amorphous carbon (AC1), astronomical silicate (astrosil) and
vacuum with varied volume fraction of each constituent.
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The optical constants for AC1 (m = 1.98 + 0.23i) and as-
trosil (m = 1.68 + 0.03i), corresponding to the wavelength
λ = 0.55 µm, were taken from the papers of Rouleau &
Martin (1991) and Laor & Draine (1993), respectively.

2.1. Layered particles

Here we represent composite grains by particles consisting of
many concentric spherical homogeneous layers of cyclically
changing materials. Such a model is not primarily meant as a
physical description of the actual grain structure, but as a pos-
sibility for describing light scattering by inhomogeneous parti-
cles of complex structure.

Vacuum can be one of the materials, and a composite parti-
cle may have a central cavity or voids in the form of concentric
layers. This model allows one to include at any position inside
a spherical particle any fraction of a material (from extremely
small to very large). The light scattering calculations are based
on the exact theory which is true for particles of any size and
refractive index.

The schematic representation (cross cut) of layered spher-
ical grains is given in Fig. 1. The particles are composed of a
specified number of concentric spherical homogeneous layers.
The order of the layers and their total number can be specified
separately. Following Voshchinnikov & Mathis (1999), we as-
sume further that different material layers cyclically change in-
side a particle and call the repeating set of such layers a shell.
This means that a particle consists of a specified number of
concentric shells, and the simplest model particle contains one
shell of two materials. The core-mantle particle presented in
Fig. 1 does not contain vacuum, but its mass is the same as
that of the other two particles shown. As a result, its volume
is less by factor of 1/3 and the outer radius by 3

√
1/3 ≈ 0.69,

respectively.

The formal solution to the light scattering problem for
n-layered spheres can be easily written in matrix form with
the separation of variables method (see, e.g., Kerker 1969). In
this case the scattering coefficients are calculated as the ratios
of two determinants of order 2n + 1 containing Riccati-Bessel
functions and their first derivatives of real and complex ar-
guments. However, for practical reasons, it is better to use
the recursive algorithm developed by Wu & Wang (1991) and
Johnson (1996). In order to make calculations for highly ab-
sorbing particles of large sizes, one should take into account
the modifications suggested by Wu et al. (1997) and Gurwich
et al. (2001).

2.2. Particles with inclusions

The optical properties of particles with inclusions can be esti-
mated on the basis of rather complicated calculations (see, e.g.,
Wolff et al. 1994; Videen & Chýlek 1998) or from laboratory
measurements (Kolokolova & Gustafson 2001). If the volume
fraction of inclusions is not very large (<∼10%), the EMT-Mie
calculations give the results with good accuracy (Wolff et al.
1994, 1998; Kolokolova & Gustafson 2001).

Fig. 3. Size dependence of the extinction efficiency factors for layered
spherical particles. Each particle contains an equal fraction of amor-
phous carbon (AC1), astrosil and vacuum (the porosity P = 1/3) sep-
arated in equivolume layers. The cyclic order of the different material
layers is indicated (starting from the core). The effect of the increase
of the number of layers is illustrated. The thick line at the lowest panel
corresponds to compact spheres consisting of AC1 and astrosil. For a
given value of the size parameter, the compact and porous particles
have the same mass.

However, our goal is the consideration of particles with
an arbitrary amount of inclusions and different porosity.
Therefore, the calculations are performed with the discrete
dipole approximation (DDA). We use the last version of
the DDA program (DDSCAT 6.0) developed by Draine &
Flatau (2003). This technique can treat particles of arbitrary
shapes and/or of inhomogeneous structure. A detailed review
of the DDA and its applications is given by Draine (2000).

The particles (“targets” in the DDSCAT terminology) are
constructed using two special routines. One routine produces
spherical targets with inclusions of a fixed size, while another
creates targets with a given distribution of inclusions over their
sizes. Both routines produce first a cube with randomly dis-
tributed cubic inclusions. The sizes of the target dmax and of
the inclusions dincl are expressed in units of the interdipole
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Fig. 4. Size dependence of the scattering and absorption efficiency factors, albedo and asymmetry parameter for multi-layered spheres. The
parameters of particles are the same as in Fig. 3.

distance d. In the cube, we just inscribe a sphere and remove
all inclusions and their parts being outside the sphere.

In contrast to previous modelling (Henning & Stognienko
1993; Lumme & Rahola 1994; Wolff et al. 1994, 1998; Vaidya
et al. 2001), porous particles are not produced by removing
dipoles or inclusions from a target but by attributing the re-
fractive index m = 1.000001 + 0.0i to them. We believe that
such a structure better corresponds to cosmic aggregates.

For the purpose of treating very porous particles, the num-
ber of dipoles in pseudospheres is taken quite large. In all cases
considered, the particles with the maximum size dmax = 91 are
studied. This value corresponds to the total number of dipoles
in pseudospheres Ndip = 357 128−381 915 depending on the
size of inclusions dincl. Thus, the criterion of the validity of
the DDA for extinction/scattering cross sections |m|kd < 12 of
Draine & Flatau (2003) (k = 2π/λ is the wavenumber with λ
being the wavelength in vacuum) is satisfied up to the size pa-
rameter xporous = 2πr/λ ≈ 27−28.

Targets with the values of dincl ranging from 1 to 9 are con-
sidered. The resulting structure (cross cut) of pseudospherical
grains is shown in Fig. 2. Note that the inclusions of the size
dincl = 1 are dipoles, while the inclusions with dincl = 3, 5, 7
and 9 consist of 27, 125, 343 and 729 dipoles, respectively.

The optical characteristics of pseudospheres with inclu-
sions were averaged over three targets obtained for different
random number sets. The calculations show that in our case

2 Note that sometimes the fulfillment of this criterion does not guar-
antee the correct result (see, e.g., discussion in Andersen et al. 2003).

such an approach is practically equivalent to time-consuming
numerical averaging over target orientations.

3. Towards unified optical properties

It is evident that composite particles of various structure and
shape should exist in space. Here we focus our attention on
spheres of different porosity because of their frequent use in the
modelling of interstellar and cometary grains and possible im-
portance in attacking the problem of cosmic abundances. Our
analysis should also help to estimate the range of validity of
some previous models and to clarify the physical background
of them.

3.1. Particles of moderate porosity

We start with the consideration of layered particles. Figure 3
shows the extinction efficiency factors Qext = Cext/πr2

s (Cext

is the extinction cross section, rs the outer radius) of layered
spheres. The optical properties of core-mantle spheres have
been studied rather well and seem to show no significant
peculiarities3 (Babenko et al. 2003). In contrast, three-layered
spheres already can produce anomalous extinction of light. The
order of the materials strongly affects the behaviour of extinc-
tion for such particles (the upper panel of Fig. 3). First of all,
the location of vacuum (the core or the middle layer) is im-
portant. The curve for particles with a carbon core and an

3 Except for a resonance peak arising for particles with mantles
having a large refractive index (see, e.g., Gurwich et al. 2003).
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Fig. 5. Size dependence of the extinction efficiency factors for pseu-
dospheres with inclusions of the same single size after averaging of
three different targets. Each particle contains an equal volume frac-
tion (33.33%) of AC1, astrosil and vacuum. The effect of variations of
the size of inclusions is illustrated.

outermost astrosil layer is the most peculiar curve. Here, a very
rare situation is observed: the first maximum is damped, but
there is a very broad second maximum. Note that the scatter-
ing efficiency depends more strong on the order of layers than
the absorption efficiency. However, all the peculiarities disap-
pear when the number of layers increases: the difference be-
tween the curves becomes rather small for particles with 9 lay-
ers (3 shells) and is hardly present for particles with 18 layers
(6 shells; see Figs. 3 and 4). Figure 4 shows the size depen-
dence of the scattering (Qsca) and absorption (Qabs) efficiency
factors, albedoΛ = Qsca/Qext and the parameter g(4) describing
the asymmetry of the phase function F(Θ,Φ)

g = 〈cosΘ〉 =
∫

4π
F(Θ,Φ) cosΘ dω
∫

4π
F(Θ,Φ) dω

(2)

for multi-layered spheres. As has been noted by Voshchinnikov
& Mathis (1999): the optical properties weakly depend on
the order of materials in each of the shells and are close to
some “average” properties, if a particle consists of many shells
(>∼3−5). In other words, for such particles, different efficiency
factors as well as albedo Λ and the asymmetry parameter g de-
pend practically only on the volume fraction of materials.

The solid thick lines in Figs. 3 and 4 show the size depen-
dence of the optical characteristics of compact (P = 0) spheres
consisting of the same amount of solid materials as the porous
ones. To compare the optical properties of porous and compact
particles, it is helpful to normalize the size parameter of either
the compact or porous particle using the relation

xporous =
xcompact

(1 − P)1/3
=

xcompact

(Vsolid/Vtotal)1/3
· (3)

In the case of the particles presented in Figs. 3 and 4, this leads
to stretching of the x scale for compact particles by a factor of
3
√

3/2 ≈ 1.145. It can be seen that the presence of vacuum in-
side the composite particles reduces the peak of the absorption

4 The notation g is related to the Henyey-Greenstein phase function
that is very often use in radiative transfer modelling.

Fig. 6. Size dependence of the extinction efficiency factors for pseu-
dospheres with a size distribution of inclusions. Each particle contains
an equal volume fraction (33.33%) of AC1, astrosil and vacuum. The
volume fractions of inclusions of different sizes are approximately the
same.

Fig. 7. The average extinction efficiencies for particles with single
size inclusions (from Fig. 5) and particles with size distribution of
inclusions (from Fig. 6). Each particle contains an equal volume frac-
tion (33.33%) of AC1, astrosil and vacuum. The thick solid line corre-
sponds to compact spheres consisting of AC1 and astrosil. For a given
value of the size parameter, the compact and porous particles have
the same mass. The thick dashed line shows the extinction for lay-
ered spheres after averaging over four samples presented at the bottom
panel of Fig. 3.

efficiency (Fig. 4, left lower panel) and shifts that of the scatter-
ing efficiency (Fig. 4, left upper panel). Correspondingly, these
two effects explain the behaviour of the curves for the extinc-
tion (Fig. 3). A medium porosity influences the albedo and the
asymmetry parameter only in a restricted range of size param-
eters.

Similar calculations for particles with inclusions were per-
formed many times using the DDA technique. But so far
only Wolff et al. (1994, 1998) considered particles with large
(non-Rayleigh) inclusions. They computed the optical prop-
erties of silicate spheres and spheroids with a size parameter
up to xporous = 10 and a volume fraction of vacuum inclu-
sions up to 80%. For the efficiency factors and asymmetry pa-
rameter, the difference between particles with Rayleigh5 and

5 In this case, the size of the inclusion is much smaller than the
radiation wavelength in the medium.
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Fig. 8. Size dependence of the scattering and absorption efficiency factors, albedo and the asymmetry parameter for pseudospheres with inclu-
sions. The parameters of particles are the same as in Fig. 7.

non-Rayleigh vacuum inclusions became noticeable for the
porosity P >∼ 0.4.

The results of our DDA calculations of the extinction effi-
ciency factors for pseudospheres with the porosityP = 0.33 are
shown in Figs. 5–7. The volume fractions of the materials are
approximately the same as in the particles presented in Figs. 3
and 4 but the materials are present in the form of inclusions
instead of layers (vacuum is considered as a matrix). Figure 5
shows the results obtained for particles with single size inclu-
sions. Note that despite the different structure of the targets
(the number of inclusions reduces from ∼240 000 to ∼330 with
growing ndip), the differences between the extinction efficien-
cies are quite small. The same conclusion is correct for parti-
cles having inclusions of different sizes. The results for three
different targets with a distribution of inclusions of five sizes
are shown in Fig. 6. The size of the inclusions ranges from 1
to 9 and the number of inclusions is inversely proportional to
their volume. In other words, the total numbers of dipoles in
the inclusions of each size are approximately the same.

The extinction efficiencies of the particles with inclusions
are compared with those of layered particles in Fig. 7. The dif-
ference between compact and porous particles is clearly seen,
but the results for porous particles with inclusions and lay-
ers look rather similar (excluding, perhaps, the height of the
first maximum). This behaviour is confirmed by Fig. 8 where
other efficiencies, albedo and the asymmetry parameter are
presented. The largest deviations occur for the scattering ef-
ficiency Qsca (in the range xporous ≈ 3−10) and the asymmetry
parameter g for the size parameter xporous >∼ 10. The latter does

not seem to be an artifact related to small number of angles
used in our calculations during the averaging over scattering.

Thus, we can conclude that if materials are “well mixed”
inside a particle of intermediate porosity, its internal structure
in form of layers, Rayleigh or non-Rayleigh inclusions hardly
can be inferred from the transmitted radiation. In contrast, there
is a clear difference between the optical properties of compact
and porous grains.

3.2. Very porous particles

It is commonly accepted that the fraction of vacuum in in-
terstellar dust grains can be large. For example, very porous
particles are often used to model cometary grains and dust
in protoplanetary discs. Greenberg & Hage (1991) claim that
the porosity of dust aggregates in comets can be in the range
0.93 < P < 0.98. Their conclusion is based on the model of
porous grains developed by Hage & Greenberg (1990) who
used a volume integral equation method similar to the DDA
for light scattering calculations. A verification of this method
had been made only for small compact spheres, but the method
was applied to large and very porous particles. A qualitative
agreement between the results obtained with this method and
from Garnett-Mie calculations was found. In both cases the ab-
sorption cross section Cabs increased and albedo Λ decreased
when the porosity grew. Although the validity of these con-
clusions for particles beyond the Rayleigh domain remains un-
clear, the results of Hage & Greenberg (1990) are frequently
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Fig. 9. Size dependence of the extinction efficiency factors for very
porous pseudospheres with inclusions of different size. Each particle
contains volume fractions of AC1 and astrosil equal to about 5%, the
porosity P = 0.9. The particles are similar to those presented in Fig. 5
but have larger porosity.

used for estimates of grain properties in comets (see, e.g.,
Mason et al. 2001).

Here we analyze in detail highly porous particles in the case
of P = 0.9. The results are presented in Figs. 9–11 in a manner
similar to that used in Figs. 5–7. We should note the problem
connected with the construction of targets when the size of in-
clusions was large. In this case, the total number of dipoles
from AC1 and astrosil was ∼36 000−39 000 and they were lo-
cated in ∼50 inclusions which might not always touch others.
Nevertheless, the changes of the general behaviour of extinc-
tion with an increase of the number of dipoles in inclusions are
clearly seen in Fig. 9. The extinction efficiency factors Qext be-
come larger for small values of x and smaller for large ones.
This essentially deviates from what was observed for particles
of intermediate porosity (cf. Fig. 5). The growth of porosity
leads to the disappearance of the first maximum. But the curves
for particles with inclusions of large sizes do not approach the
limiting value Qext = 2 defined by the “extinction paradox”.
This fact should be related to special topology of very porous
particles with large inclusions (values of ndip). Possibly, some
inclusions intercept a part of light scattered from other inclu-
sions and scatter it in the forward direction. This decreases the
extinction.

However, if particles are composed of subparticles of dif-
ferent size, their extinction is similar to the usual one and the
factors Qext → 2 if x → ∞ (see Fig. 10). The same conclusion
is valid for extinction produced by an ensemble of particles
with inclusions of single sizes presented in Fig. 11. This fig-
ure together with Fig. 12 demonstrates a very important result:
the optical properties of very porous layered particles and par-
ticles with inclusions are similar. Note that in both cases the
models of particles were constructed in such a manner that the
materials inside them were “well mixed”, i.e. the location of
inclusions in the form of layers or islands is not distinguished.

This leads to the interesting conclusion that a very simple
computational model of multi-layered particles seems to be of
possible use in treating the optics of composite grains.

Fig. 10. Size dependence of the extinction efficiency factors for very
porous pseudospheres with a size distribution of inclusions. Each par-
ticle contains volume fractions of AC1 and astrosil equal to about 5%,
the porosity P = 0.9. The particles are similar to those presented in
Fig. 6 but have larger porosity.

Fig. 11. Averaged extinction efficiencies for particles with single size
inclusions (from Fig. 9) and particles with a size distribution of inclu-
sions (from Fig. 10). Each particle contains volume fractions of AC1
and astrosil equal to about 5%, the porosity P = 0.9. The particles are
similar to those presented in Fig. 7 but have larger porosity. The thick
dashed line shows the extinction for layered spheres.

3.3. Particles of different porosity

The role of porosity in dust optics can be properly analyzed
using the normalized cross sections

C(n) =
C(porous grain)

C(compact grain of same mass)

= (1 − P)−2/3 Q(porous grain)
Q(compact grain of same mass)

· (4)

The quantity C(n) shows how porosity increases or decreases
the cross section. Such an investigation has been performed
by Krügel & Siebenmorgen (1994) for absorption cross sec-
tions of small particles with x < 1. They calculated the ef-
fective optical constants of porous particles using, in particu-
lar, the Bruggeman mixing rule, and applied the Mie theory to
get Qabs. Krügel & Siebenmorgen find that the cross sections
C(n)

abs increase with P until P <∼ 0.6 and then decrease.
Figure 13 shows the normalized extinction cross sections

computed for spheres of different porosity. The results are plot-
ted in the scale related to the size parameter xcompact calculated
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Fig. 12. Size dependence of the scattering and absorption efficiency factors, albedo and the asymmetry parameter for pseudospheres with
inclusions. The parameters of particles are the same as in Fig. 11.

Fig. 13. The normalized extinction cross sections for multi-layered
spheres of different porosity. Open circles show the normalized ex-
tinction for pseudospheres with a size distribution of inclusions (see
Fig. 10).

according to Eq. (3). Since the extinction factors generally de-
crease when P increases (cf. the lower panel of Figs. 3 and 11),
the values of C(n)

ext are greater than unity if the size parameter is
smaller than ∼1 or larger than ∼3. Thus, the porosity increases
the extinction of small and large6 particles. An opposite case
is observed only in a restricted range of the size parameters

6 For very large particles, the normalized cross sections approach
to asymptotic values C(n) → (1 − P)−2/3 (see Eq. (4)) which are equal
to 4.64 and 1.59 if P = 0.9 and 0.5, respectively.

xcompact ≈ 1−3 where the extinction by compact spheres has a
maximum (see, e.g., Fig. 7).

As follows from Fig. 14, such a behaviour of the nor-
malized extinction cross sections is accompanied by similar
changes of the scattering and absorption cross sections. At the
same time, the scattering and absorption efficiencies sharply
and slightly grow with x for very porous grains of large sizes.
Note also that both Λ (beginning with xcompact >∼ 2−3) and g
(for particles of all sizes) increase with porosity. The behaviour
of C(n)

abs and Λ found by us is more complicated than predicted
by Hage & Greenberg (1990). Namely, the growth of porosity
leads to an increase of C(n) and a decrease of Λ for very small
size parameters, and to an increase of both quantities for large
values of x. There exists also a small interval of intermediate
size parameters where both C(n) and Λ decrease.

Therefore, we can expect larger extinction, scattering and
absorption of radiation by porous particles with radius rs,compact

at wavelengths λ <∼ 2/3πrs,compact and λ >∼ 2πrs,compact in com-
parison with compact particles of the same mass. At the inter-
mediate wavelengths, the compact particles absorb and scat-
ter more radiation. For example, the “importance” of compact
grains in the production of extinction is larger at the near-
UV/visual range of wavelengths (0.21 µm <∼ λ <∼ 0.63 µm)
and at the near-IR wavelengths (2.1 µm <∼ λ <∼ 6.3 µm) if
rs,compact = 0.1 µm and rs,compact = 1 µm, respectively. Note
that the latter estimates are rather approximate because of the
wavelength dependence of the refractive index of materials (see
Voshchinnikov et al. 2004, for more details).
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Fig. 14. Size dependence of the scattering and absorption normalized cross sections for multi-layered porous spheres and pseudospheres with a
size distribution of inclusions. The parameters of particles are the same as in Fig. 13.

Fig. 15. Size dependence of the efficiency factors (left panel) and their relative errors (right panel) calculated with the exact theory for multi-
layered spheres and with the Mie theory using four different EMT rules. Multi-layered particles contain an equal volume fraction of amorphous
carbon (AC1), astrosil and vacuum. The cyclic order of the 18 layers is indicated.

Fig. 16. Size dependence of the extinction efficiency factors calculated
for multi-layered spheres, pseudospheres with inclusions and with the
Mie theory using three different EMT rules. The porosity of particles
is P = 0.9.

4. Comparison with Effective Medium Theory

The EMT is an approach to treat inhomogeneous scatterers as
homogeneous particles having an average (effective) refractive
index. The attempts to find the “best” EMT mixing rule con-
tinue up to now (e.g., Maron & Maron 2004). The EMT is
well described in the recent reviews of Sihvola (1999), Chýlek
et al. (2000) and papers of Spanier & Herman (2000) and
Kolokolova & Gustafson (2001). There are many EMT rules,
but besides a few ones they are rather similar in principle.

Here we give formulas of the most often used EMT rules
for n-component mixtures: the Garnett (1904) and Bruggeman
(1935) rules. In the first case, the mixing rule averages the di-
electric permittivities of inclusion materials εi and a “matrix”
(host) material εm

7

εeff = εm



1 +

3
∑

i fi
εi − εm

εi + 2εm

1 −∑
i fi
εi − εm

εi + 2εm



, (5)

where fi = Vi/Vtotal is the volume fraction of the ith mate-
rial and εeff is the effective permittivity. The expression for the
Bruggeman (1935) rule is
∑

i

fi
εi − εeff

εi + 2εeff
= 0. (6)

As an example of a more sophisticated rule, we use
the “layered-sphere EMT” introduced by Voshchinnikov &
Mathis (1999). In this case, the effective optical constants εeff

are defined as follows (see also Farafonov 2000):

εeff =
1 + 2α/V
1 − α/V =

A2

A1
, (7)

where α is the complex electric polarizability and the coeffi-
cients A1 and A2 are obtained as a result of multiplication

7 The dielectric permittivity is related to the refractive index
as ε = m2.
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of matrices depending on the optical constants and volume
fractions of layers
(A1

A2

)
=

(
1 1/3
εn −2/(3εn)

)

×
2∏

i=n−1




1/3
(
εi
εi+1
+ 2

)
−2/(9 fi)

(
εi
εi+1
− 1

)

− fi
(
εi
εi+1
− 1

)
1/3

(
2 εi
εi+1
+ 1

)




×



1/3
(
ε1
ε2
+ 2

)

− f1
(
ε1
ε2
− 1

)


 . (8)

The absolute bounds to εeff were given by Wiener (1910)8

εeff,max =
∑

i

fiεi, (9)

and

εeff,min =



∑

i

fi
εi




−1

· (10)

For any dielectric particle composition and structure, εeff

cannot lie beyond these limits as long as the microstructure
dimensions remain small compared with the radiation wave-
length. Note that in the composite grain model of Mathis &
Whiffen (1989) the effective refractive index was calculated
from Eq. (9), i.e. a maximum of possible refractive indices was
taken.

The general condition of EMT applicability is that the size
of “inclusions” (in the EMT the particle inhomogeneity is con-
sidered in the form of uniformly distributed small inclusions)
is small in comparison to the wavelength of incident radiation
(Chýlek et al. 2000). The real range of applicability of differ-
ent rules was shown to be nearly the same (see, e.g., Table 4 in
Voshchinnikov 2004).

Now let us discuss how different EMT rules can repro-
duce the optical properties of layered spheres. Figure 15 (left
panel) shows the extinction efficiency factors computed with
the exact theory for layered spheres and with the Mie theory
using Garnett9, Bruggeman, and layered-sphere mixing rules
of the EMT (i.e. the effective refractive indices are equal to
meff = 1.496 + 0.060i, meff = 1.541 + 0.081i and meff =

1.529 + 0.080i, respectively). Wiener’s maximum bound is
meff = 1.604 + 0.105i. Figure 15 (right panel) demonstrates
the relative errors of these EMTs. It can be seen that the
errors of the Bruggeman and layered-sphere rules are of several
percent or better in the considered range of particle sizes. The
same is generally true for other efficiency factors and albedo.
An exception is the region after the first maximum of the scat-
tering efficiency factor and albedo (xporous ≈ 6−8) where the
relative errors may reach up to 20%. The largest errors occur
for the asymmetry parameter, especially for small size param-
eters. The high accuracy of the layered-sphere rule in the case
of very small particles sizes is explained by the fact that it is
based on the Rayleigh approximation.

8 These expressions were exactly derived for non-absorbing mate-
rials but it seems they can be applied to slightly absorbing materials
too.

9 Vacuum was adopted as the matrix material.

Other rules of the EMT behave like the Garnett and
Bruggeman rules. We note that the general condition of the
EMT applicability is not fulfilled for layered particles as “in-
clusions” (layers) are not small in comparison with the wave-
length of incident radiation. However, most rules of the EMT
can reproduce the optical properties of layered spheres of any
size, if the number of layers is larger than 15−20. This conclu-
sion, however, can be affected by the porosity of particles.

Figure 16 illustrates the applicability of different EMT rules
to particles of very high porosity. The cases of other efficiency
factors, albedo and asymmetry parameter are similar. The fig-
ure demonstrates that the layered-sphere rule rather well re-
produces the optical properties of layered spheres as well as
the particles with inclusions of different sizes (the errors are
smaller than 10−20% if xporous <∼ 15 and P = 0.9). Note that
for such particles other rules provide acceptable approxima-
tions for intermediate porosity (P <∼ 0.5). The Garnett and
Bruggeman rules together with the Mie theory rather well ap-
proximate the light scattering by particles with inclusions of
small sizes. Therefore, all previous models based on the
standard EMT-Mie calculations are related to particles com-
posed of subparticles of very small sizes. If the size of subpar-
ticles is not small, only the layered-sphere rule can be used for
the description of the optical properties of very porous scatter-
ers.

5. Concluding remarks

We consider different (including new) computational ap-
proaches to calculating the optical properties of composite and
porous grains that can be used for the interpretation of obser-
vations of interstellar, circumstellar and cometary dust. In our
models the particles are represented by multi-layered spheres
or pseudospheres with inclusions of one or different sizes. If
the number of layers is small, our model of layered spheres
coincides with older models of the grains having several coat-
ings. For a large (>∼15−20) number of layers, the model of lay-
ered spheres can approximate heterogeneous particles consist-
ing of inclusions of different sizes. This gives us a handy way to
treat composite grains employing a very simple computational
model of multi-layered particles instead of time-consuming
DDA calculations.

We make a careful examination of the optical properties of
particles of various porosity. Previously, this task was solved
using the Mie theory for homogeneous spheres and effective
refractive indices derived from different mixing rules of the
Effective Medium Theory. It is demonstrated that this approach
gives relatively accurate results only if particles have small
(Rayleigh) inclusions. Otherwise, the approach becomes unac-
ceptable when the porosity exceeds ∼0.5. An exception is pro-
vided by a sophisticated layered-sphere mixing rule, recently
suggested by Voshchinnikov & Mathis (1999), that gives re-
sults of acceptable accuracy for particles with non-Rayleigh
inclusions as well. Note, however, that our consideration was
restricted by spheres, non very absorbing materials and the in-
tegral scattering characteristics but not the differential cross
sections or elements of the scattering matrix.
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Some astrophysical applications of the model of layered
grains (in particular, the possibility to reduce the model dust-
phase abundances) will be presented in a subsequent paper
(Voshchinnikov et al. 2004). Further development of the model
of multi-layered particles will involve consideration of non-
spherical inhomogeneous grains (see Farafonov et al. 2003 for
a review).

Acknowledgements. We are grateful to Bruce Draine and Piotr Flatau
for providing DDSCAT 6.0 and to the referee for very careful read-
ing of the paper and recommendations related to its improvement.
The work was partly supported by grants of the DFG Research Group
“Laboratory Astrophysics” and by grant 1088.2003.2 of the President
of the Russian Federation for leading scientific schools. V.I. acknowl-
edges a support by the grant E02-11.0-8 of the Russian Ministry of
Education.

References
Aden, A. L., & Kerker, M. 1951, J. Appl. Phys., 22, 1242
Andersen, A. C., Sotelo, J. A., Niklasson, G. A., & Pustovit, V. N.

2003 [arXiv:astro-ph/0310343]
Babenko, V. A., Astafyeva, L. G., & Kuz’min, V. N. 2003,

Electromagnetic scattering in disperse media: inhomogeneous and
anisotropic particles (Springer-Praxis)

Bruggeman, D. A. G. 1935, Ann. Phys., 24, 636
Chýlek, P., Videen, G., Geldart, D. J. W., Dobbie, J. S., & Tso,

H. C. W. 2000, in Light Scattering by Nonspherical Particles, ed.
M. I. Mishchenko et al. (San Francisco: Academic Press), 274

Dominik, C., Sedlmayr, E., & Gail, H.-P. 1993, A&A, 277, 578
Dorschner, J. 1999, in Formation and Evolution of Solids in Space, ed.

J. M. Greenberg, & A. Li (Kluwer), 229
Dorschner, J., & Henning, Th. 1995, A&AR, 6, 271
Draine, B. T. 2000, in Light Scattering by Nonspherical Particles, ed.

M. I. Mishchenko et al. (San Francisco: Academic Press), 131
Draine, B. T. 2003, ARA&A, 41, 241
Draine, B. T., & Flatau, P. J. 2003 [arXiv:astro-ph/0309069]
Draine, B. T., & Lee, H. M. 1984, ApJ, 285, 89
Ehrenfreund, P. 1999, in Solid Interstellar Matter: the ISO Revolution,

ed. L. d’Hendecourt, C. Joblin, & A. Jones (Berlin: Springer-
Verlag), 231

Farafonov, V. G. 2000, Opt. Spectrosc., 88, 441
Farafonov, V. G., Il’in, V. B., & Prokop’eva, M. S. 2003, JQSRT, 79,

599
Garnett, J. C. M. 1904, Phil. Trans. R. Soc. A, 203, 385
Greenberg, J. M. 1984, Occas. Rep. Roy. Obs. Edinburgh, 12, 1
Greenberg, J. M. 1999, in Formation and Evolution of Solids in Space,

ed. J. M. Greenberg, & A. Li (Kluwer), 53
Greenberg, J. M., & Hage, J. L. 1991, in Chemistry in Space, ed. J. M.

Greenberg, & V. Pirronello (Kluwer), 363
Gurwich, I., Kleiman, M., Shiloah, N., & Oaknin, D. 2003, JQSRT,

79, 649

Gurwich, I., Shiloah, N., & Kleiman, M. 2001, JQSRT, 70, 433
Güttler, A. 1952, Ann. Phys., 6, Bd. 11, 65
Hage, J. I., & Greenberg, J. M. 1990, ApJ, 361, 251
Henning, Th., & Stognienko, R. 1993, A&A, 280, 609
Henning, Th., Il’in, V. B., Krivova, N. A., Michel, B., &

Voshchinnikov, N. V. 1999, A&AS, 136, 405
Jäger, C., Il’in, V. B., Henning, Th., et al. 2003, JQSRT, 79, 765
Johnson, B. R. 1996, Appl. Opt., 35, 3286
Iatì, M. A., Cecchi-Pestellini, C., Williams, D. A., et al. 2001,

MNRAS, 322, 749
Kerker, M. 1969, The Scattering of Light and Other Electromagnetic

Radiation (New York: Academic Press)
Kolokolova, L., & Gustafson, B. Å. S. 2001, JQSRT, 70, 611
Krügel, E., & Siebenmorgen, R. 1994, A&A, 288, 929
Laor, A., & Draine, B. T. 1993, ApJ, 402, 441
Li, A., & Greenberg, J. M. 1998, A&A, 331, 291
Lumme, K., & Rahola, J. 1994, ApJ, 425, 653
Maron, N., & Maron, O. 2004 [arXiv:astro-ph/0402249]
Mason, C. G., Gehrz, R. D., Jones, T. J., et al. 2001, ApJ, 549, 635
Mathis, J. S. 1996, ApJ, 472, 643
Mathis, J. S., & Whiffen, G. 1989, ApJ, 341, 808
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
Ossenkopf, V., & Henning, Th. 1994, A&A, 291, 943
Petrov, Yu. A. 1986, Clusters and Small Particles (Moscow: Nauka)
Rouleau, F., & Martin, P. G. 1991, ApJ, 377, 526
Shifrin, K. S. 1952, Izvestia Academii Nauk SSSR, Ser.

Geofizicheskaya, 2, 15
Sihvola, A. H. 1999, Electromagnetic Mixing Formulas and

Applications, Institute of Electrical Engineers, Electromagnetic
Waves Series 47, London

Snow, T. P., & Witt, A. N. 1996, ApJ, 468, L65
Spanier, J. E., & Herman, I. P. 2000, Phys. Rev. B, 61, 10437
Vaidya, D. B., Gupta, R., Dobbie, J. S., & Chýlek, P. 2001, A&A, 375,

584
van de Hulst, H. C. 1957, Light scattering by small particles

(New York: John Wiley)
Videen, G., & Chýlek, P. 1998, Optics Comm., 158, 1
Voshchinnikov, N. V. 2004, Astrophys. & Space Phys. Rev., 12, 1
Voshchinnikov, N. V., & Mathis, J. S. 1999, ApJ, 526, 257
Voshchinnikov, N. V., Il’in, V. B., Henning, Th., & Dubkova, D. N.

2004, in preparation
Wickramasinghe, N. C. 1963, MNRAS, 126, 99
Wiener, O. 1910, Berichte über die Verhandlungen der Königlich-

Sächsischen Gesellschaft der Wisseschaften zu Leipzig, Math.-
phys. Klasse, 62, 256

Wolff, M. J., Clayton, G. C., & Gibson, S. J. 1998, ApJ, 503, 815
Wolff, M. J., Clayton, G. C., Martin, P. G., & Schulte-Ladbeck, R. E.

1994, ApJ, 423, 412
Wu, Z. S., & Wang, Y. P. 1991, Radio Sci., 26, 1393
Wu, Z. S., Guo, L. X., Ren, K. F., Gouesbet, G., & Gréhan, G. 1997,

Appl. Opt., 36, 5188


